
Over-parameterization as a Catalyst for
Better Generalization of Deep ReLU network

Yuandong Tian

Research Scientist and Manager
Facebook AI Research

Great Empirical Success from Deep Models

How do deep models work?

Input Output

“Some Nonlinear Transformation”This is an apple

Three Major Problems

Understanding how
Deep Models work

Expressibility

Optimization

Generalization

“Neural Network is a universal approximator”
“Deep Models can express functions more efficiently than shallow ones”

“Gradient vanishing/exploding”
“Gradient Descent might get stuck at saddle point / local minima”
“Can GD/SGD go to global optima? How fast?”

“Does zero training error often lead to overfitting?”
“More parameters might lead to overfitting.”

+ -
+-

Supervised Learning

Student Network
(Learnable Parameters)

Dataset
{(𝑥$, 𝑦$)}

Supervision

Student-Teacher Setting

Teacher Network
(Fixed parameters)

Student Network
(Learnable Parameters)

No direct supervision

Supervision

By Network
Expressibility

Why Student-Teacher Setting?

Understanding how
Deep Models work

Expressibility

Optimization

Generalization

Provide a target function with bounded complexity

Weight alignment with the teacher yields generalization

Study fine dynamics behaviors by comparing with teacher

Old History of Teacher-Student Setting

[On-line learning in soft committee machines, Saad & Solla, Phys. Rev 1995]

One layer of trainable parameters

Use Gaussian erf() function as the nonlinearity

Study when the input dimension 𝑑 → +∞ (i.e., thermodynamics limits)

Student-Teacher Setting (this paper)

Teacher Network
(Fixed parameters)

(Over-parameterized) Student Network
(Learnable Parameters)

No direct supervision

Contributions

Over-parameterization helps in generalization in two ways:

1. Critical point analysis shows that over-parameterization helps
student-teacher alignment.

2. Training dynamics analysis shows faster alignment with over-
parameterization.

Notation

GD: expectation taken over the entire dataset
SGD: expectation taken over a batch

Layer l – 1
(𝑛./0 nodes)

Layer l
(𝑛. nodes)

Weight update rule:

Activation

Gradient

A Trivial Statement

With over-parameterized student network:

Student aligns
with the teacher

The Inverse Problem

? ? ?

With over-parameterized student network:

Student aligns
with the teacher

è Zero training error leads to good generalization

Lemma1: Recursive Gradient Rule

Teacher mixture Student mixture

For layer 𝑙, there exists 𝐴.(𝑥) and 𝐵.(𝑥) so that:

Student gradient
Student gating

𝐴.(𝑥) and 𝐵.(𝑥) are piece-wise constant.

Lemma1: Recursive Gradient Rule

Teacher mixture Student mixture

For layer 𝑙, there exists 𝐴.(𝑥) and 𝐵.(𝑥) so that:

Student gradient
Student gating

𝐴.(𝑥) and 𝐵.(𝑥) are piece-wise constant.

𝑛.: number of student nodes at layer 𝑙
𝑚.: number of teacher nodes at layer 𝑙

Recursive Formula for 𝐴.(𝑥) and 𝐵.(𝑥)

k k’ Layer 1

𝐶: output dimension

Recursive Formula for V:

Base case:

Main results: Alignment could happen!

teacher j
student k’

Layer 0

Layer 1

Layer 2

Layer 3

Definition of Alignment

An example of “rough” alignment

Boundary of node j

Boundary of node k

Activated Region of node j

Assumption of the dataset

Infinite dataset!

Assumption of the dataset

Infinite dataset!

Assumptions on Teacher Network

• Cannot reconstruct arbitrary teachers
• e.g., all ReLU nodes are dead

Distinct teacher nodes Teacher’s boundary are visible in the dataset

Main results: Alignment could happen!

teacher j
student k’ observer k

2-layer network

Layer 0

Layer 1

Definition of “Observation”

Teacher j is observed by a student k

Observer
boundary

Teacher node boundary

Main results: Alignment could happen!

