
Reproducing AlphaZero with ELF:
What we learned

Yuandong Tian
Facebook AI Research

Larry ZitnickQucheng Gong*Yuandong Tian Jerry Ma* Shubho Sengupta* Zhuoyuan Chen James Pinkerton



AlphaGo Series

AlphaGo Lee
(Mar. 2016)

AlphaGo Master
(May. 2017)

AlphaGo Zero
(Oct. 2017)



AlphaGo Series

AlphaGo Lee
(Mar. 2016)

AlphaGo Master
(May. 2017)

AlphaGo Zero
(Oct. 2017)

Impressive Results, No code, No model



Demystifying AlphaGoZero/AlphaZero

• Hard to reproduce
• Details are missing in the paper
• Huge computational cost (15.5 years to generate 4.9M selfplays with 1 GPU)
• Sophisticated (distributed) systems.

• Lack of ablation analysis
• What factor is critical for the performance?
• Is the algorithm robust to random initialization and changes of hyper parameters?
• How the ladder issue is solved?

• Lots of mysteries
• Is the proposed algorithm really universal?
• Is the bot almighty? Is there any weakness in the trained bot?



Reimplementation of AlphaGoZero / AlphaZero

Update
Models

Generate
Training data

Self-Replays

Zero-human knowledge

[Silver et al, Mastering the game of Go without human knowledge, Nature 2017]



AlphaGo Zero

MCTS

Training 
samples 
for 



AlphaGo Zero

Input features (19x19x17):

Player situation
at time 0

Player situation at t=-7Opponent situation
at time 0

Color to play

Conv ReLUBN Conv ReLUBN



AlphaGo Zero Strength

• 3 days version
• 4.9M Games, 1600 rollouts/move
• 20 block ResNet
• Defeat AlphaGo Lee. 

• 40 days version
• 29M Games, 1600 rollouts/move
• 40 blocks ResNet.
• Defeat AlphaGo Master by 89:11



ELF OpenGo

• System can be trained with 2000 GPUs in 2 weeks (20 block version)
• Superhuman performance against professional players and strong bots.
• Abundant ablation analysis
• Decoupled design, code reusable for other games.

We open source the code and the pre-trained model for the Go and ML community

Larry ZitnickQucheng GongYuandong Tian Jerry Ma Shubho Sengupta Zhuoyuan Chen James Pinkerton



ELF OpenGo Timeline

AlphaGoZero
paper
Release

AlphaZero
Arxiv Release

NovOct Jan

Release
Code/model

May. 2, 2018

Prototype
Models

Match with
professional players

Apr

Model
takes off

MarFeb

Amateur
level

Final
Model

Reproduce our
own progress!

Oct

2017 2018 2019

OpenGo
Starts



ELF OpenGo Performance

20-0Name (rank) ELO (world rank) Result
Kim Ji-seok 3590 (#3) 5-0
Shin Jin-seo 3570 (#5) 5-0
Park Yeonghun 3481 (#23) 5-0
Choi Cheolhan 3466 (#30) 5-0

Single GPU, 80k rollouts, 50 seconds
Offer unlimited thinking time for the players

Vs top professional players

Vs strong bot (LeelaZero)
[158603eb, 192x15, Apr. 25, 2018]: 980 wins, 18 losses (98.2%)

Vs professional players
Single GPU, 2k rollouts, 27-0 against Taiwanese pros.

http://zero.sjeng.org/networks/158603eb61a1e5e9dcd1aee157d813063292ae68fbc8fcd24502ae7daf4d7948.gz


ELF OpenGo Sample Game



ELF: Extensive, Lightweight and Flexible 
Framework for Game Research

Larry ZitnickQucheng Gong Wenling Shang Yuxin WuYuandong Tian

[Y. Tian et al, ELF: An Extensive, Lightweight and Flexible Research Platform for Real-time Strategy Games, NIPS 2017]



ELF: A simple for-loop
ActionState Reward

Agent

Environment
st+1C++

Python



How ELF works

Game
Threads
(C++)

0

1
2
3

4
5
6
7

Batch BatchBatch Batch Batch

Python



Distributed ELF (version 1)

Training
procedure
(8 GPUs)

Selfplay 1 Selfplay 2 Selfplay n

Evaluation 1

Evaluation 2

Evaluation mModel Zoo

Selfplay data

Current best model Evaluation
Server

Update best model
and next candidateCurrent trained model
Win rate > 55%



Distributed System (version 1) 

