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Great Empirical Success from Deep Models



How do deep models work?

Input Output

“Some Nonlinear Transformation”This is an apple



Three Major Problems

Understanding how
Deep Models work

Expressibility

Optimization

Generalization

“Neural Network is a universal approximator”
“Deep Models can express functions more efficiently than shallow ones”

“Gradient vanishing/exploding”
“Gradient Descent might get stuck at saddle point / local minima”
“Can GD/SGD go to global optima? How fast?”

“Does zero training error often lead to overfitting?”
“More parameters might lead to overfitting.”

+ -
+-



Supervised Learning

Student Network
(Learnable Parameters)

Dataset
{(𝑥$, 𝑦$)}

Supervision



Student-Teacher Setting

Teacher Network
(Fixed parameters)

Student Network
(Learnable Parameters)

No direct supervision

Supervision

By Network
Expressibility



Why Student-Teacher Setting?

Understanding how
Deep Models work

Expressibility

Optimization

Generalization

Provide a target function with bounded complexity

Weight alignment with the teacher yields generalization

Study fine dynamics behaviors by comparing with teacher



Old History of Teacher-Student Setting

[On-line learning in soft committee machines, Saad & Solla, Phys. Rev 1995]

One layer of trainable parameters
Nonlinear function 𝜎 𝑥 = erf(𝑥 / 2)
Locally linearized analysis around symmetry breaking plane and final solution

Study when the input dimension 𝑛1 = 𝑚1 → +∞ (i.e., thermodynamics limits)

In some situations, student nodes are “specialized” to teacher node

𝜖 𝑱 =
1
2

𝑓 𝑱, 𝝃 − 𝑓 𝑩, 𝝃 =
𝝃 𝑓 𝑱, 𝝃 =>
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𝜎(𝑱$ ⋅ 𝝃)



Proposed Setting

Teacher Network
(Fixed parameters)

(Over-parameterized) Student Network
(Learnable Parameters)

No direct supervision

1. Finite 𝑚1 and 𝑛1
2. Works for 𝑛$ ≥ 𝑚$
(no crazy overparameterization)

Arxiv: https://arxiv.org/abs/1909.13458

https://arxiv.org/abs/1909.13458


Main Question

Question: With over-parameterized student network:

Student aligns
with the teacher

è Small training error potentially leads to good generalization

? ? ?Small gradient
during training



Notation

GD: expectation taken over the entire dataset
SGD: expectation taken over a batch

Layer l – 1
(𝑛DE@ nodes)

Layer l
(𝑛D nodes)

Weight update rule:

Activation

Gradient



Lemma1: Recursive Gradient Rule

Teacher mixture Student mixture

For layer 𝑙, there exists 𝐴D(𝑥) and 𝐵D(𝑥) so that:

Student gradient
Student gating

𝐴D(𝑥) and 𝐵D(𝑥) are piece-wise constant.



Lemma1: Recursive Gradient Rule

Teacher mixture Student mixture

For layer 𝑙, there exists 𝐴D(𝑥) and 𝐵D(𝑥) so that:

Student gradient
Student gating

𝐴D(𝑥) and 𝐵D(𝑥) are piece-wise constant.

𝑛D: number of student nodes at layer 𝑙
𝑚D: number of teacher nodes at layer 𝑙



Recursive Formula for 𝐴D(𝑥) and 𝐵D(𝑥)

k k’ Layer 1

𝐶: output dimension

Recursive Formula for V:

Base case:



Main results: Alignment could happen!

teacher j
student k’

Layer 0

Layer 1

Layer 2

Layer 3



Definition of Alignment

Alignment in the lowest layer

Boundary of node j

Boundary of node k

Activated Region of node j

Input space



Definition of “Observation”

Teacher j is observed by a student k

Observer
boundary

Teacher node boundary



Assumption of the dataset

Infinite dataset!



Assumption of the dataset

Infinite dataset! (Region needs to have interiors)



Assumptions on Teacher Network

• Cannot reconstruct arbitrary teachers
• e.g., all ReLU nodes are dead

Distinct teacher nodes Teacher’s boundary are visible in the dataset



Main results: Alignment could happen!

teacher j
student k’ observer k

2-layer network

Layer 0

Layer 1



Main results: Alignment could happen!