Teacher j is aligned with
at least one student k’

Teacher node j is observed
by a student node k

Why?

The gradient of observer k is 0:

From Lemma 1, 𝑔7 𝑥 = 𝛼7:𝑓∗ 𝑥 − 𝛽7:𝑓 𝑥 = 0
If 𝑥 ∈ 𝐸7

Why?

The gradient of observer k is 0:

From Lemma 1, 𝑔7 𝑥 = 𝛼7:𝑓∗ 𝑥 − 𝛽7:𝑓 𝑥 = 0
If 𝑥 ∈ 𝐸7

ReLUs are
linear independent!

Coefficients for teacher j
direction must be 0

Why?

The gradient of observer k is 0:

From Lemma 1, 𝑔7 𝑥 = 𝛼7:𝑓∗ 𝑥 − 𝛽7:𝑓 𝑥 = 0
If 𝑥 ∈ 𝐸7

ReLUs are
linear independent!

Coefficients for teacher j
direction must be 0

Teacher j is aligned with
at least one student k’
(sum of coefficients = 0)

Why Over-parameterization helps?

student k’

More observers!

What happens to unaligned students?

Aligned
(can be one-to-many)

Simple 2D experiments
Student Boundary
Teacher Boundary

Simple 2D experiments

L-shape curve at convergence

Student nodes

Normalized correlation of a student node
to its best correlated teacher

10x over-parameterization

L-shape curve at convergence

Noisy Case

weights

bias

For teacher j, there exists student k’:

Teacher j

Student k’

How to Prove?

Misalignment leads to small overlap

How to Prove?

Small overlap à There exists a datapoint that is
far away from all boundaries.

How to Prove?

Pick three points 𝑥B, 𝑥BC, 𝑥B/ and there will be one with
|gF 𝑥 | > 𝜖, which is a contradiction.

Multi-Layer case: Alignment could happen!

teacher j
student k’ observer k

Piece wise constant, apply the same logic per region!

Layer 0

Layer 1

Layer 2

Layer 3

Training Progresses

Layer 1

Layer 2

Layer 3

Layer 4

For 2-layer:

Different initialization, Similar Solutions

[All Neural Networks are Created Equal, Hacohen et al, 2019]

VGG-19 on CIFAR-100

Training Progresses

Solutions can be connected by line segments

[Loss Surfaces, Mode Connectivity, and Fast Ensembling of DNNs, Garipov et al. NeurIPS 2018]

[Explaining Landscape Connectivity of Low-cost Solutions for Multilayer Nets, Kuditipudi et al, 2019]
[Essentially No Barriers in Neural Network Energy Landscape, Draxler et al, 2018]

Our Explanation

Student Solution 1

Unaligned

Unaligned

Student Solution 2

Linear segment

Linear segment

Linear segment

Training Dynamics

Critical Points have nice properties!

Can we achieve that via training with SGD?

Not Easy

Strong/weak teacher nodes

large small

Strong teacher nodes are learned faster
1. Robust to Noise!😃
2. Hard to learn weak teacher nodes😢

Training Dynamics Teacher j:

Strong teacher node attracts many students!

Training Dynamics

Losing student node shifts focus.

Teacher j:

Successful Rate of Teacher Node Reconstruction

5 epochs
100 epochs

Teacher j:

Analysis of (approx.) Training Dynamics

For each node k, we have:

Where:

Worst case scenario

Teacher
Student

How Over-parameterization can help?

Teacher
Student 1 More students yield

better coverage.

Student 2
Student 3

Student 4

Weak teacher nodes are Slow to train

Weak teacher Strong teacher

Epoch Epoch Epoch Epoch

CIFAR 10
1. Train a teacher network 64-64-64-64.
2. Then prune the teacher network with [0.3,0.5,0.5,0.7] rate.
3. Then train a student network to mimic teacher‘s output (before softmax)

Hypothesis: What does a real dataset look like?

