ELF: Extensive, Lightweight and Flexible Framework for Game Research

Yuandong Tian

Qucheng Gong

Wenling Shang

Yuxin Wu

Larry Zitnick

Facebook AI Research

Reinforcement Learning: Ideal and Reality

[R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction]

Reinforcement Learning: Ideal and Reality

Design Choices: CPU, GPU? Simulation, Replays Concurrency

[R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction]

ELF Characteristics

Extensive

Any games with C++ interfaces can be incorporated.

Lightweight

Fast. Mini-RTS (40K FPS per core) Minimal resource usage (1GPU+several CPUs) Fast training (half a day for a RTS game)

Flexible

Environment-Actor topology Parametrized game environments. Choice of different RL methods.

Lightweight

KFPS per CPU core for Pong (Atari)

Lightweight

KFPS per CPU core for Pong (Atari) 6 **1** core 2 cores 5 ■ 4 cores 8 cores 4 ■ 16 cores 3 OpenAI Gym 2 -ELF 0 64 threads 256 threads 128 threads 512 threads 1024 threads

Evaluation

Monte-Carlo Tree Search

Gorilla Game Model Actor Process : Game Experience Game Experience Optimizer Model Replay Optimizer Model Synchronization Buffer Optimizer Model IE

[Nair et al, Massively Parallel Methods for Deep Reinforcement Learning, ICML 2015]

Asynchronized Advantageous Actor-Critic (A3C)

[Mnih et al, Asynchronous Methods for Deep Reinforcement Learning, ICML 2016]

[Babaeizadeh et al, Reinforcement Learning through Asynchronous Advantage Actor-Critic on a GPU, ICLR 2017]

ELF: A unified framework

Off-policy training Deep Q-learning

ELF: A unified framework

Off-policy training Deep Q-learning

Part II. MiniRTS Training

MiniRTS: A miniature RTS engine

Platform	Frame per second
ALE	6,000
Open Al Universe	60
Malmo	120
DeepMind Lab	287*/866**
VizDoom	7,000
TorchCraft	2,000
MiniRTS	40,000
	40,000

* Using CPU only

** Using CPUs and GPU

MiniRTS

Build workers and collect resources.

Resource

Contains 1000 minerals.

Build melee attacker and range attacker.

Build barracks and gather resource. Low speed in movement and low attack damage.

<u>o</u>

High HP, medium movement speed, short attack range, high attack damage.

<u>o</u>

Low HP, high movement speed, long attack range and medium attack damage.

(respecting fog of war)

Training Al

Using Internal Game data and Actor-Critic Models. Reward is only available once the game is over.

9 Discrete Strategic Actions

No.	Action name	Descriptions
1	IDLE	Do nothing
2	BUILD WORKER	If the base is idle, build a worker
3	BUILD BARRACK	Move a worker (gathering or idle) to an empty place and build a barrack.
4	BUILD MELEE ATTACKER	If we have an idle barrack, build an melee attacker.
5	BUILD RANGE ATTACKER	If we have an idle barrack, build a range attacker.
6	HIT AND RUN	If we have range attackers, move towards opponent base and attack. Take advantage of their long attack range and high movement speed to hit and run if enemy counter-attack.
7	ATTACK	All melee and range attackers attack the opponent's base.
8	ATTACK IN RANGE	All melee and range attackers attack enemies in sight.
9	ALL DEFEND	All troops attack enemy troops near the base and resource.

Rule-based Als

AI_SIMPLE Build 5 tanks and attack AI_HIT_AND_RUN Build 2 tanks and harass

MiniRTS trains with a single GPU and 6 CPUs in half a day.

