Over-parameterization as a **Catalyst** for Better Generalization of Deep ReLU network

Yuandong Tian

Re

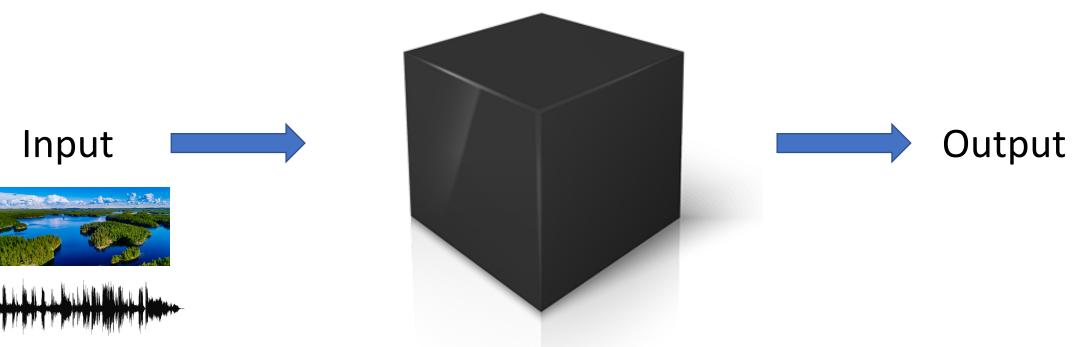
facebook Artificial Intelligence

Research Scientist and Manager Facebook AI Research

Great Empirical Success from Deep Models

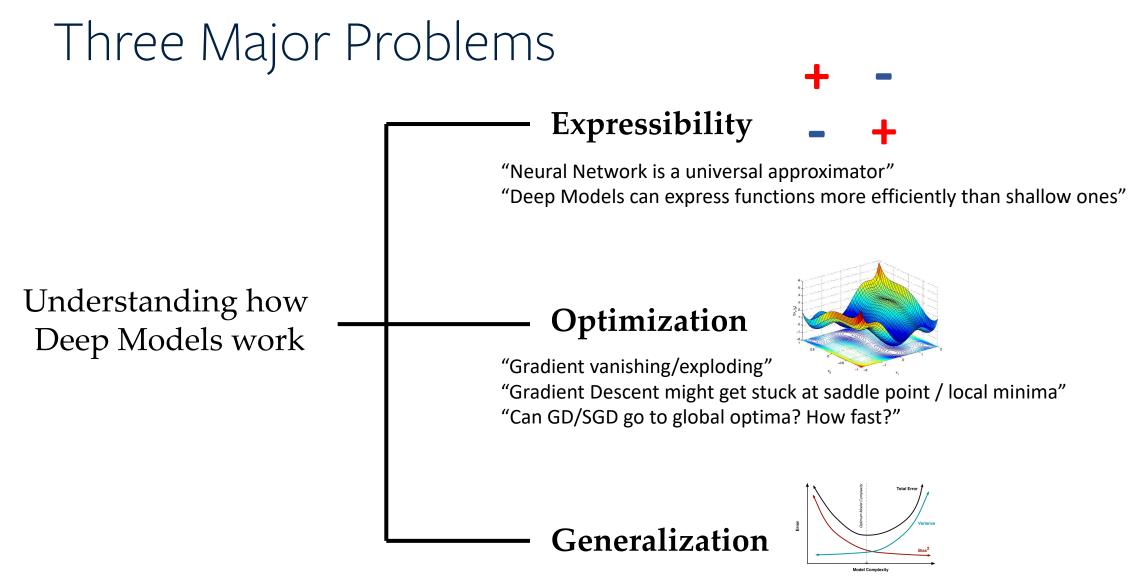


How do deep models work?



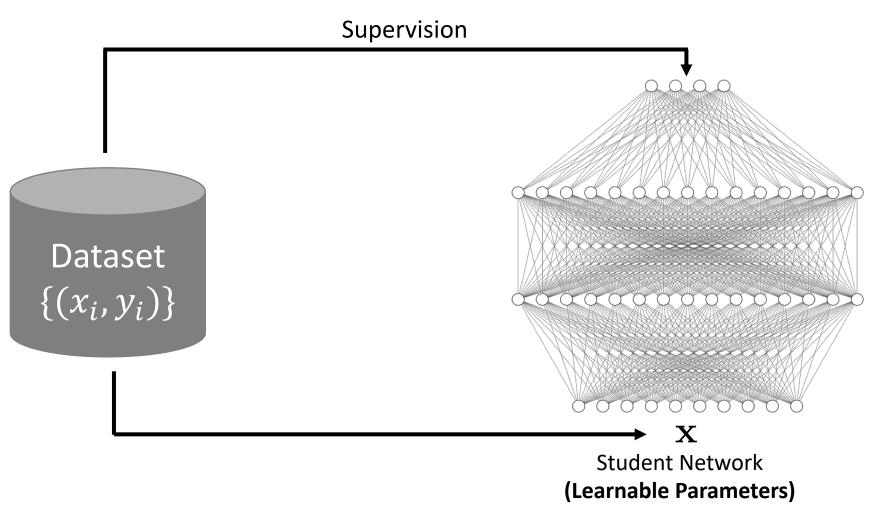
This is an apple

"Some Nonlinear Transformation"

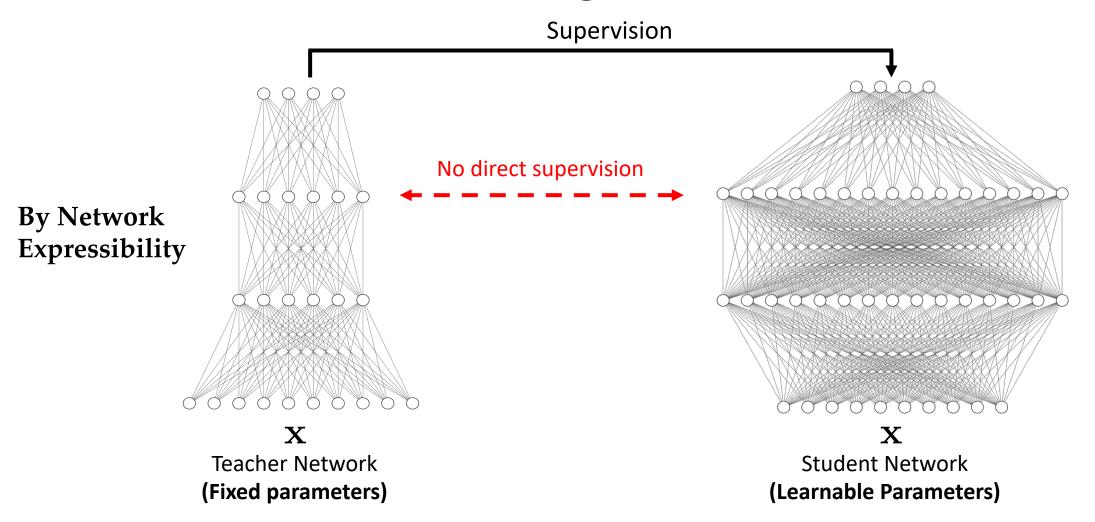


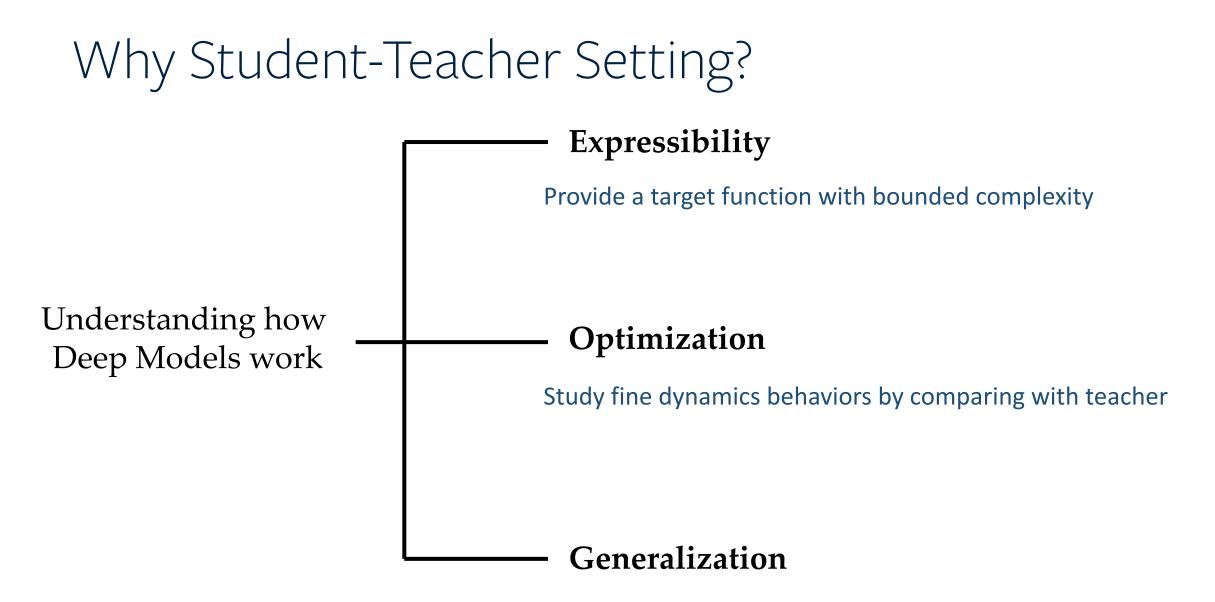
"Does zero training error often lead to overfitting?" "More parameters might lead to overfitting."

Supervised Learning



Student-Teacher Setting





Weight alignment with the teacher yields generalization

Old History of Teacher-Student Setting

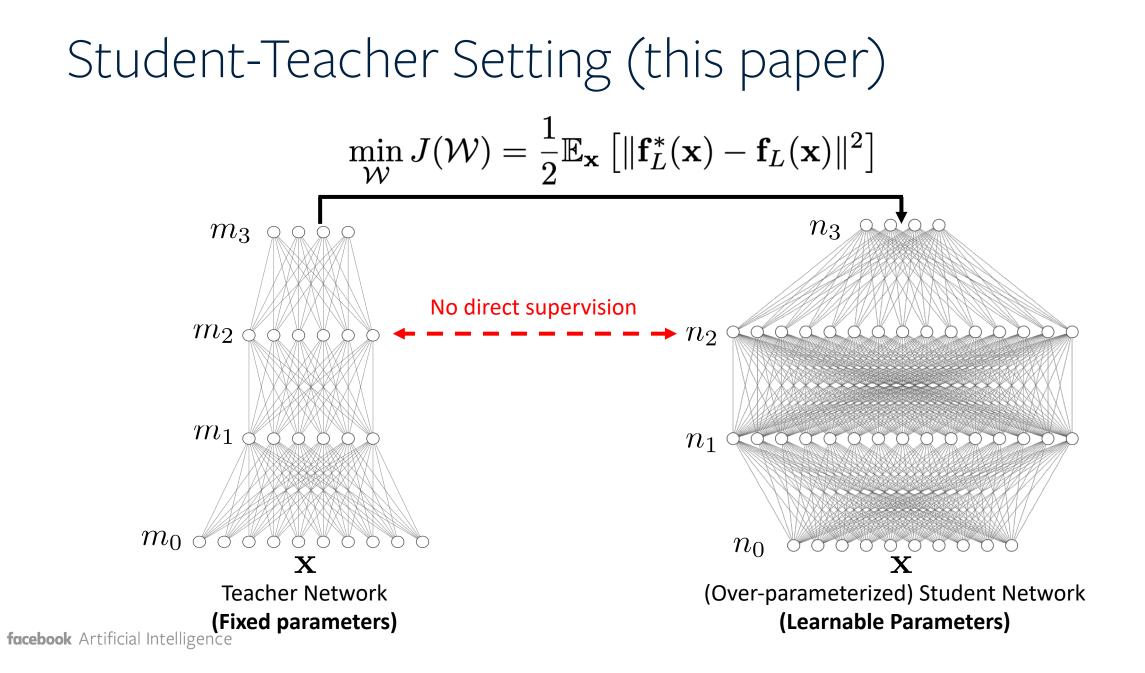
$$\epsilon(\mathbf{J},\boldsymbol{\xi}) \equiv \frac{1}{2} \left[\sigma(\mathbf{J},\boldsymbol{\xi}) - \zeta \right]^2 = \frac{1}{2} \left[\sum_{i=1}^{K} g(x_i) - \sum_{n=1}^{M} g(y_n) \right]^2$$

One layer of trainable parameters

Use Gaussian erf() function as the nonlinearity

Study when the input dimension $d \rightarrow +\infty$ (i.e., **thermodynamics limits**)

facebook Artificial Intelligence [On-line learning in soft committee machines, Saad & Solla, Phys. Rev 1995]

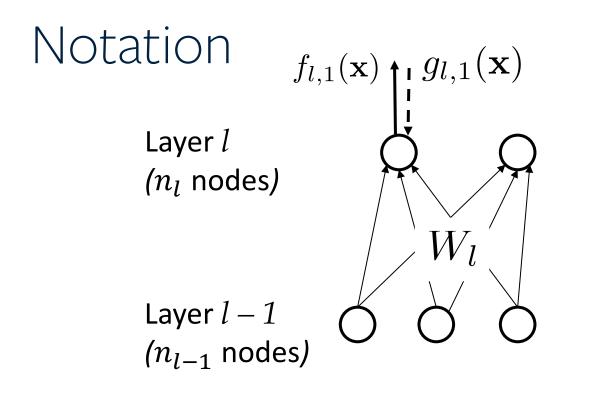


Contributions

Over-parameterization helps in generalization in **two** ways:

1. **Critical point analysis** shows that over-parameterization helps student-teacher alignment.