Teacher node
(ordered by importance)“Real salient teacher nodes

every method gets it right”
“Weak teacher nodes that
deep models get it right”

“noise, signals that do no
show up in test set"

Evaluation loss
Early stopping

Some Evidences

[Do deep neural networks learn shallow learnable examples first? Mangalam et al, ICML 2019 Workshop]

Future Work
Empirical:
• Large Scale Experiments (ImageNet)
• Relate what analysis tells versus what we see empirically

Theoretical:
• Finite Sample Analysis to achieve a formal generalization bound
• Bottom-up Training Dynamics of deep ReLU networks
• Training Dynamics of student nodes competing against each other

(Competitive Lotka–Volterra equations)

Building Scalable Systems for
Reinforcement Learning

Presented by Yuandong Tian

Research Scientist and Manager
Facebook AI Research

Crash Course of Reinforcement Learning

Action 𝑎JState 𝑠J
Reward 𝑟J

Agent

Environment
𝑠JC0

𝑟JC0

Reinforcement Learning works, but expensive

Year Projects Human Data Training Resource Training time
2016 DeepMind’s AlphaGo Yes ~50 GPUs + ? CPUs ~1 week

2017 DeepMind’s AlphaGo Zero
(20 blocks) No ~2000 TPUs 3 days

2017 DeepMind’s AlphaZero (20 blocks) No ~5000 TPUs 8 hours
2018 OpenAI Five No 128,000 CPUs + 256 GPUs Several months
2019 DeepMind’s AlphaStar Yes 16,000 CPUs + 3072 TPUv3 cores 44 days

Challenges in large-scale RL Training System

• Trade-offs in a heterogenous system
• Different kind of objects: Actor / Environment / Trainer / Replay buffer
• CPUs / GPUs Allocations
• Multi-threading versus Multiple Processes, Batching issues
• Local versus Distributed
• Synchronization / Asynchronization.

• On-policy versus off-policy methods
• Perfect synchronization might NOT give you the best performance

• Mingled Algorithm Design and System Design
• New System design çè New RL algorithm

Distributed System for training RL agent

GORILLA Ape-X / R2D2 OpenAI Rapid

[Distributed Prioritized Experience Replay, Horgan et al, ICLR 2018]
[Recurrent Experience Replay in Distributed Reinforcement Learning

Kapturowski et al, ICLR 2019]

[Massively Parallel Methods for Deep
Reinforcement Learning, AAAI 2015]

Game
Threads

0

1

2

3

4

5
6
7

Batch BatchBatch Batch Batch

Python

C++

ELF: RL Framework for Game Research

Larry Zitnick

Qucheng Gong Wendy Shang

Yuxin Wu

Yuandong Tian

[ELF: Extensive, Lightweight and Flexible Framework for
Game Research, Tian et al, NeurIPS 2019]

AlphaGoZero / AlphaZero

Update
Models

Generate
Training data

Self-Replays

Without human knowledge

[Silver et al, Mastering the game of Go without human knowledge, Nature 2017]

Generate Self-play Games

Monte Carlo Tree Search
with current model

Training
samples
for

Update Models

Input features (19x19x17):

Player situation
at time 0

Player situation at t=-7Opponent situation
at time 0

Color to play

Conv ReLUBN Conv ReLUBN

Objective:

AlphaGo Zero Strength

• 3 days version
• 4.9M Games, 1600 rollouts/move
• 20 block ResNet
• Defeat AlphaGo Lee.

• 40 days version
• 29M Games, 1600 rollouts/move
• 40 blocks ResNet.
• Defeat AlphaGo Master by 89:11

The Mystery of AlphaZero

• Mystery
• Is the proposed algorithm really universal?
• Is the bot almighty? Is there any weakness in the trained bot?

