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Reinforcement Learning: Ideal and Reality
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[R. S.	Sutton	and	A. G.	Barto, Reinforcement Learning: An Introduction]



Reinforcement Learning: Ideal and Reality
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[R. S.	Sutton	and	A. G.	Barto, Reinforcement Learning: An Introduction]

Design Choices:



ELF: A simple for-loop
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ELF Characteristics

Lightweight
Fast.	Mini-RTS	(40K	FPS	per	core)
Minimal	resource	usage	(1GPU+several	CPUs)
Fast training (half a day for a RTS game)

Flexible
Environment-Actor	topology
Parametrized game	environments.
Choice	of	different	RL	methods.	

Extensive
Any	games	with	C++	interfaces	
can	be	incorporated.



Extensibility
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Flexibility
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Monte-Carlo Tree Search



ELF	design
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ELF	design
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ELF	design
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ELF	design
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Gorilla

[Nair et al, Massively Parallel Methods for Deep Reinforcement Learning, ICML 2015]
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Asynchronized Advantageous Actor-Critic (A3C)

[Mnih et al, Asynchronous Methods for Deep Reinforcement Learning, ICML 2016]
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GA3C / BatchA2C

[Babaeizadeh et al, Reinforcement Learning through Asynchronous Advantage Actor-Critic on a GPU, ICLR 2017]
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ELF:	A	unified	framework

Many-to-OneOne-to-One
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ELF:	A	unified	framework

One-to-Many
Self-Play, 

Monte-Carlo Tree Search
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Part	II.	MiniRTS Training



MiniRTS: A	miniature	RTS	engine

Enemy base

Your base

Your barracks

Worker

Enemy unit

Resource

Fog of War

*	Using	CPU	only **	Using	CPUs	and	GPU

Platform Frame per second

ALE 6,000

Open AI Universe 60

Malmo 120

DeepMind Lab 287*/866**

VizDoom 7,000

TorchCraft 2,000

MiniRTS 40,000



MiniRTS
Build	workers	and	collect	resources.	

Contains	1000	minerals.	

Build	barracks	and	gather	resource.	
Low	speed	in movement and	low	attack	damage.	

Build	melee	attacker	and	range	attacker.	

High HP,	medium	movement	speed,	short	attack	range,	high	attack	damage.	

Low HP,	high	movement	speed,	long	attack	range	and	medium	attack	damage.	

Base

Resource

Barracks

Worker

Melee Tank

Range Tank



Training AI

x4

Policy

Value

Game internal data
(respecting	fog	of	war)

(x, y) of units

HP portion

Using	Internal Game data and Actor-Critic Models.	
Reward	is	only	available	once	the	game	is	over.

Resource

Conv ReLUBN
Affiliation

⇡



9	Discrete Strategic	Actions
No. Action name Descriptions
1 IDLE Do nothing
2 BUILD	WORKER If the base is idle, build a worker

3 BUILD	BARRACK Move	a	worker	(gathering	or	idle)	to	an	empty	place	and	build	a	
barrack.	

4 BUILD	MELEE	ATTACKER	 If	we	have	an	idle	barrack,	build	an	melee	attacker.	
5 BUILD	RANGE	ATTACKER	 If	we	have	an	idle	barrack,	build	a range attacker.	

6 HIT	AND	RUN	
If	we	have	range	attackers,	move	towards	opponent	base	and	attack.	
Take	advantage	of	their	long	attack	range	and	high	movement	speed	to	
hit	and	run	if	enemy	counter-attack.	

7 ATTACK	 All	melee	and	range	attackers	attack	the	opponent’s	base.	
8 ATTACK	IN	RANGE	 All	melee	and	range	attackers	attack	enemies	in	sight.	
9 ALL	DEFEND All	troops	attack	enemy	troops	near	the	base	and	resource.	



Rule-based AIs

Build 5 tanks and attack Build 2 tanks and harass

MiniRTS trains	with	a	single	GPU	and	6	CPUs	in	half	a	day.



Trained AI



Win rate against rule-based AI

Opponent	
Frame skip AI_SIMPLE AI_HIT_AND_RUN

50 68.4(±4.3) 63.6(±7.9)	
20 61.4(±5.8)		 55.4(±4.7)
10 52.8(±2.4) 51.1(±5.0)	

Frame skip (how often AI makes decisions)

*The	frameskip of	learned	AI	is	always	50



Win rate against rule-based AI

Win Rate
(10K games)

SIMPLE
(median)

SIMPLE
(mean/std)

HIT_AND_RUN
(median)

HIT_AND_RUN
(mean/std)

ReLU 52.8 54.7(±4.2) 60.4 57.0(±6.8)
Leaky ReLU 59.8 61.0(±2.6) 60.2 60.3(±3.3)
ReLU + BN 61.0 64.4(±7.4) 55.6 57.5(±6.8)
Leaky ReLU + BN 72.2 68.4(±4.3) 65.5 63.6(±7.9)

Network Architecture Conv ReLUBN



Effect of Multi-step	Training



Curriculum Training

Win Rate Without
curriculum training

With
curriculum training

AI_SIMPLE 66.0 (±2.4) 68.4 (±4.3)

AI_HIT_AND_RUN 54.4 (±15.9) 63.6	(±7.9)

First k decisions made by
then made by trained AI



Transfer Learning

Win Rate AI_SIMPLE AI_HIT_AND_RUN Combined
(50%SIMPLE+50% H&R)

SIMPLE 68.4	(±4.3) 26.6(±7.6) 47.5(±5.1)
HIT_AND_RUN 34.6(±13.1)	 63.6	(±7.9)	 49.1(±10.5)
Combined 51.8(±10.6)	 54.7(±11.2)	 53.2(±8.5)	



Monte Carlo Tree Search

Win Rate AI_SIMPLE AI_HIT_AND_RUN
Random 24.2 (±3.9) 25.9 (±0.6)
MCTS* 73.2 (±0.6) 62.7 (±2.0)

Trained AI 68.4(±4.3) 63.6(±7.9)
*	repeat on 1000 games, each using 800 rollouts.
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MCTS uses complete information and perfect dynamics



Ongoing Work
• One framework for different games.
• DarkForest remastered: https://github.com/facebookresearch/ELF/tree/master/go

• Richer	game	scenarios for MiniRTS.	
• LUA scripting support
• Multiple	bases	(Expand?	Rush?	Defending?)
• More	complicated	units.	

• Realistic	action	space
• One	command per	unit	

• Model-based	Reinforcement	Learning
• Self-Play	(Trained	AI	versus	Trained	AI)	



Open Source

https://github.com/facebookresearch/ELF



LUA Interface for MiniRTS

• Easy to change game dynamics
• Don’t need to touch C++.

• Comparable speed to C++
• 1.5x slower than compiled code.



RLPytorch

• A	RL	platform	in	PyTorch
• A3C	in	30	lines.



Questions?

https://github.com/facebookresearch/ELF

Tonight Poster: #96

Trained AI