2. **Training dynamics analysis** shows faster alignment with overparameterization.



Activation
$$\mathbf{f}_l(\mathbf{x}) = \left[egin{array}{c} f_{l,1}(\mathbf{x}) \ f_{l,2}(\mathbf{x}) \end{array}
ight]$$

Gradient $\mathbf{g}_{l}(\mathbf{x}) = \begin{bmatrix} g_{l,1}(\mathbf{x}) \\ g_{l,2}(\mathbf{x}) \end{bmatrix}$

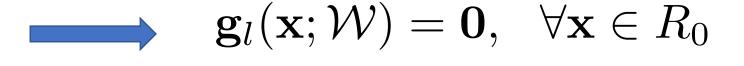
Weight update rule:
$$\dot{W}_l = \mathbb{E}_{\mathbf{x}} \left[\mathbf{f}_{l-1}(\mathbf{x}) \mathbf{g}_l^{\mathsf{T}}(\mathbf{x}) \right]$$

GD: expectation taken over the entire dataset SGD: expectation taken over a batch

A Trivial Statement

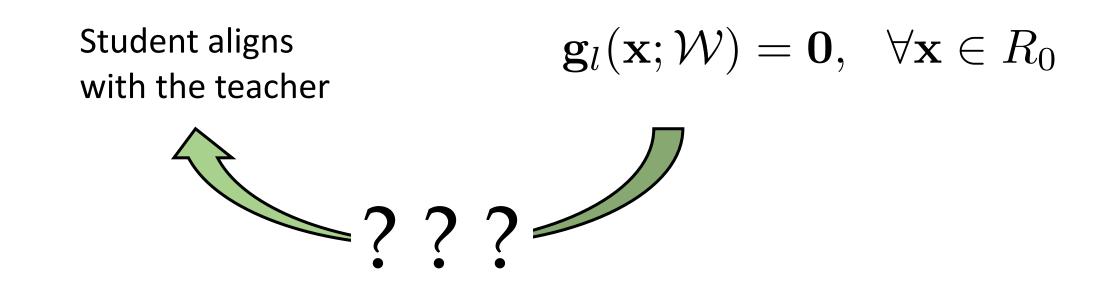
With over-parameterized student network:

Student aligns with the teacher



The Inverse Problem

With over-parameterized student network:



Zero training error leads to good generalization

Lemma1: Recursive Gradient Rule

For layer l, there exists $A_l(x)$ and $B_l(x)$ so that:

$$\mathbf{g}_{l}(\mathbf{x}) = D_{l}(\mathbf{x}) \left[A_{l}(\mathbf{x}) \mathbf{f}_{l}^{*}(\mathbf{x}) - B_{l}(\mathbf{x}) \mathbf{f}_{l}(\mathbf{x}) \right]$$
Student gradient
Teacher mixture
Student gating
Student gating

 $A_l(x)$ and $B_l(x)$ are **piece-wise constant.**

Lemma1: Recursive Gradient Rule

For layer l, there exists $A_l(x)$ and $B_l(x)$ so that:

 $D_{l}(\mathbf{x}) \in \mathbb{R}^{n_{l} \times n_{l}}$ $A_{l}(\mathbf{x}) \in \mathbb{R}^{n_{l} \times m_{l}}$ $B_{l}(\mathbf{x}) \in \mathbb{R}^{n_{l} \times n_{l}}$

 n_l : number of student nodes at layer l m_l : number of teacher nodes at layer l

 $\mathbf{g}_l(\mathbf{x}) = D_l(\mathbf{x}) \left[A_l(\mathbf{x}) \mathbf{f}_l^*(\mathbf{x}) - B_l(\mathbf{x}) \mathbf{f}_l(\mathbf{x}) \right]$ Student gradient Teacher mixture Student mixture Student gating

 $A_l(x)$ and $B_l(x)$ are **piece-wise constant.**

 $\mathbf{f}_l^*(\mathbf{x}) \in \mathbb{R}^{m_l}$ $\mathbf{f}_l(\mathbf{x}) \in \mathbb{R}^{n_l}$ $\mathbf{g}_l(\mathbf{x}) \in \mathbb{R}^{n_l}$

Recursive Formula for $A_l(x)$ and $B_l(x)$

 $V_l(\mathbf{x}) \in \mathbb{R}^{C \times n_l}$ $V_l^*(\mathbf{x}) \in \mathbb{R}^{C \times m_l}$

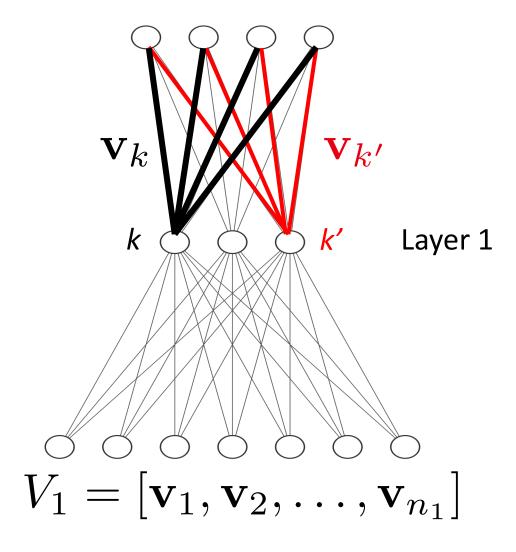
C: output dimension

$$A_{l}(\mathbf{x}) = V_{l}^{\mathsf{T}}(\mathbf{x})V_{l}^{*}(\mathbf{x})$$
$$B_{l}(\mathbf{x}) = V_{l}^{\mathsf{T}}(\mathbf{x})V_{l}(\mathbf{x})$$

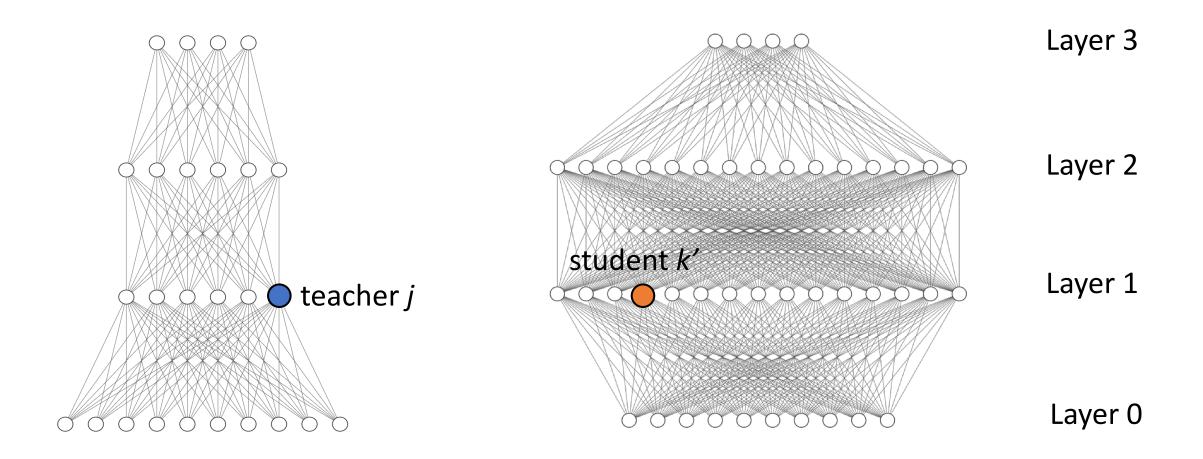
Recursive Formula for V:

$$V_{l-1}^*(\mathbf{x}) = V_l^*(\mathbf{x}) D_l^*(\mathbf{x}) W_l^{*\mathsf{T}}$$
$$V_{l-1}(\mathbf{x}) = V_l(\mathbf{x}) D_l(\mathbf{x}) W_l^{\mathsf{T}}$$

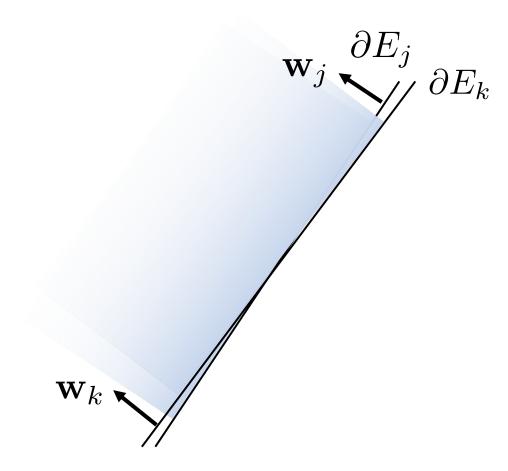
Base case:



Main results: Alignment could happen!



Definition of Alignment



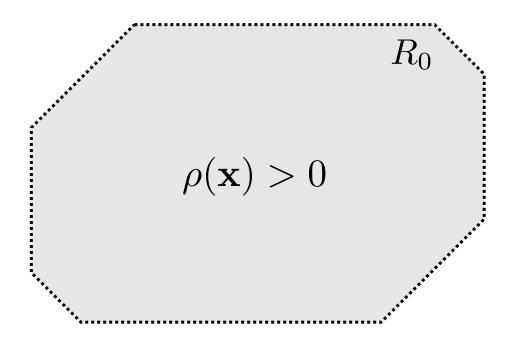
E_j Activated Region of node j

 ∂E_i Boundary of node *j*

 ∂E_k Boundary of node k

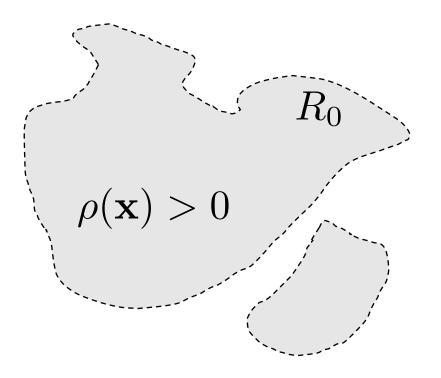
An example of "rough" alignment facebook Artificial Intelligence

Assumption of the dataset



Infinite dataset!

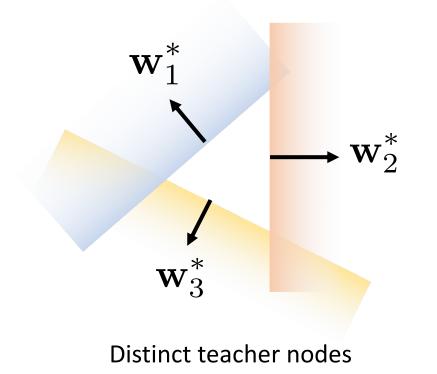
Assumption of the dataset

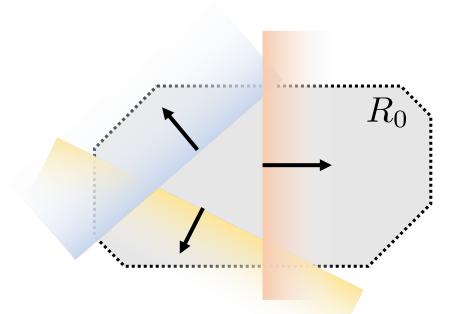


Infinite dataset!