• Lack of Ablation Studies
• What factor is critical for the performance?
• Is the algorithm robust to random initialization and changes of hyper

parameters?
• Any adversarial samples?

Impressive Results, No code, No model

ELF OpenGo
• System can be trained with 2000 GPUs in 2 weeks (20 block version)
• Superhuman performance against professional players and strong bots.
• Abundant ablation analysis.

We open source the code and the pre-trained model for the Go and ML community

[ELF OpenGo: An Analysis and Open Reimplementation of AlphaZero, Y. Tian et al, ICML 2019]

Larry ZitnickQucheng Gong*Yuandong Tian Jerry Ma* Shubho Sengupta* Zhuoyuan Chen James Pinkerton

ELF OpenGo Performance

20-0Name (rank) ELO (world rank) Result

Kim Ji-seok 3590 (#3) 5-0

Shin Jin-seo 3570 (#5) 5-0

Park Yeonghun 3481 (#23) 5-0

Choi Cheolhan 3466 (#30) 5-0

Single GPU, 80k rollouts, 50 seconds
Offer unlimited thinking time for the players

Vs top professional players

Vs strong bot (LeelaZero)
[158603eb, 192x15, Apr. 25, 2018]: 980 wins, 18 losses (98.2%)

Vs professional players
Single GPU, 2k rollouts, 27-0 against Taiwanese pros.

http://zero.sjeng.org/networks/158603eb61a1e5e9dcd1aee157d813063292ae68fbc8fcd24502ae7daf4d7948.gz

Distributed ELF (version 1, AlphaGoZero)

Training
procedure
(8 GPUs)

Selfplay 1 Selfplay 2 Selfplay n

Evaluation 1

Evaluation 2

Evaluation mModel Zoo

Selfplay data

Current best model Evaluation
Server

Update best model
and next candidateCurrent trained model

Win rate > 55%

Distributed ELF (version 1)

Training
procedure

Selfplay 1 Selfplay 2 Selfplay n

Evaluation 1

Evaluation 2

Evaluation mModel Zoo

Evaluation
Server

Open a port
Receive selfplay data via ZeroMQ

Current trained model

8 GPUs

Distributed ELF (version 1)

Training
procedure
(8 GPUs)

Selfplay 1 Selfplay 2 Selfplay n

Evaluation 1

Evaluation 2

Evaluation mModel Zoo

Evaluation
Server

Pick the best model and keep selfplaying

Current best model

300-2k GPUs

Each selfplay client
batches 32 parallel games
in a batch size of 128

Distributed ELF (version 1)

Training
procedure
(8 GPUs)

Selfplay 1 Selfplay 2 Selfplay n

Evaluation 1

Evaluation 2

Evaluation mModel Zoo

Evaluation
Server

Update best model
and next candidate

Win rate > 55%

No GPU needed

Distributed ELF (version 1)

Training
procedure
(8 GPUs)

Selfplay 1 Selfplay 2 Selfplay n

Evaluation 1

Evaluation 2

Evaluation mModel Zoo

Evaluation
Server

Send the current model
pairs to evaluate

100 GPUs

Each evaluation client
batches 2 parallel games

Distributed ELF (v2)

Server

Evaluate/Selfplay

Training

Send request
(game params)

Receive
experiences

Client

Client

Client Client Client

Client

Client

AlphaGoZero (more synchronization)
AlphaZero (less synchronization)

Putting AlphaGoZero and AlphaZero
into the same framework

Server controls synchronization
Server also does training.

Next Step: RL Assembly

• Backbone infrastructure for ongoing projects (Hanabi, Bridge, etc)

• Reimplementation of SoTA off-policy RL methods like Ape-X and R2D2

• Incorporate OpenGo and SoTA implementation of MCTS.

• Efficient on single machine (SoTA training FPS so far)

Open source soon

Current Projects using ReLA

Contract Bridge Hanabi

More projects to come!

MiniRTSv2

Thanks!

