Building Scalable Framework and Environment of Reinforcement Learning

Yuandong Tian Facebook AI Research

Al works in a lot of situations

Object Recognition

Medical

Translation

Speech Recognition

Personalization

Surveillance

Smart Design

Board game

What AI still needs to improve

Question Answering

StarCraft

Autonomous Driving

ChatBot

Common Sense

Exponential space to explore ••

Home Robotics

Very few supervised data Complicated environments Lots of Corner cases.

Efforts

Reinforcement Learning

[R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction]

Supervised Learning v.s Reinforcement Learning

Supervised Learning v.s Reinforcement Learning

Supervised learning

The boss decides what you will learn You work hard to get them right

Reinforcement learning

Explore the space to find a good solution You decide what data you want to learn

> More data hungry More computational resources

Applications of Reinforcement Learning

Sequential Decision Making

Real-time ads bidding

Recommendation

RL for Optimization

Travel Salesman problem

Architecture Search

Game as a testbed of Reinforcement Learning

Infinite supply of *fully* labeled data

Controllable and replicable

Low cost per sample

Complicated dynamics with simple rules.

Faster than real-time

Less safety and ethical concerns

Game as a testbed of Reinforcement Learning

Algorithm is slow and data-inefficient

Require a lot of resources.

Abstract game to real-world

Hard to benchmark the progress

Game as a testbed of Reinforcement Learning

Our work

Better Algorithm/System

Better Environment

Go Engine (*DarkForest*, Y. Tian, Y. Zhu, ICLR16) (*ELF OpenGo*, Y. Tian et al.)

ELF: Extensive Lightweight and Flexible Framework (Yuandong Tian et al, NIPS17)

Doom Al (Yuxin Wu, Yuandong Tian, ICLR17) House3D: An interactive 3D environment for navigation (Yi Wu, Georgia Gkioxari, Yuxin Wu, Yuandong Tian)

A Framework for Deep Reinforcement Learning

Design Choices: CPU, GPU? Simulation, Replays Concurrency

[R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction]

A Framework for Deep Reinforcement Learning

ELF: Extensive, Lightweight and Flexible Framework for Game Research

Yuandong Tian

Qucheng Gong

Wenling Shang

Yuxin Wu

Larry Zitnick

https://github.com/facebookresearch/ELF

[Y. Tian et al, ELF: An Extensive, Lightweight and Flexible Research Platform for Real-time Strategy Games, NIPS 2017]

How ELF works

ELF Characteristics

Extensive

Any games with C++ interfaces can be incorporated.

Lightweight

Fast. Mini-RTS (40K FPS per core) Minimal resource usage (1GPU+several CPUs) Fast training (half a day for a RTS game)

Flexible

Environment-Actor topology Parametrized game environments. Choice of different RL methods.

Lightweight

KFPS per CPU core for Pong (Atari)

Lightweight

KFPS per CPU core for Pong (Atari) 6 ■ 1 core 2 cores 5 ■ 4 cores 8 cores 4 16 cores 3 OpenAI Gym 2 -ELF 0 64 threads 256 threads 128 threads 512 threads 1024 threads

Evaluation

Monte Carlo Tree Search

Aggregate win rates, and search towards the good nodes.

Monte-Carlo Tree Search

How Game AI works

Even with a super-super computer, it is not possible to search the entire space.

How Game AI works

Even with a super-super computer, it is not possible to search the entire space.

Lufei Ruan vs. Yifan Hou (2010)

Current game situation

How Game Al works

How many action do you have per step?

Alpha-beta pruning + Iterative deepening [Major Chess engine] Counterfactual Regret Minimization [Libratus, DeepStack]

Monte-Carlo Tree Search + UCB exploration [Major Go engine] ???

How Game AI works

How complicated is the game situation? How deep is the game?

Current game situation

How to model Policy/Value function?

Non-smooth + high-dimensional

Sensitive to situations. One stone changes in Go leads to different game.

Traditional approach

- Many manual steps
- Conflicting parameters, not scalable.
- Need strong domain knowledge.

Deep Learning

- End-to-End training
 - Lots of data, less tuning.
- Minimal domain knowledge.
- Amazing performance

Our computer Go player: DarkForest

- Top ameuter level
- Release 3 month before AlphaGo, < 1% GPUs

Reimplementation of AlphaGo Zero

[Silver et al, Mastering the game of Go without human knowledge, Nature 2017]

Demystifying AlphaGoZero/AlphaZero

- Amazing performance but no code available.
 - Huge computational cost (15.5 years to generate 4.9M selfplays with 1 GPU)
 - Sophisticated (distributed) systems.
- Lack of ablation analysis
 - What factor is critical for the performance?
 - Is the algorithm robust to random initialization and changes of hyper parameters?
 - How the ladder issue is solved?
- Lots of mysteries
 - Is the proposed algorithm really universal?
 - Is the bot almighty? Is there any weakness in the trained bot?

Distributed ELF

Putting AlphaGoZero and AlphaZero into the same framework

AlphaGoZero (more synchronization) AlphaZero (less synchronization)

ELF OpenGo

- System can be trained with 2000 GPUs in 2 weeks.
- Decent performance against professional players and strong bots.
- Abundant ablation analysis
- Decoupled design, code highly reusable for other games.