Assumptions on Teacher Network

- Cannot reconstruct arbitrary teachers
 - e.g., all ReLU nodes are dead

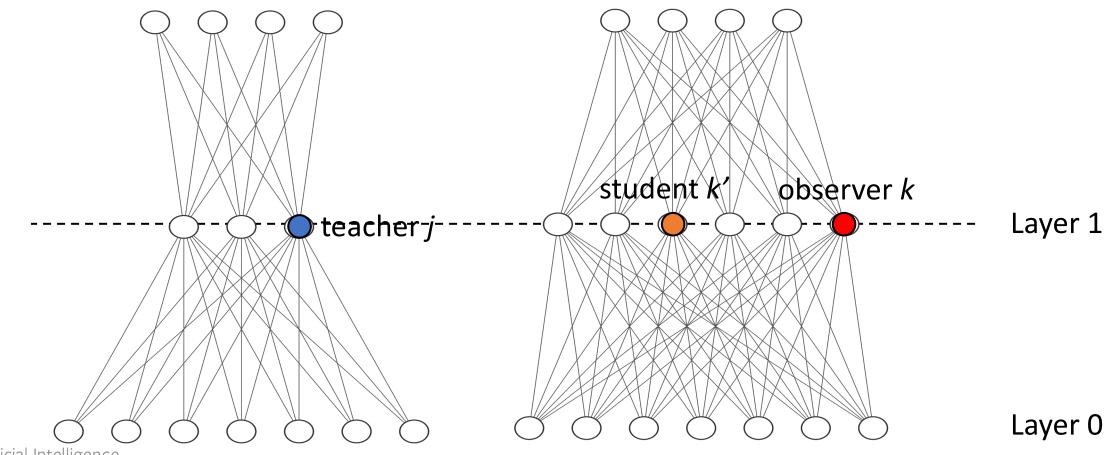




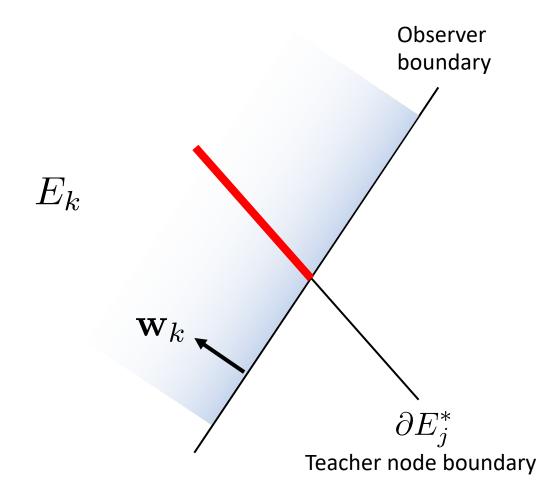
Teacher's boundary are visible in the dataset

Main results: Alignment could happen!

2-layer network



Definition of "Observation"



 $\partial E_j^* \cap E_k \neq \emptyset$

Teacher *j* is **observed** by a student *k*

Main results: Alignment could happen!

Teacher node *j* is **observed** by a student node *k*

Teacher *j* is **aligned with** at least one student *k*'

The gradient of observer k is 0: E_k From Lemma 1, $g_k(x) = \alpha_k^T f^*(x) - \beta_k^T f(x) = 0$ If $x \in E_k$ ∂E_j

The gradient of observer k is 0:

From Lemma 1,
$$g_k(x) = \alpha_k^T f^*(x) - \beta_k^T f(x) = 0$$

If $x \in E_k$

 E_k

 ∂E_j

ReLUs are linear independent!

Coefficients for teacher *j* direction must be 0

The gradient of observer k is 0:

From Lemma 1,
$$g_k(x) = \alpha_k^T f^*(x) - \beta_k^T f(x) = 0$$

If $x \in E_k$

 E_k

ReLUs are linear independent!

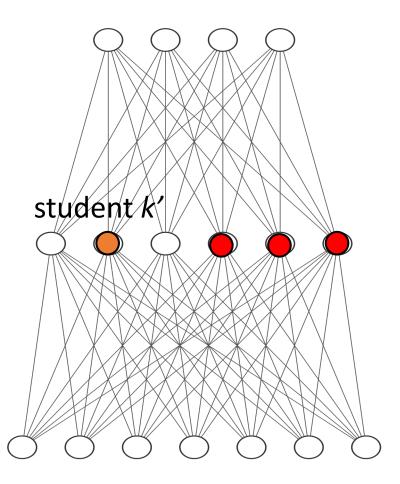
Coefficients for teacher *j* direction must be 0

Teacher *j* is aligned with at least one student *k'* (sum of coefficients = 0)

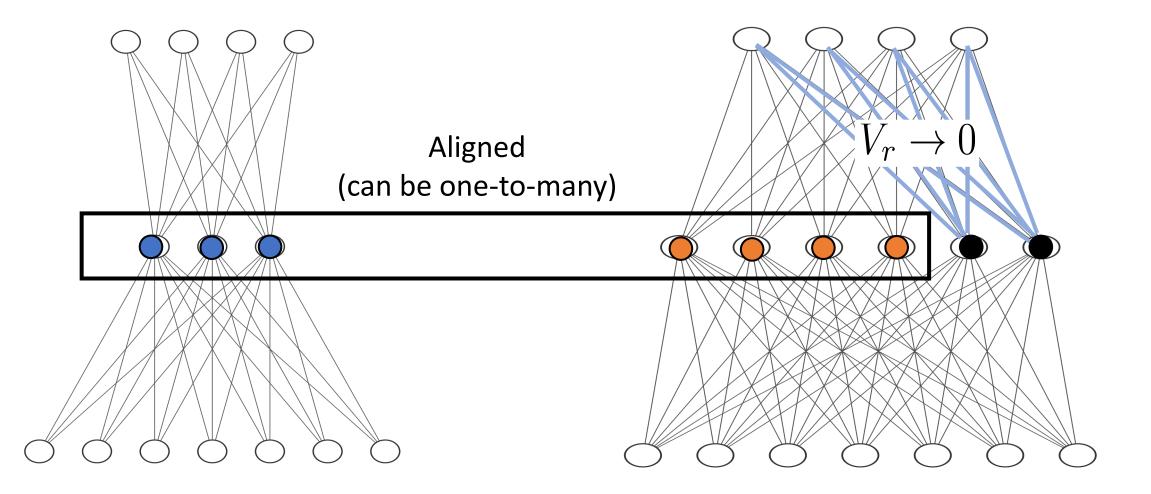
 ∂E_j

Why Over-parameterization helps?

More observers!

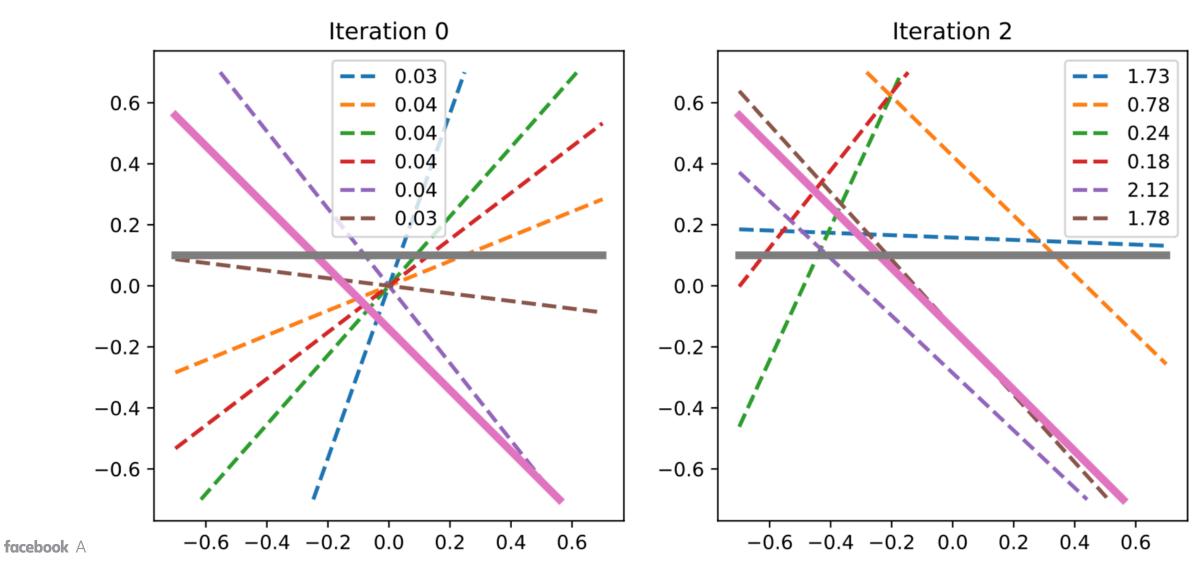


What happens to unaligned students?