Teacher j is aligned with
at least one student k’

Teacher node j is observed
by a student node k

𝒈@ 𝑥 = 𝟎 for all 𝑥 ∈ 𝑅1
(all input gradients at layer 1 is
zero everywhere)

At the lowest layer:



Why?

The gradient of observer k is 0:

From Lemma 1, 𝑔O 𝑥 = 𝜶OQ𝒇∗ 𝑥 − 𝜷OQ𝒇 𝑥 = 0
If 𝑥 ∈ 𝐸O



Why?

The gradient of observer k is 0:

ReLUs are
linear independent!

Coefficients for teacher j
direction must be 0

From Lemma 1, 𝑔O 𝑥 = 𝜶OQ𝒇∗ 𝑥 − 𝜷OQ𝒇 𝑥 = 0
If 𝑥 ∈ 𝐸O



Why?

The gradient of observer k is 0:

ReLUs are
linear independent!

Coefficients for teacher j
direction must be 0

Teacher j is aligned with
at least one student k’
(sum of coefficients = 0)

From Lemma 1, 𝑔O 𝑥 = 𝜶OQ𝒇∗ 𝑥 − 𝜷OQ𝒇 𝑥 = 0
If 𝑥 ∈ 𝐸O



Why Over-parameterization helps?

student k’

More observers!



What happens to unaligned students?

Aligned
(can be one-to-many)



Simple 2D experiments
Student Boundary
Teacher Boundary



Simple 2D experiments



L-shape curve at convergence

Student nodes

Normalized correlation of a student node
to its best correlated teacher

10x over-parameterization



L-shape curve at convergence



Noisy Case

weights

bias

For teacher j, there exists student k’:

Teacher j

Student k’



How to Prove?

Misalignment leads to small overlap



How to Prove?

Small overlap à There exists a datapoint that is
far away from all boundaries.



How to Prove?

Pick three points 𝑥W, 𝑥WX, 𝑥WE and there will be one with
|g[ 𝑥 | > 𝜖, which is a contradiction.



Multi-Layer case: Alignment could happen!

teacher j
student k’ observer k

Piece wise constant, apply the same logic per region!

Layer 0

Layer 1

Layer 2

Layer 3



Training Progresses

Layer 1

Layer 2

Layer 3

Layer 4

For 2-layer:



Solutions can be connected by line segments

[Loss Surfaces, Mode Connectivity, and Fast Ensembling of DNNs, Garipov et al. NeurIPS 2018]

[Explaining Landscape Connectivity of Low-cost Solutions for Multilayer Nets, Kuditipudi et al, 2019]
[Essentially No Barriers in Neural Network Energy Landscape, Draxler et al, 2018]



Our Explanation

Student Solution 1

Unaligned

Unaligned

Student Solution 2

Linear segment

Linear segment

Linear segment



Training Dynamics

Critical Points have nice properties!

Can we achieve that via training with SGD?

Not Easy



Strong/weak teacher nodes

large small

Strong teacher nodes are learned faster
1. Robust to Noise!😃
2. Hard to learn weak teacher nodes😢



Training Dynamics Teacher j:

Strong teacher node attracts many students!



Training Dynamics

Losing student node shifts focus.

Teacher j:



Successful Rate of Teacher Node Reconstruction

5 epochs
100 epochs

Teacher j:



Future Directions
• Training Dynamics
• Generalization Bound
• Landscape
• ResNet / DenseNet / Network with Attention
• Adversarial Samples



Understand the Role Played by Neural
Network in Prioritized Search

Carrie Wu1, Lexing Ying1, Yuandong Tian2

1Stanford University, 2Facebook AI Research



AlphaGo Series

AlphaGo Lee
(Mar. 2016)

AlphaGo Master
(May. 2017)

AlphaGo Zero
(Oct. 2017)

DeepMind



Monte Carlo Tree Search with Networks

1.83/10

1.83/10

0.80/1 19.60/30

11.11/18

7.90/10

8.49/12

3.20/8

22.23/40 =𝑸 𝒔, 𝒂 = 𝑸̀ 𝒔, 𝒂 / 𝑵(𝒔, 𝒂)

Aggregate win rates, and search towards the good nodes. 