Trained AI

AI_SIMPLE

Win rate against rule-based Al

Frame skip (how often AI makes decisions)

Opponent Frame skip	AI_SIMPLE	AI_HIT_AND_RUN
50	68.4(±4.3)	63.6(±7.9)
20	61.4(±5.8)	55.4(±4.7)
10	52.8(±2.4)	51.1(±5.0)

*The frameskip of learned AI is always 50

Win rate against rule-based Al

Network Architecture

Win Rate (10K games)	SIMPLE (median)	SIMPLE (mean/std)	HIT_AND_RUN (median)	HIT_AND_RUN (mean/std)
ReLU	52.8	54.7(±4.2)	60.4	57.0(±6.8)
Leaky ReLU	59.8	61.0(±2.6)	60.2	60.3(±3.3)
ReLU + BN	61.0	64.4(±7.4)	55.6	57.5(±6.8)
Leaky ReLU + BN	72.2	68.4(±4.3)	65.5	63.6(±7.9)

Curriculum Training

Win Rate	Without curriculum training	With curriculum training
AI_SIMPLE	66.0 (±2.4)	68.4 (±4.3)
AI_HIT_AND_RUN	54.4 (±15.9)	63.6 (±7.9)

First k decisions made by AI_SIMPLE then made by trained AI

 $k \sim \text{Uniform}[0, K]$ $K \propto \beta^{-\#\text{game_played}}$

Transfer Learning

Win Rate	AI_SIMPLE	AI_HIT_AND_RUN	Combined (50%SIMPLE+50% H&R)
SIMPLE	68.4 (±4.3)	26.6(±7.6)	47.5(±5.1)
HIT_AND_RUN	34.6(±13.1)	63.6 (±7.9)	49.1(±10.5)
Combined	51.8(±10.6)	54.7(±11.2)	53.2(±8.5)

* repeat on 1000 games, each using 800 rollouts.

MCTS uses complete information and perfect dynamics

Ongoing Work

- One framework for different games.
 - DarkForest remastered: https://github.com/facebookresearch/ELF/tree/master/go
- Richer game scenarios for MiniRTS.
 - LUA scripting support
 - Multiple bases (Expand? Rush? Defending?)
 - More complicated units.
- Realistic action space
 - One command per unit
- Model-based Reinforcement Learning
- Self-Play (Trained AI versus Trained AI)

Open Source

https://github.com/facebookresearch/ELF

LUA Interface for MiniRTS

- Easy to change game dynamics
 - Don't need to touch C++.
- Comparable speed to C++
 - 1.5x slower than compiled code.

```
q funcs = \{ \}
function g_funcs.attack(env, cmd)
     local target = env:unit(cmd.target)
     local u = env:self()
     if target:isdead() or not u:can_see(target) then
         -- c_print("Task finished!")
         return global.CMD_COMPLETE
     end
     local att_r = u:att_r()
     local in_range = env:dist_sqr(target:p()) <= att_r * att_r</pre>
     if u:cd_expired(global.CD_ATTACK) and in_range then
         -- print("Attacking .. ")
         -- Then we need to attack.
         if att r <= 1.0 then
             env:send_cmd_melee_attack(cmd.target, u:att())
         else
             env:send_cmd_emit_bullet(cmd.target, u:att())
         end
         env:cd_start(global.CD_ATTACK)
     else
         if not in_range then
             -- print("Moving towards target .. ")
             env:move_towards(target)
         end
    end
    -- print("Done with Attacking .. ")
```

RLPytorch

- A RL platform in PyTorch
- A3C in 30 lines.

```
for t in range(T - 2, -1, -1):
    # Forward pass
    curr = self.model_interface.forward("model", batch.hist(t))
```

```
# Compute the reward.
R = R * self.args.discount + batch["r"][t]
# If we see any terminal signal, do not backprop
for i, terminal in enumerate(batch["terminal"][t]):
    if terminal: R[t][i] = curr["V"].data[i]
```

```
# We need to set it beforehand.
self.policy_gradient_weights = R - curr["V"].data
```

```
# Compute policy gradient error:
errs = self._compute_policy_entropy_err(curr["pi"], batch["a"][t])
# Compute critic error
value_err = self.value_loss(curr["V"], Variable(R))
```

```
overall_err = value_err + errs["policy_err"]
overall_err += errs["entropy_err"] * self.args.entropy_ratio
overall_err.backward()
```


Questions?

Tonight Poster: #96

https://github.com/facebookresearch/ELF