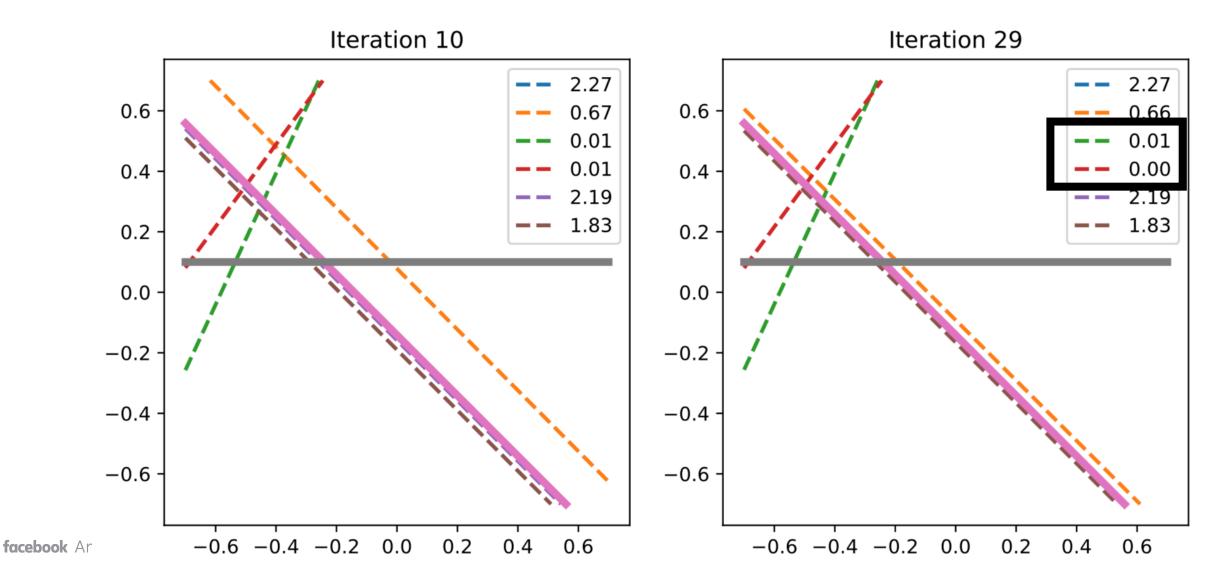


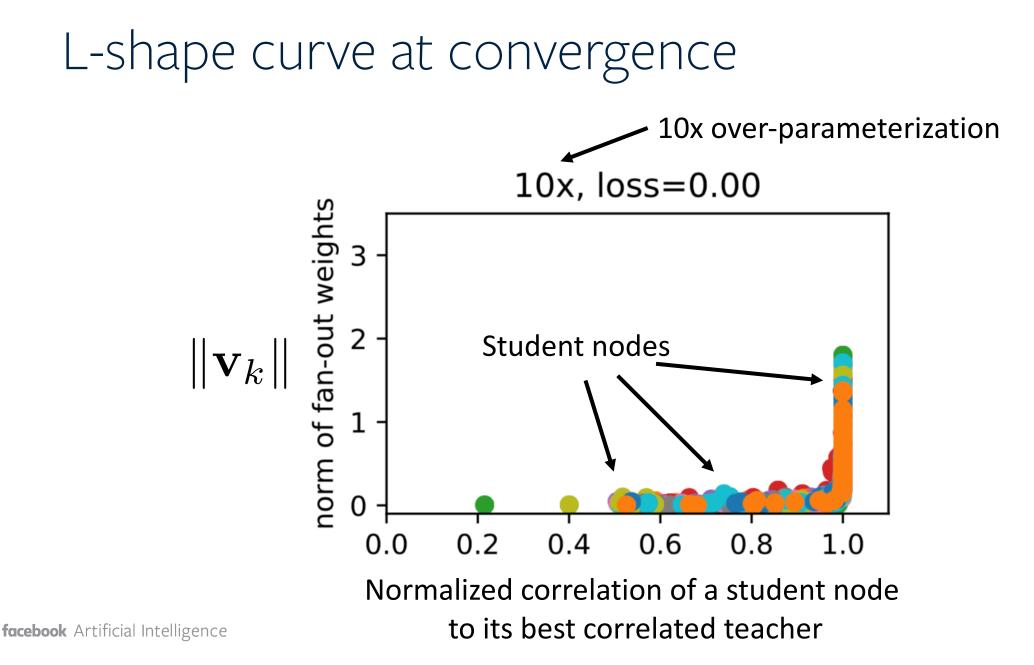
– – Student BoundaryTeacher Boundary

Simple 2D experiments

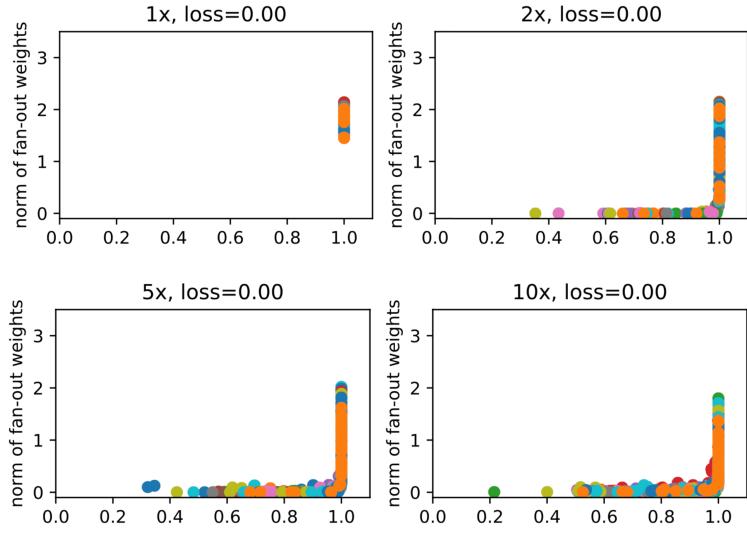


Simple 2D experiments





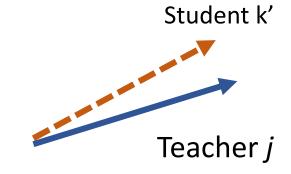
L-shape curve at convergence



Noisy Case
$$\|\mathbf{g}_1(\mathbf{x}; \mathcal{W})\|_{\infty} \leq \epsilon$$

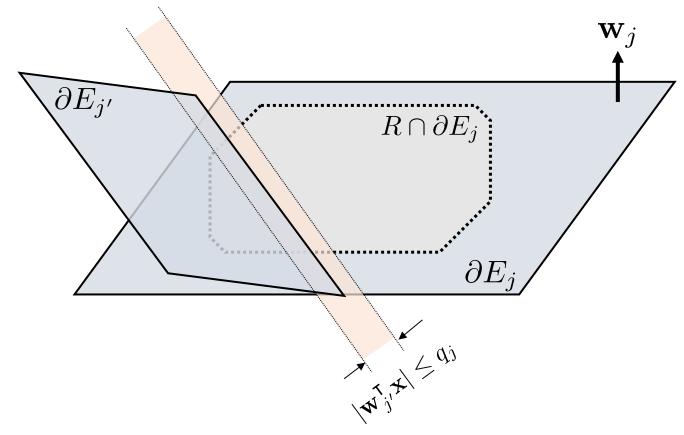
For teacher *j*, there exists student *k*':

weights
$$\sin \theta_{jk'} = \mathcal{O}\left(\frac{\epsilon^{1-\delta}}{|\alpha_{kj}|}\right)$$



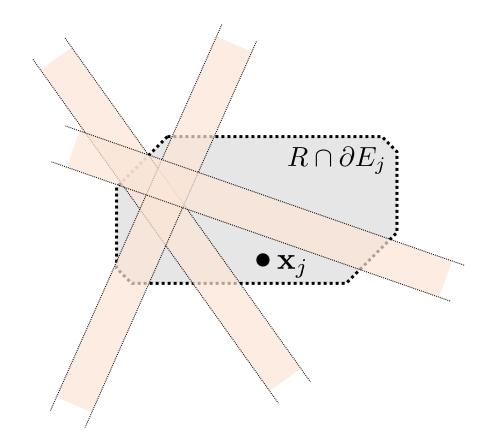
bias
$$|b_j^* - b_{k'}| = \mathcal{O}\left(\frac{\epsilon^{1-2\delta}}{|\alpha_{kj}|}\right)$$

How to Prove?



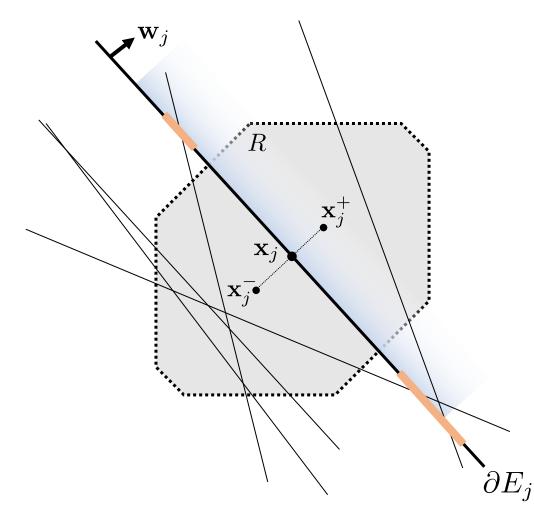
Misalignment leads to small overlap

How to Prove?

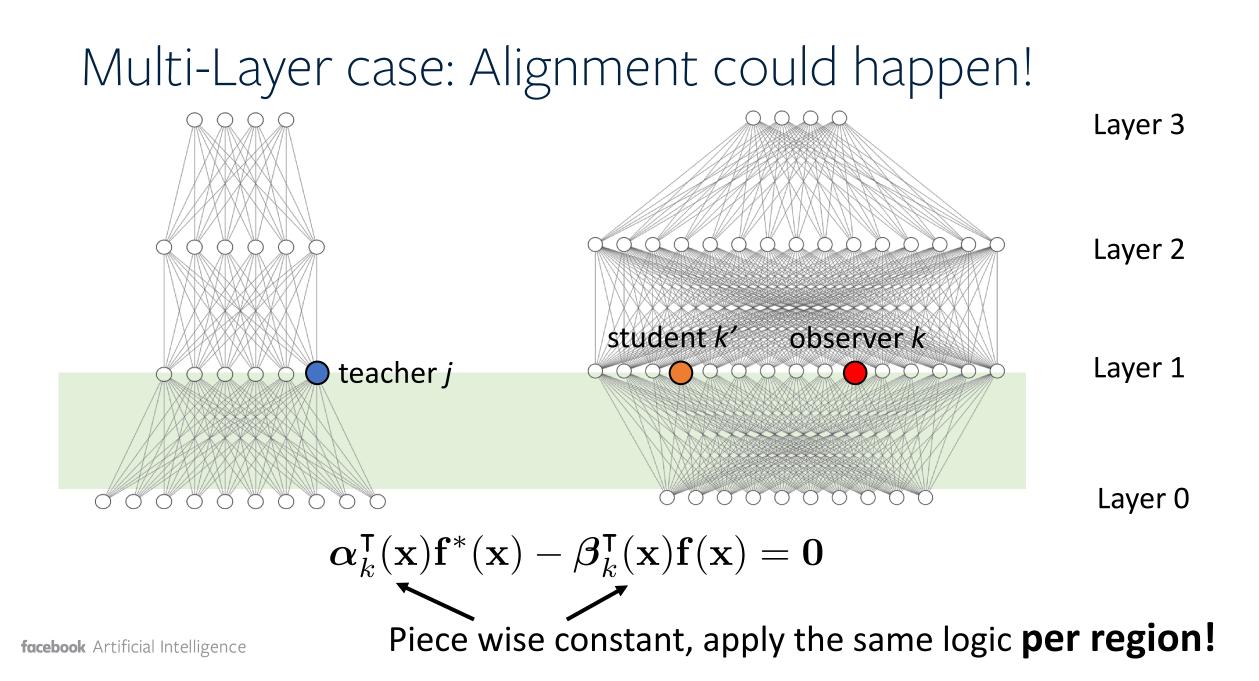


Small overlap \rightarrow There exists a datapoint that is far away from all boundaries.

How to Prove?



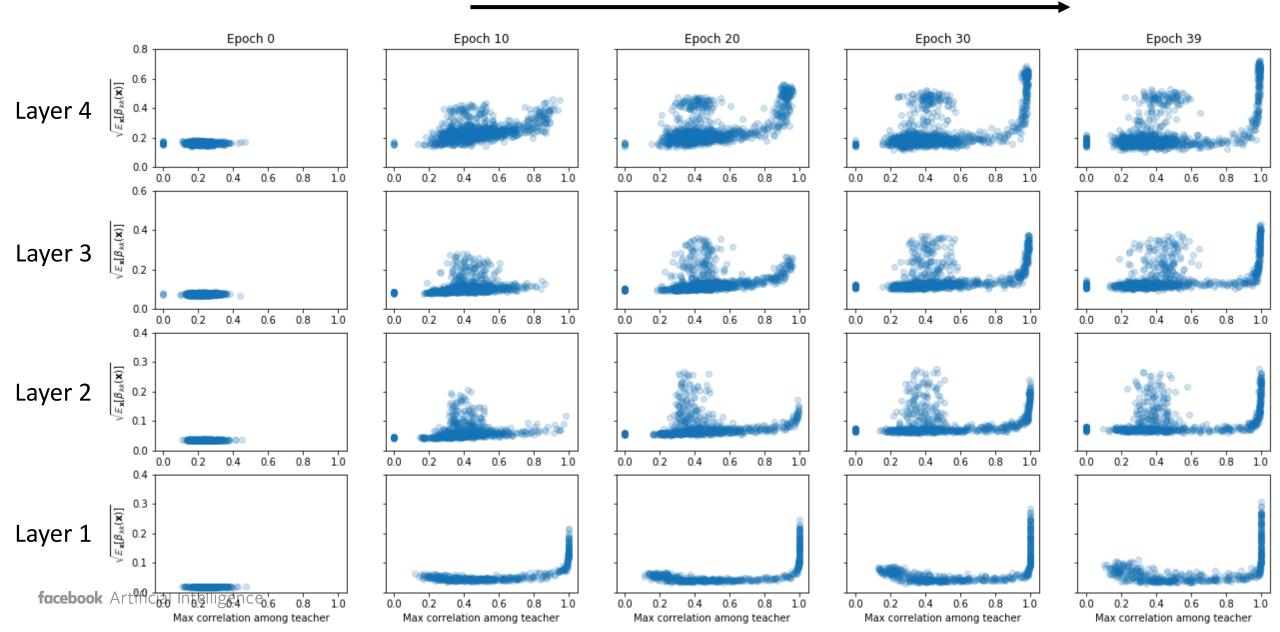
Pick three points x_j , x_j^+ , x_j^- and there will be one with $|g_j(x)| > \epsilon$, which is a contradiction.