Monte Carlo Tree Search with Networks

Policy Network 𝑷(𝒔, 𝒂)

PUCT

0.2 0.7
0.1

1.83/10

1.83/10

0.80/1 19.60/30

11.11/18

7.90/10

8.49/12

3.20/8

22.23/40



Monte Carlo Tree Search with Networks

1.83/10

1.83/10

0.80/1 19.60/30

11.11/18

7.90/10

8.49/12

3.20/8

0.87 Value Network 𝑽(𝒔)



Monte Carlo Tree Search with Networks

1.83/10

1.83/10

0.80/1

8.49/12

3.20/8

20.47/31

11.98/19

8.77/11

23.1/41

0.87/1



Monte Carlo Tree Search with Networks

How Policy Network and Value Network
improves Search Efficiency?

[Mastering the game of Go with deep neural networks and tree search, D. Silver et al. Nature 2016]

Elo Rating



A Simple A* Model

Priority Queue
Next node
to expand

Prioritize node using
value model

Expand node using
policy model



Notations

𝑉∗

𝑉 𝑠f = 𝑉∗
Optimal path

Sub-optimal

𝐾: Branching factor

𝑉 𝑠f : True value of state 𝑠f at depth 𝑑

Δ 𝑠f = 𝑉∗ − 𝑉(𝑠f): Gap to optimal value

𝑈 𝑠f : Predicted deterministic value of state 𝑠f
by value net



Notations

𝑉∗

𝑉 𝑠f = 𝑉∗

𝑋f = 𝑉 𝑠f − 𝑈 𝑠f :
i.i.d zero-mean random variable at depth 𝑑
𝜎f: standard deviation

𝝈𝒅 decays over depth

Set 𝑐f = 5 𝑑𝜎f
𝑋f ≤ 𝑐f with high probability

𝑈 𝑠f + 𝑐f: Priority value

Optimal path

Sub-optimal



Value Network Only

A sub-optimal node is chosen if the heuristic value is over-estimated:

𝑈 𝑠f + 𝑐f ≥ 𝑉∗ or 𝑒 𝑠f ≡ 𝑉∗ − 𝑈 𝑠f − 𝑐f = Δ 𝑠f − 𝑋 𝑠f − 𝑐f ≤ 0

Expected Sample Complexity:

Optimal search path Sub-optimal path

Fixed node
expand cost



Neural Network Models

Constant Gap Models. Generative Models.

𝑉∗ = 𝜂 > 0

𝑉 𝑠f = 0
𝜂

𝜂

𝜂

0

0

0 0

00

𝑉∗

𝑉∗

𝑉∗

𝑉∗

Δ ∼ 𝑈[0, 𝜂] 𝑉∗ − Δ@

𝑉∗ − Δ@ − Δ= − Δw



Value Network Only (Constant Gap Model)

Sample Complexity (#calls of value functions):

for some c so that x
yz
− 𝑐 ≥ 2 log 𝐾

𝜎f = 𝑂(𝑑E1.�E�) è Polynomial sample complexity



Value Network Only (Generative Model)

where 𝑇 𝑑 = =
x

2log 𝐾 + 1 𝑑𝜎f

𝜎f = 𝑂(𝑑E1.�E�) è Polynomial sample complexity

Sample Complexity (#calls of value functions):



Success Rate at 20k expansion

Polynomial: 𝑋f ∼ 𝑁 0, 𝑑E=� , Exponential: 𝑋f ∼ 𝑁(0, 𝛼E=f)

Constant Gap

Generative Model



Adding Policy Networks

Assume 𝑈� 𝑠, 𝑎O = 𝑉 𝑠′(𝑠, 𝑎O) + 𝑋f�:

𝑋f� is i.i.d zero-mean random variable at depth 𝑑
𝜎f�: standard deviation

𝑠
𝑎O

𝑠′



Adding Policy Networks

Trunk

One forward yields many values.

One forward yields a single value

Sort 𝑃 𝑠, 𝑎 so that 𝑃 𝑠, 𝑎@ ≥ 𝑃 s, a= ≥ ⋯ ≥ 𝑃 𝑠, 𝑎A

If log 𝑃 𝑠, 𝑎@ − log 𝑃 𝑠, 𝑎O ≥ 2𝑐f�, stop expanding now.
k

𝑃 𝑠, 𝑎O



Value and Policy Networks

Sample Complexity (#calls of neural networks):

No fixed K expansions
anymore



Value + Policy (Success Rate at 20k expansion)
Constant Gap

Generative Model



Future Work

• PUCT (MCTS + Policy Network) becomes much more efficient, why?
• Visitation counts (memory)
• Max versus Average, which one is better in which situations
• Test it in real games/environment.



Thanks!