Training
procedure

Selfplay 1 Selfplay 2 Selfplay n

Evaluation 1

Evaluation 2

Evaluation mModel Zoo

Evaluation
Server

Open a port
Receive selfplay data via ZeroMQ

Current trained model

8 GPUs



Distributed System (version 1) 

Training
procedure
(8 GPUs)

Selfplay 1 Selfplay 2 Selfplay n

Evaluation 1

Evaluation 2

Evaluation mModel Zoo

Evaluation
Server

Pick the best model and keep selfplaying

Current best model

300-2k GPUs

Each selfplay client 
batches 32 parallel games 
in a batch size of 128



Distributed System (version 1) 

Training
procedure
(8 GPUs)

Selfplay 1 Selfplay 2 Selfplay n

Evaluation 1

Evaluation 2

Evaluation mModel Zoo

Evaluation
Server

Update best model
and next candidate

Win rate > 55%

No GPU needed



Distributed System (version 1) 

Training
procedure
(8 GPUs)

Selfplay 1 Selfplay 2 Selfplay n

Evaluation 1

Evaluation 2

Evaluation mModel Zoo

Evaluation
Server

Send the current model 
pairs to evaluate

100 GPUs

Each evaluation client 
batches 2 parallel games 



Distributed ELF (v2)

Server

Evaluate/Selfplay

Training

Send request 
(game params) 

Receive 
experiences

Client

Client

Client Client Client

Client

Client

AlphaGoZero (more synchronization)
AlphaZero (less synchronization)

Putting AlphaGoZero and AlphaZero
into the same framework

Server controls synchronization
Server also does training.



Adaptation



We put our bot on Fox server



What we learned?



Training Stage of Final Model

Prototype = superhuman level
(model against professional players)

Prototype-! = strong amateur level

Prototype-" = professional level

A lot of zig-zag in the training process



Overfitting issues
Dip of the value function

Overestimate white winrate

Black resigns prematurally

Black loses many games

Imbalanced replay buffer

Adaptive resign threshold has delays
Large replay buffer is the key



However, it is quite stable.

• Without policy head, it can still achieve ~2d level.
• With strong correlation in batch, it still train 1/3 of the time.
• With batchnorm with shifted mean/std, it still works to some extend.



Ladder Issues

Run a ladder and lost Run shorter ladder and lost

Doesn’t run ladder

Value propagation is really slow.
There is only one long path that is correct



Did we solve ladder?
No

Why is the model still strong? à It plays alternative moves to avoid these situations.



AlphaZero versus AlphaGoZero

• AlphaZero is much faster than AlphaGoZero
• No synchronization locks
• After a day’s training, model trained with AZ won 100:0 against model trained
with AGZ

• Essentially a value/policy iteration with function approximation.
• No evaluation needed.

• Zig-zag slight overfitting which leads to improvement



Why MCTS is so important?

Training is almost always constrained
by model capacity (why 40b > 20b)

Look-ahead is how new knowledge is created.

White rollouts 2x à ~85% winrate

Black rollouts 2x à ~65% winrate

On Final Model



How sensible moves are learned?

Game
Start

Game
End

Random Moves Meaningful Moves

Where the
reward signal is

Training
Progresses Move 61-120 grows at the

same rate as move 121-180

Hypothetically Practically

Match rate of each move against the prototypemodel.



Further train with learning rate 10#$…
• Surprisingly, it is not stable any more.
• Once at capacity, new models becomes similar to each other.
• Replay buffer becomes uniform and models start to overfit.

Selfplay
games

Training

Model

Replay
Buffer

Model

Replay
Buffer

time



Conclusion

• The algorithm has pros and cons
• Inductive bias
• Planning is the key

• A lot of mysteries remain.
• Why the method still works even with zig-zag and high-variance?
• How to build a theoretical framework?
• Maybe population-based approach is more stable?
• More research to do



Challenge in Reproducibility

• How to reproduce a distributed ML/RL system like AlphaZero?
• On-policy RL system does not have fixed dataset.
• Distributed system poses more challenges.

• Practice
• Fix the random seeds.
• Record the script, the command argument and git commit number

• Put the commit number into C++ library compilation.

• Save the raw logs (stdout / stderr) and the script from raw logs to figures



Thanks!