For 2-layer:

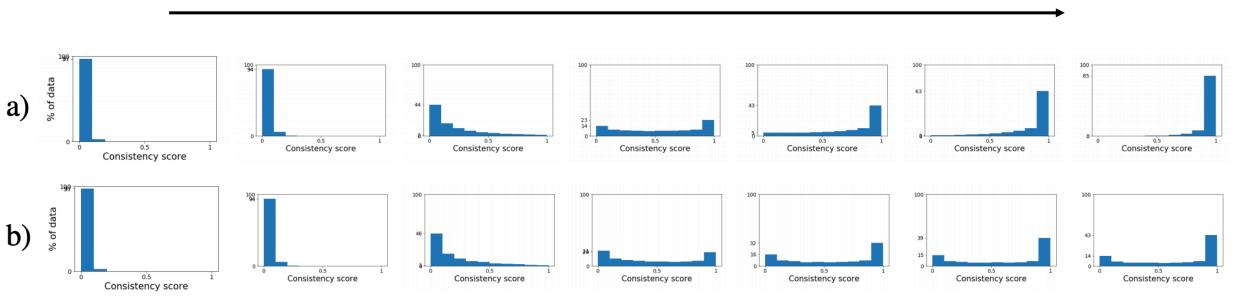
 $\sqrt{\mathbb{E}_{\mathbf{x}}\left[\beta_{kk}(\mathbf{x})\right]} = \|\mathbf{v}_k\|$

Training Progresses



Different initialization, Similar Solutions

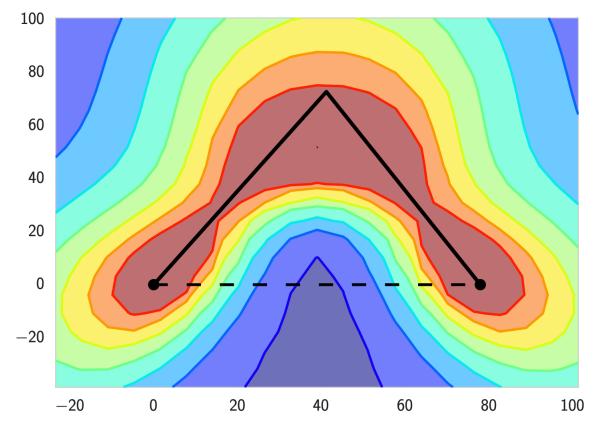
VGG-19 on CIFAR-100



Training Progresses

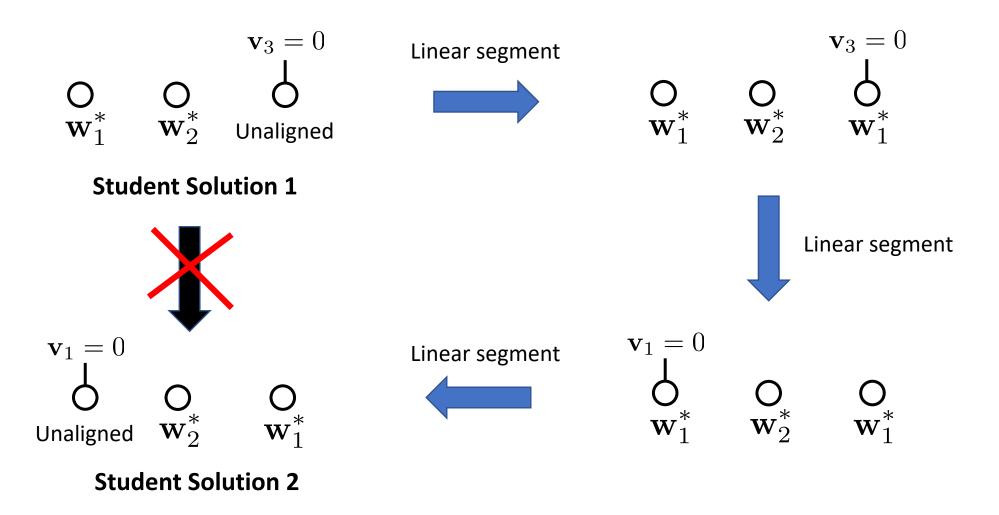
[All Neural Networks are Created Equal, Hacohen et al, 2019]

Solutions can be connected by line segments



[Loss Surfaces, Mode Connectivity, and Fast Ensembling of DNNs, Garipov et al. NeurIPS 2018] [Essentially No Barriers in Neural Network Energy Landscape, Draxler et al, 2018] [Explaining Landscape Connectivity of Low-cost Solutions for Multilayer Nets, Kuditipudi et al, 2019]

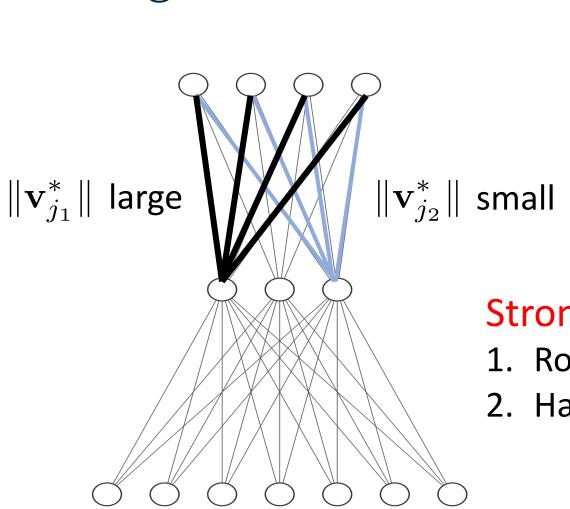
Our Explanation



Critical Points have nice properties!

Can we achieve that via training with SGD?

Not Easy

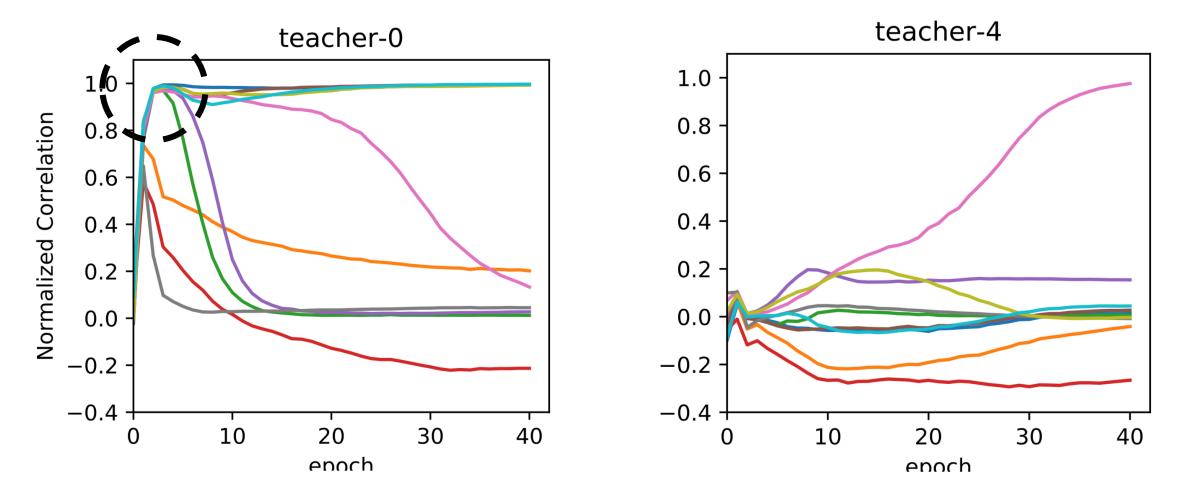


Strong/weak teacher nodes

Strong teacher nodes are learned faster 1. Robust to Noise!

2. Hard to learn weak teacher nodes 😢

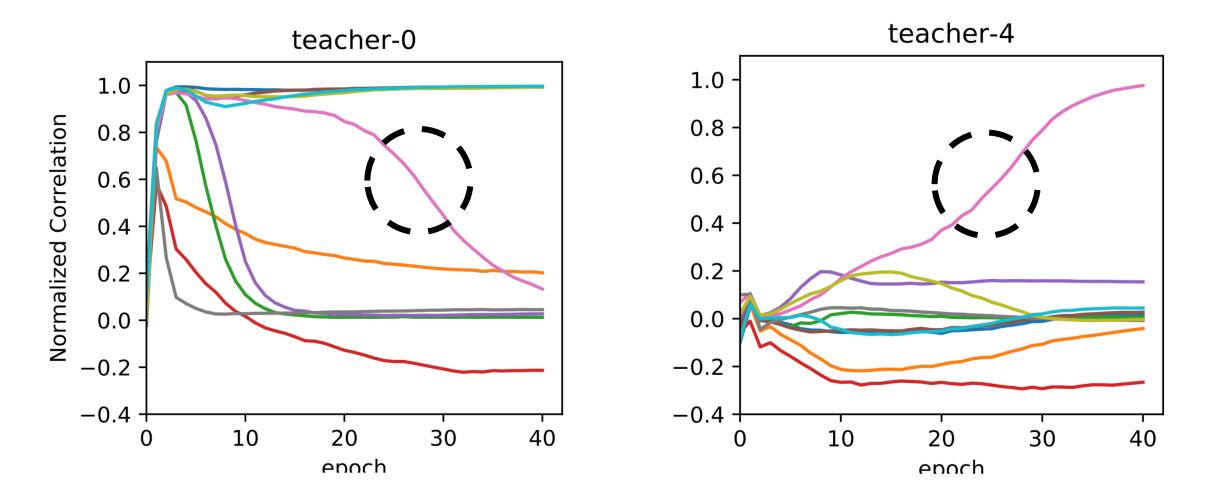
Training Dynamics



Teacher j: $\|\mathbf{v}_j^*\| \propto 1/j^p$

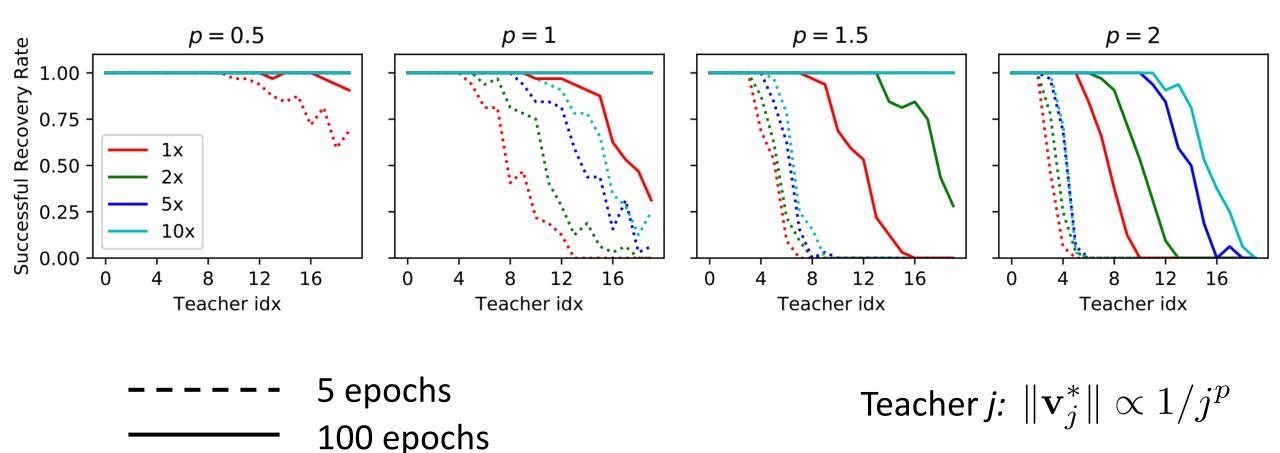
Strong teacher node attracts many students!

Training Dynamics



Losing student node shifts focus.