We open source the code and the pre-trained model for the Go and ML community

http://github.com/pytorch/elf

Performance

Vs top professional players

Name (rank)	ELO (world rank)	Result
Kim Ji-seok	3590 (#3)	5-0
Shin Jin-seo	3570 (#5)	5-0
Park Yeonghun	3481 (#23)	5-0
Choi Cheolhan	3466 (#30)	5-0

Single GPU, 80k rollouts, 50 seconds Offer unlimited thinking time for the players

Vs strong bot (LeelaZero)

[158603eb, 192x15, Apr. 25, 2018]: 980 wins, 18 losses (98.2%)

Sample games versus Kim Jiseok (world #3)

Open Source

pytorch /	/ ELF					Output Unwatch ▼	114	★ Unstar	1,510	😵 Fork	215
<> Code	() Issues (9)	្រា Pull requests 1	Projects 0	💷 Wiki	ili Ins	sights					
ELF: a platfo	orm for game rese	earch									
ť	D 19 commits	پ 3	branches		ି 3	releases		2	3 contr	ributors	
Branch: mas	ter 🕶 New pull r	request			Crea	ate new file	Upload fi	les Find fil	e Clo	one or downl	oad 🔻
🧊 jma127 I	Merge pull request #4	44 from jma127/master						Latest	commit 9	621c27 a da	ay ago
initial commit for public release										10 days	s ago
codetools Initial commit for public release										10 days	s ago
design_doc get rid of printSummary everywhere										a da	y ago

https://github.com/pytorch/ELF

MiniRTS: A miniature RTS engine

Platform	Frame per second
ALE	6,000
Open Al Universe	60
Malmo	120
DeepMind Lab	287*/866**
VizDoom	7,000
TorchCraft	2,000
MiniRTS	40,000
	40,000

* Using CPU only

** Using CPUs and GPU

MiniRTS

Build workers and collect resources.

Resource

Base

Contains 1000 minerals.

Build melee attacker and range attacker.

Build barracks and gather resource. Low speed in movement and low attack damage.

<u>o</u>

High HP, medium movement speed, short attack range, high attack damage.

Low HP, high movement speed, long attack range and medium attack damage.

Using Internal Game data and Off-policy Actor-Critic Methods. Reward is only available once the game is over.

9 Discrete Strategic Actions

No.	Action name	Descriptions
1	IDLE	Do nothing
2	BUILD WORKER	If the base is idle, build a worker
3	BUILD BARRACK	Move a worker (gathering or idle) to an empty place and build a barrack.
4	BUILD MELEE ATTACKER	If we have an idle barrack, build an melee attacker.
5	BUILD RANGE ATTACKER	If we have an idle barrack, build a range attacker.
6	HIT AND RUN	If we have range attackers, move towards opponent base and attack. Take advantage of their long attack range and high movement speed to hit and run if enemy counter-attack.
7	ATTACK	All melee and range attackers attack the opponent's base.
8	ATTACK IN RANGE	All melee and range attackers attack enemies in sight.
9	ALL DEFEND	All troops attack enemy troops near the base and resource.

Rule-based Als

AI_SIMPLE Build 5 tanks and attack AI_HIT_AND_RUN Build 2 tanks and harass

MiniRTS trains with a single GPU and 6 CPUs in half a day.

Trained AI

Trained AI

Comparison between different models

Method	Vanilla	Vanilla(hist=4)	RNN	BuildHistory	PrevSeen	Complete Info
Win rate	72.9±1.8	$79.8 {\pm} 0.7$	79.7±1.3	$80.8 {\pm} 1.7$	$81.4{\pm}0.8$	81.7±0.7

First Person Shooter (FPS) Game

Yuxin Wu, Yuandong Tian, ICLR 2017

Yuxin Wu

Play the game from the raw image!

Curriculum Training

FlatMap

VizDoom AI Competition 2016 (Track1)

We won the first place!

Rank	Bot	1	2	3	4	5	6	7	8	9	10	11	Total frags
1	F1	56	62	n/a	54	47	43	47	55	50	48	50	559
2	Arnold	36	34	42	36	36	45	36	39	n/a	33	36	413
3	CLYDE	37	n/a	38	32	37	30	46	42	33	24	44	393

Videos:

https://www.youtube.com/watch?v=94EPSjQH38Y https://www.youtube.com/watch?v=Qv4esGWOg7w&t=394s

Visualization of Value functions

Best 4 frames (agent is about to shoot the enemy)

Worst 4 frames (agent missed the shoot and is out of ammo)

House3D: A rich and realistic 3D environment

Yi Wu

Georgia Gkioxari

Yuxin Wu

[Yi Wu et al, Building Generalizable Agents with a Realistic and Rich 3D Environment, ICLR 2018 workshop]

SUNCG Dataset

SUNCG dataset, 45K scenes, all objects are fully labeled.

SUNCG dataset, 45K scenes, all objects are fully labeled.

Segmentation mask

Depth

RGB image

https://github.com/facebookresearch/House3D

Comparison

Environment	3D	Realistic	Large-scale	Fast-speed	Customizable
Atari (Bellemare et al., 2013)				•	
OpenAI Universe (Shi et al., 2017)		•	•		•
Malmo (Johnson et al., 2016)	•		•	•	•
DeepMind Lab (Beattie et al., 2016)	•			•	•
VizDoom (Kempka et al., 2016)	•			•	•
AI2-THOR (Zhu et al., 2017)	•	•		•	
House3D	•	•	•	•	•

Architectures

Generalization capability

.....

Target: Bathroom

Target: Kitchen

Target: Dining Room

Future Directions

Admiral (General)

Captain

Lieutenant

Hierarchical RL

RL applications

Model-based RL

RL for Optimization

How to do well in Reinforcement Learning?

 $egin{aligned} Q(s,a) & V^{\pi}(s) \ V(s) & \pi(a|s) & Q^{\pi}(s,a) \ \end{aligned}$ Strong math skills

Parameter tuning skills

Strong coding skills

Thanks!