Successful Rate of Teacher Node Reconstruction



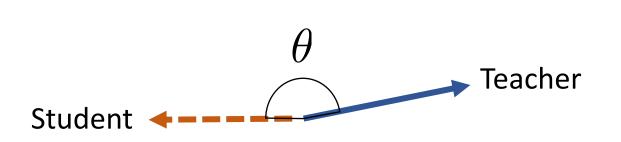
Analysis of (approx.) Training Dynamics

For each node *k*, we have:

$$\dot{\mathbf{w}}_k = \|\mathbf{w}_k\|\mathbf{r}_k$$

Where:

$$\mathbf{r}_{k} = \sum_{j} \alpha_{jk} \psi(\theta_{jk}) \mathbf{w}_{j}^{*} - \sum_{k'} \beta_{k'k} \psi(\theta_{k'k}) \mathbf{w}_{k'} - \nu \mathbf{w}_{k}$$
$$\psi(\pi) = 0$$

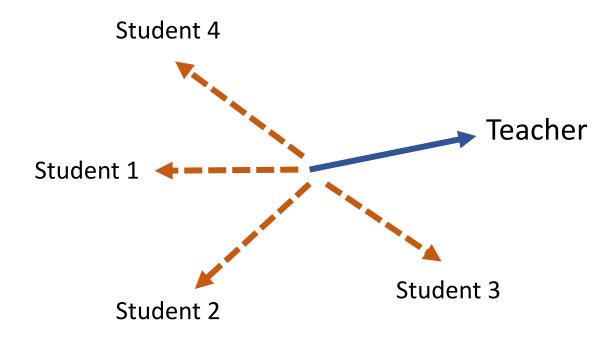


Worst case scenario

$$heta_0 o \pi, \quad t o +\infty$$

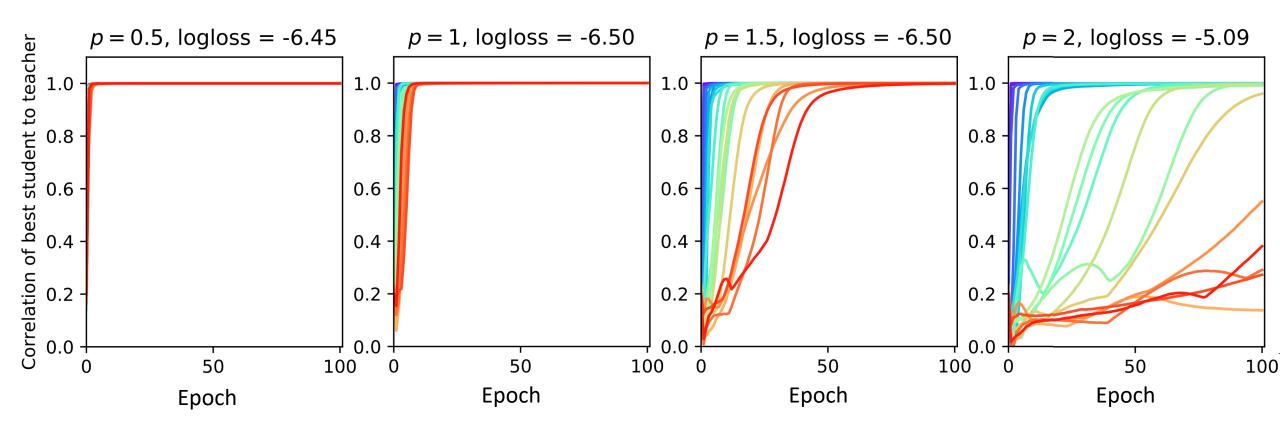
$$\dot{\theta} \propto -\psi(\theta)\sin\theta \propto -(\pi-\theta)^2$$

How Over-parameterization can help?



More students yield better coverage.

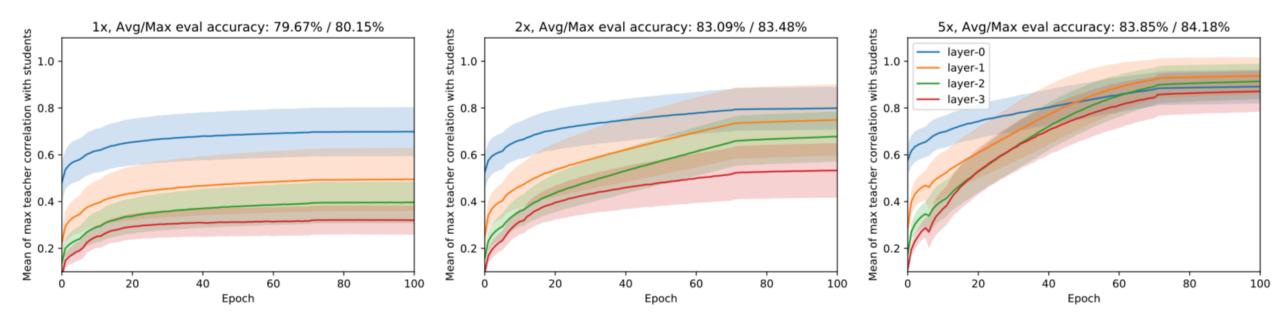
Weak teacher nodes are Slow to train



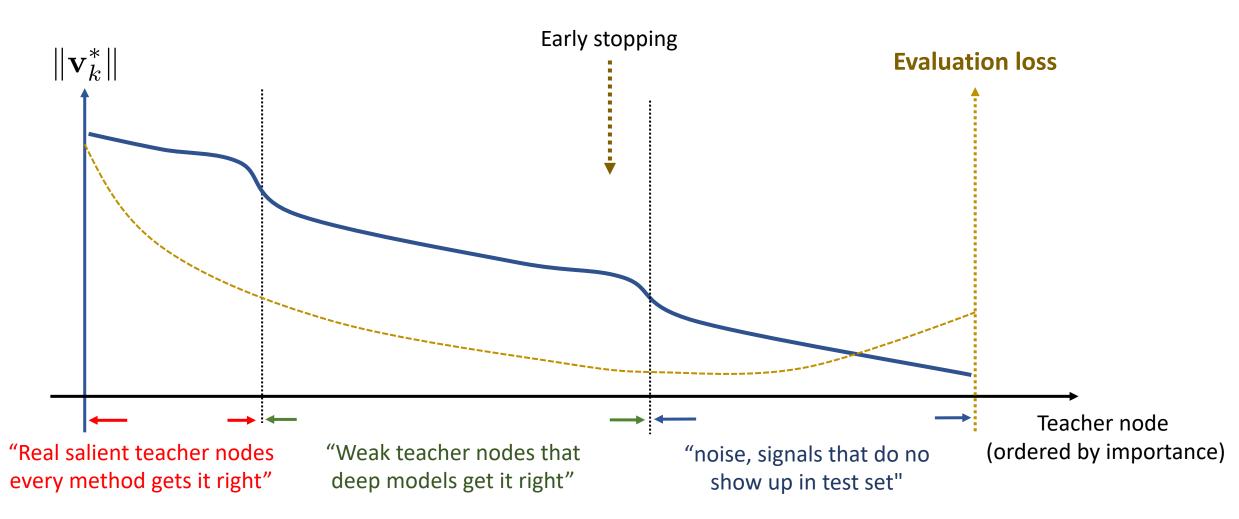
Weak teacher

Strong teacher

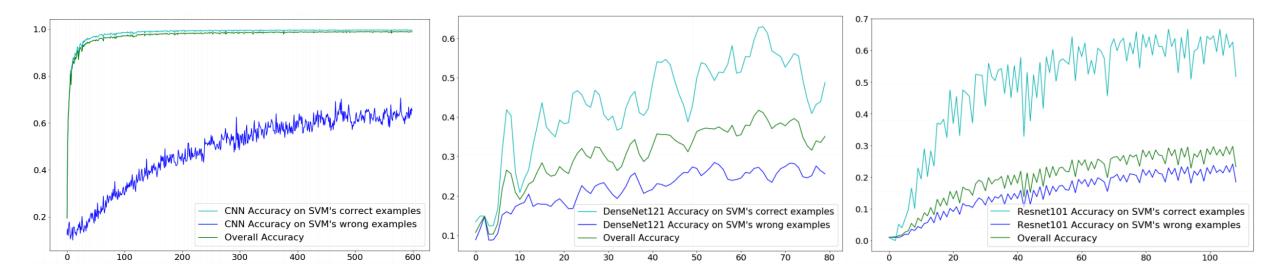
- 1. Train a teacher network 64-64-64.
- 2. Then prune the teacher network with [0.3,0.5,0.5,0.7] rate.
- 3. Then train a student network to mimic teacher's output (before softmax)



Hypothesis: What does a real dataset look like?



Some Evidences



[Do deep neural networks learn shallow learnable examples first? Mangalam et al, ICML 2019 Workshop]

Future Work

Empirical:

- Large Scale Experiments (ImageNet)
- Relate what analysis tells versus what we see empirically

Theoretical:

- Finite Sample Analysis to achieve a formal generalization bound
- Bottom-up Training Dynamics of deep ReLU networks
- Training Dynamics of student nodes competing against each other (Competitive Lotka–Volterra equations)

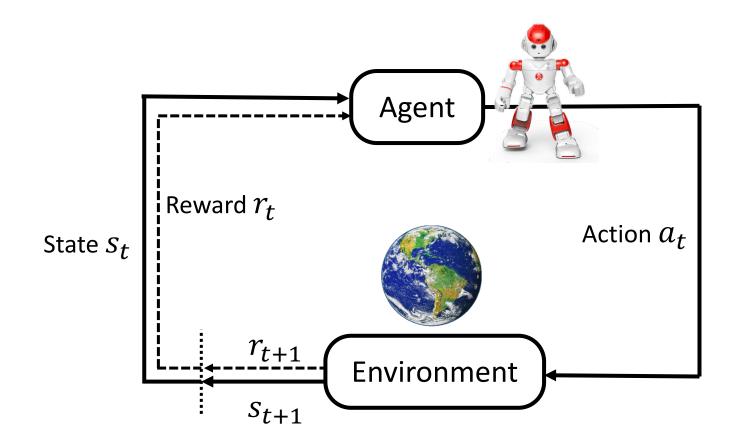
Building Scalable Systems for

Reinforcement Learning

Presented by Yuandong Tian

Research Scientist and Manager Facebook AI Research

Crash Course of Reinforcement Learning



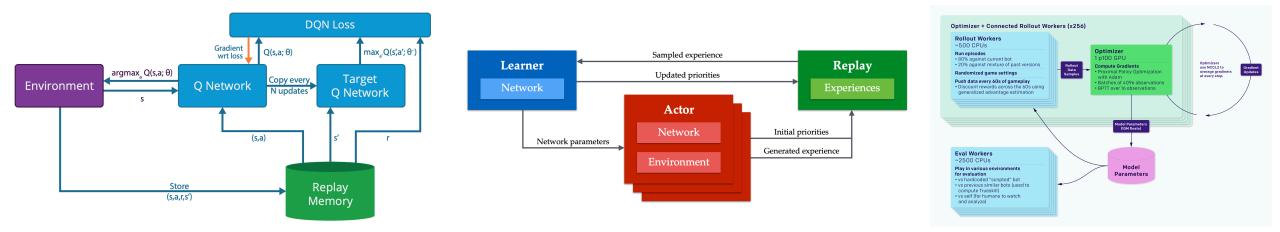
Reinforcement Learning works, but expensive

Year	Projects	Human Data	Training Resource	Training time
2016	DeepMind's AlphaGo	Yes	~50 GPUs + ? CPUs	~1 week
2017	DeepMind's AlphaGo Zero (20 blocks)	No	~2000 TPUs	3 days
2017	DeepMind's AlphaZero (20 blocks)	No	~5000 TPUs	8 hours
2018	OpenAI Five	No	128,000 CPUs + 256 GPUs	Several months
2019	DeepMind's AlphaStar	Yes	16,000 CPUs + 3072 TPUv3 cores	44 days

Challenges in large-scale RL Training System

- Trade-offs in a *heterogenous* system
 - **Different kind of objects**: Actor / Environment / Trainer / Replay buffer
 - CPUs / GPUs Allocations
 - Multi-threading versus Multiple Processes, Batching issues
 - Local versus Distributed
 - Synchronization / Asynchronization.
 - On-policy versus off-policy methods
 - Perfect synchronization might NOT give you the best performance
- Mingled Algorithm Design and System Design
 - New System design $\leftarrow \rightarrow$ New RL algorithm

Distributed System for training RL agent



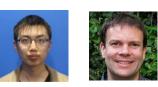
GORILLA

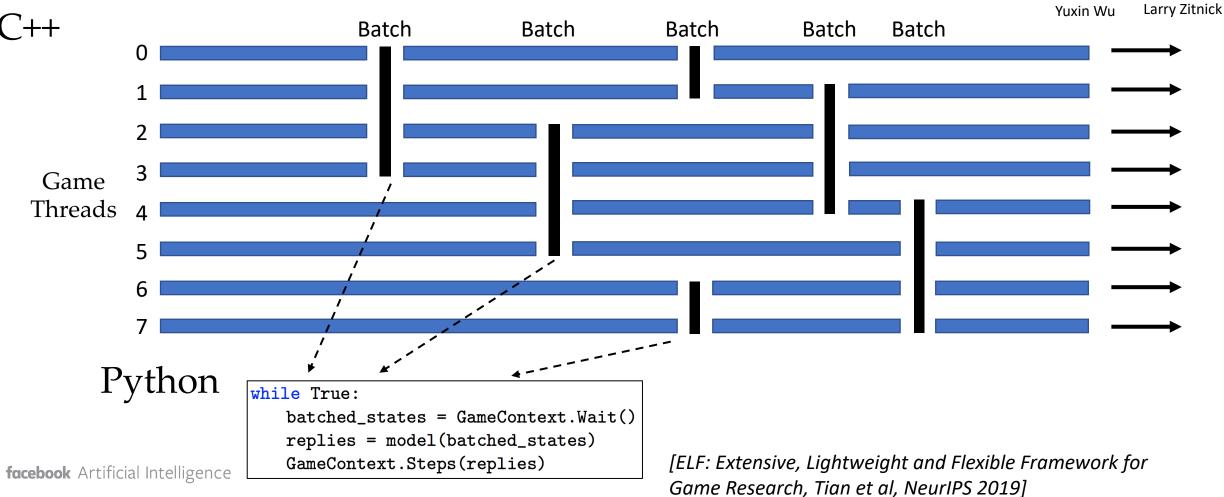
Ape-X / R2D2

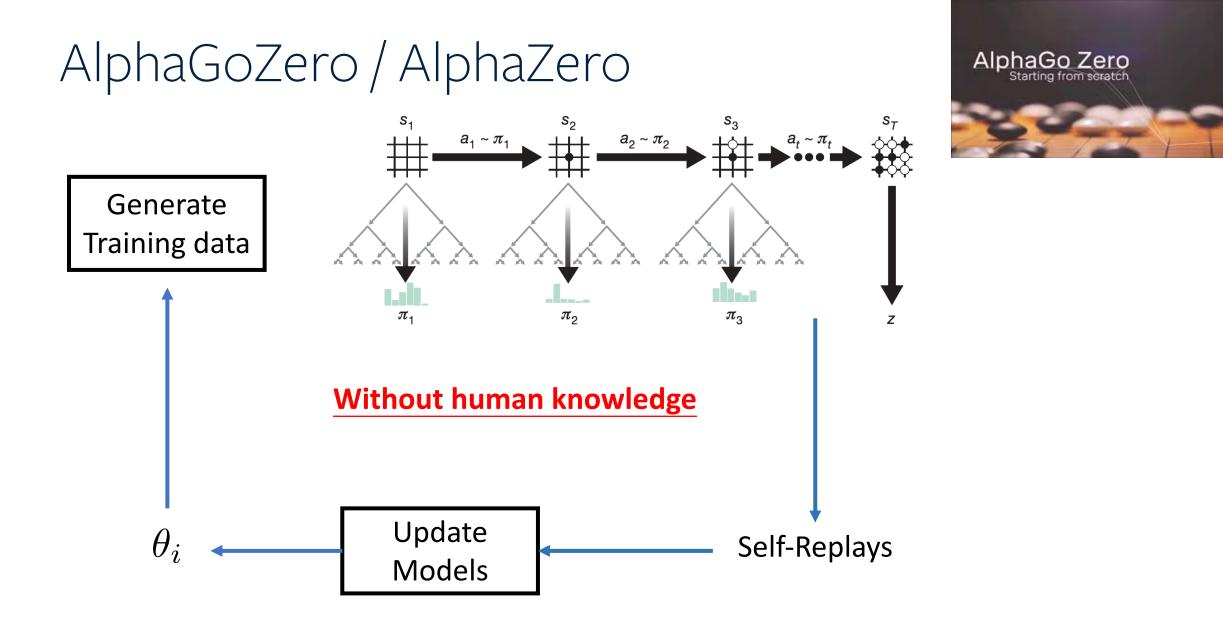
OpenAl Rapid

[Massively Parallel Methods for Deep Reinforcement Learning, AAAI 2015] [Distributed Prioritized Experience Replay, Horgan et al, ICLR 2018] [Recurrent Experience Replay in Distributed Reinforcement Learning Kapturowski et al, ICLR 2019]

ELF: RL Framework for Game Researchuandong Tian Qucheng Gong Wendy Shang



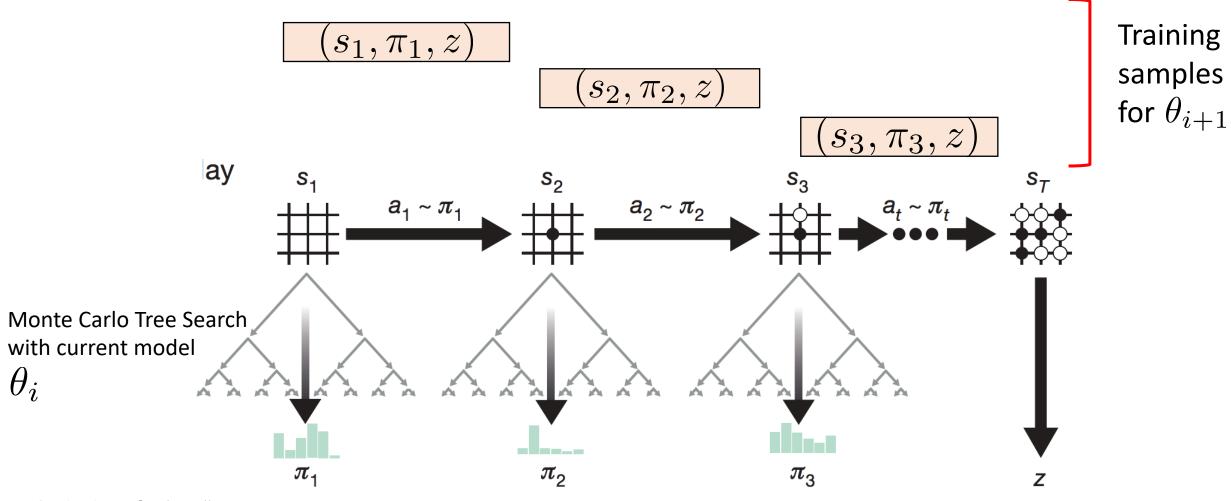




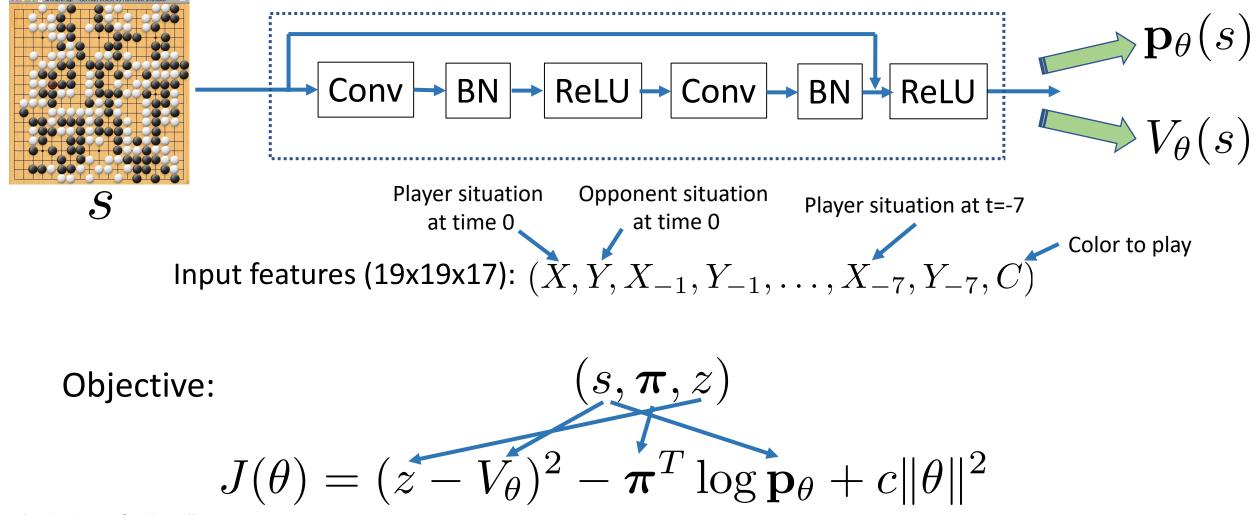
facebook Artificial Intelligence

[Silver et al, Mastering the game of Go without human knowledge, Nature 2017]

Generate Self-play Games

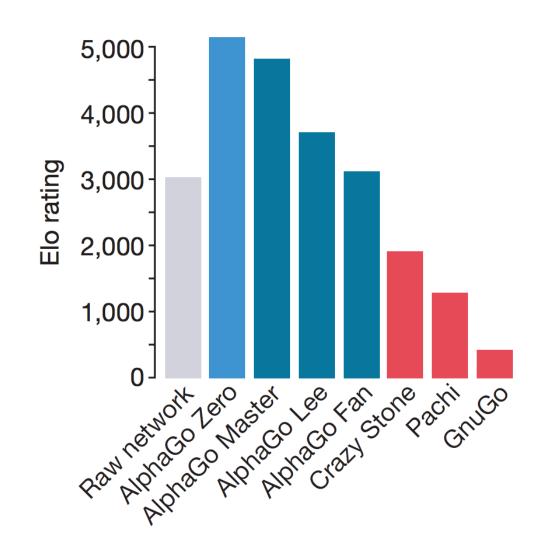


Update Models



AlphaGo Zero Strength

- 3 days version
 - 4.9M Games, 1600 rollouts/move
 - 20 block ResNet
 - Defeat AlphaGo Lee.
- 40 days version
 - 29M Games, 1600 rollouts/move
 - 40 blocks ResNet.
 - Defeat AlphaGo Master by 89:11



The Mystery of AlphaZero

- Mystery
 - Is the proposed algorithm really universal?
 - Is the bot almighty? Is there any weakness in the trained bot?
- Lack of Ablation Studies
 - What factor is critical for the performance?
 - Is the algorithm robust to random initialization and changes of hyper parameters?
 - Any adversarial samples?

Impressive Results, No code, No model

ELF OpenGo

Yuandong Tian Jerry Ma*

Qucheng Gong* Shubho Sengupta* Zhuoyuan Chen James Pinkerton Larry Zitnick

- System can be trained with 2000 GPUs in 2 weeks (20 block version)
- Superhuman performance against professional players and strong bots.
- Abundant ablation analysis.

pytorch / ELF						⊙ Unw	atch 🕶	174	🖈 Unstar	2,842	¥ Fork	472	
<> Code	() Issues	36 ្រិ Pull re	equests 3	III Projec	ets 0	Wiki	C Security	<u>III</u> Insi	ghts	🗘 Settings	f Int	ern Dashb	oard
ELF: a platform for game research with AlphaGoZero/AlphaZero reimplementation													
reinforceme	nt-learning	alphago-zero	rl rl-e	environment	alpha-zero	go	Manage topics						
[®] 67 d	commits	្ង <mark>្រ 11</mark> brar	nches	🟷 5 re	eleases	4	l environment		11 5 co	ontributors	ಶ <u>†</u> ತ '	View licen:	se

We open source the code and the pre-trained model for the Go and ML community

facebook Artificial Intelligence [ELF OpenGo: An Analysis and Open Reimplementation of AlphaZero, Y. Tian et al, ICML 2019]

ELF OpenGo Performance

Vs top professional players

Name (rank)	ELO (world rank)	Result
Kim Ji-seok	3590 (#3)	5-0
Shin Jin-seo	3570 (#5)	5-0
Park Yeonghun	3481 (#23)	5-0
Choi Cheolhan	3466 (#30)	5-0

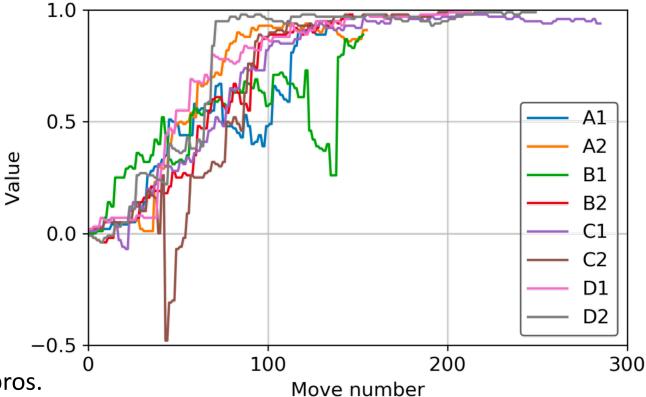
Single GPU, 80k rollouts, 50 seconds Offer unlimited thinking time for the players

Vs professional players

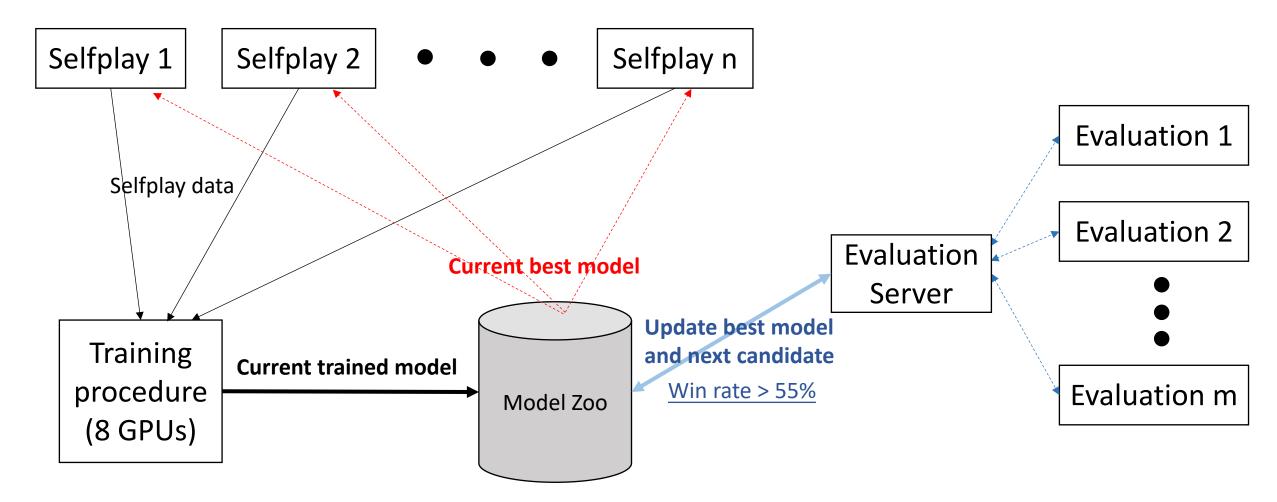
Single GPU, 2k rollouts, 27-0 against Taiwanese pros.

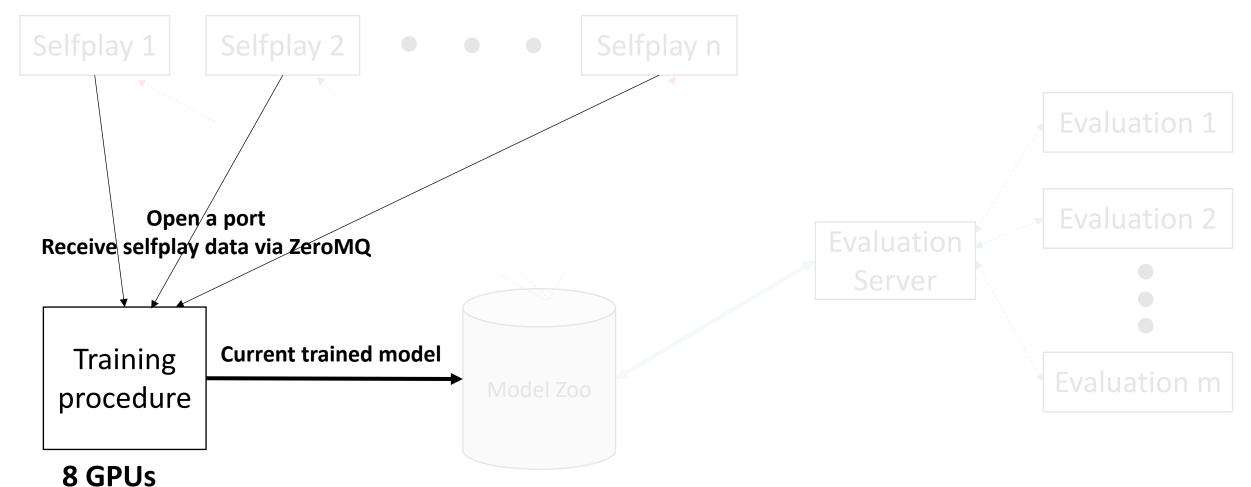
Vs strong bot (LeelaZero)

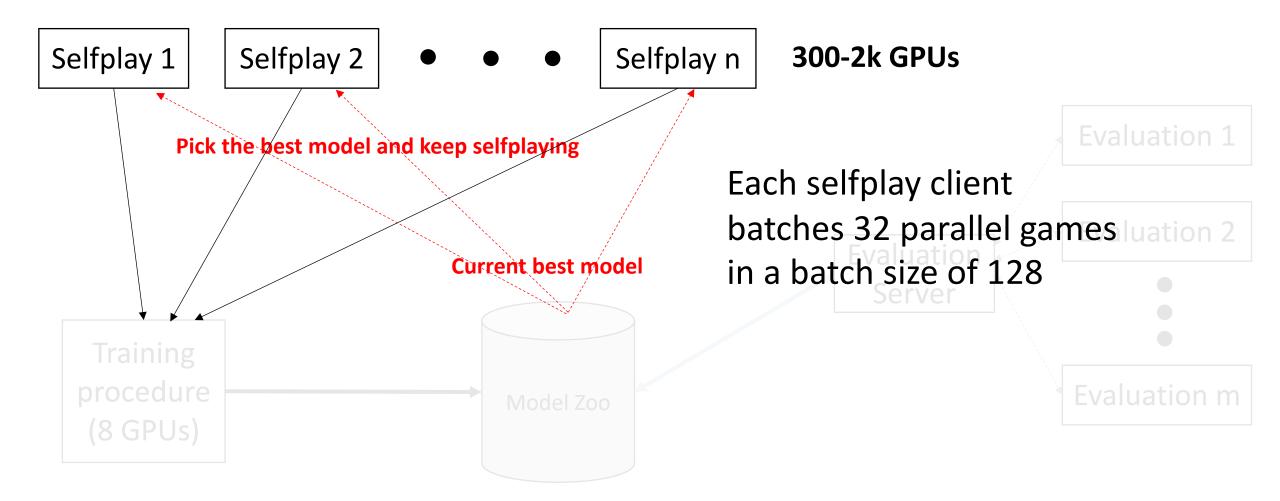
[158603eb, 192x15, Apr. 25, 2018]: 980 wins, 18 losses (98.2%)

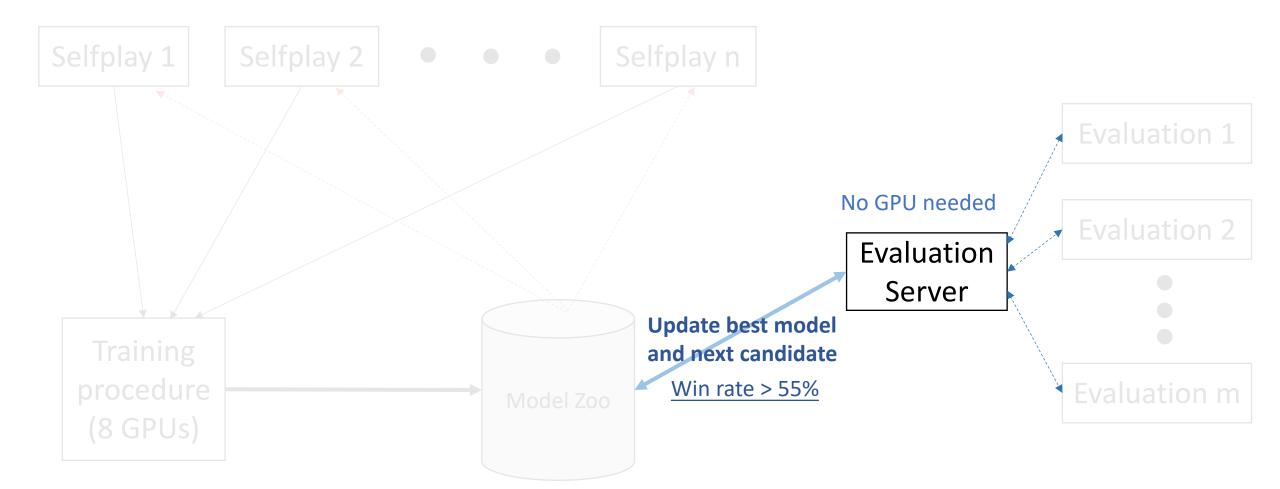


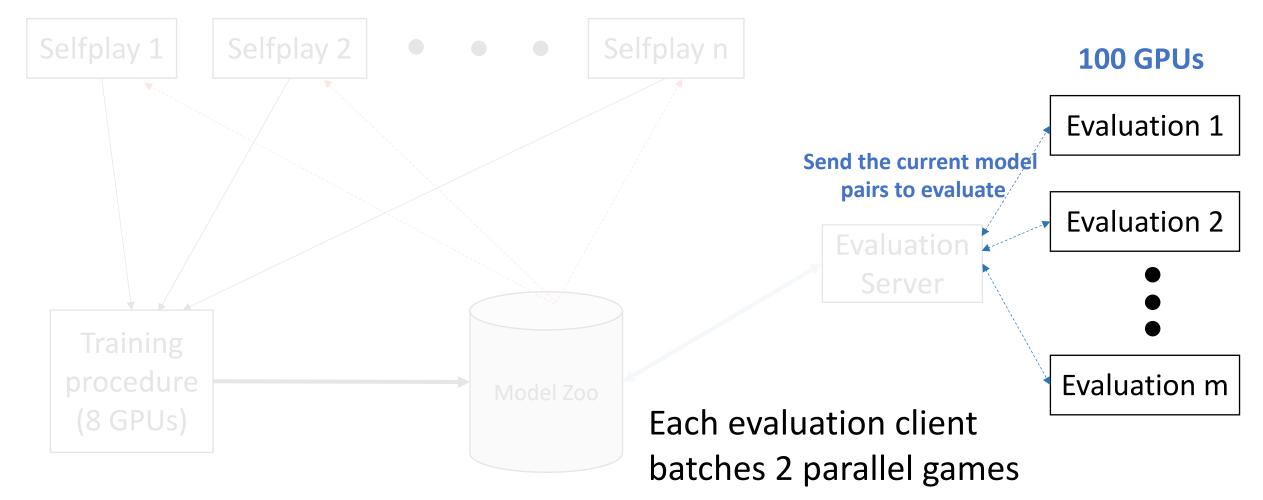
Distributed ELF (version 1, AlphaGoZero)



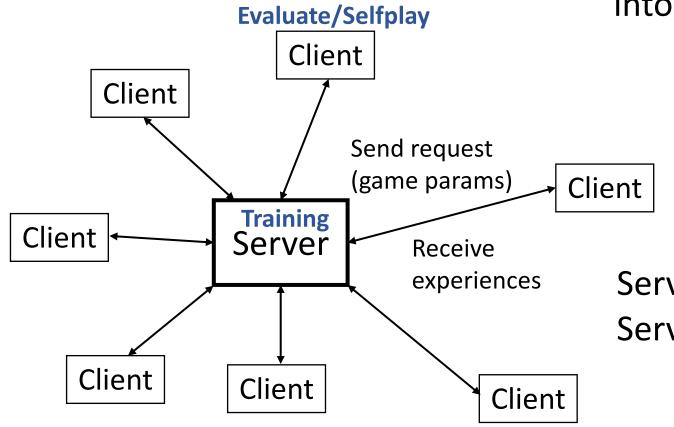








Distributed ELF (v2)



Putting AlphaGoZero and AlphaZero into the same framework

AlphaGoZero (more synchronization) AlphaZero (less synchronization)

Server controls synchronization Server also does training.

Next Step: RL Assembly

- Backbone infrastructure for ongoing projects (Hanabi, Bridge, etc)
- Reimplementation of SoTA off-policy RL methods like Ape-X and R2D2
- Incorporate OpenGo and SoTA implementation of MCTS.
- Efficient on single machine (SoTA training FPS so far)

Open source soon

Current Projects using ReLA

Contract Bridge

Hanabi

MiniRTSv2

More projects to come!

