Al in Games: Achievements and Challenges

Yuandong Tian Facebook AI Research

Al works in a lot of situations

Object Recognition

Medical

Translation

Speech Recognition

Personalization

Surveillance

Smart Design

Board game

What AI still needs to improve

Home Robotics

Autonomous Driving

ChatBot

StarCraft

Question Answering

Exponential space to explore Very few supervised data Complicated/unknown environments with lots of corner cases. Common Sense

The Charm of Games

Complicated long-term strategies.

Realistic Worlds

Game as a Vehicle of Al

Infinite supply of fully labeled data

Controllable and replicable

Low cost per sample

Less safety and ethical concerns

Complicated dynamics with simple rules.

Game as a Vehicle of AI

Algorithm is slow and data-inefficient

Require a lot of resources.

Abstract game to real-world

Hard to benchmark the progress

Game as a Vehicle of Al

Game as a Vehicle of Al

Better Environment

ELF: Extensive Lightweight and Flexible Framework (Yuandong Tian et al, NIPS17)

House3D: An interactive 3D environment for navigation (Yi Wu, Georgia Gkioxari, Yuxin Wu, Yuandong Tian)

Better Algorithm/System

DarkForest Go Engine (Y. Tian, Y. Zhu, ICLR16)

Doom Al (Yuxin Wu, Y. Tian, ICLR17)

MiniRTS (Y. Tian, Q. Gong, W. Shang)

ELF: Extensive, Lightweight and Flexible Framework for Game Research

Yuandong Tian

Qucheng Gong

Wenling Shang

Yuxin Wu

Larry Zitnick

Facebook AI Research

Reinforcement Learning: Ideal and Reality

[R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction]

Reinforcement Learning: Ideal and Reality

Design Choices: CPU, GPU? Simulation, Replays Concurrency

[R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction]

ELF Characteristics

Extensive

Any games with C++ interfaces can be incorporated.

Lightweight

Fast. Mini-RTS (40K FPS per core) Minimal resource usage (1GPU+several CPUs) Fast training (half a day for a RTS game)

Flexible

Environment-Actor topology Parametrized game environments. Choice of different RL methods.

Lightweight

KFPS per CPU core for Pong (Atari)

Lightweight

KFPS per CPU core for Pong (Atari) 6 **1** core 2 cores 5 ■ 4 cores 8 cores 4 ■ 16 cores 3 OpenAI Gym 2 -ELF 0 64 threads 256 threads 128 threads 512 threads 1024 threads

Evaluation

Monte-Carlo Tree Search

Gorilla Game Model Actor Process : Game Experience Game Experience Optimizer Model Replay Optimizer Model Synchronization Buffer Optimizer Model IE

[Nair et al, Massively Parallel Methods for Deep Reinforcement Learning, ICML 2015]

Asynchronized Advantageous Actor-Critic (A3C)

[Mnih et al, Asynchronous Methods for Deep Reinforcement Learning, ICML 2016]

[Babaeizadeh et al, Reinforcement Learning through Asynchronous Advantage Actor-Critic on a GPU, ICLR 2017]

ELF: A unified framework

Off-policy training Deep Q-learning

ELF: A unified framework

Off-policy training Deep Q-learning

Open Source

https://github.com/facebookresearch/ELF
MiniRTS: A miniature RTS engine

Platform	Frame per second
ALE	6,000
Open Al Universe	60
Malmo	120
DeepMind Lab	287*/866**
VizDoom	7,000
TorchCraft	2,000
MiniRTS	40,000
	40,000

* Using CPU only

** Using CPUs and GPU

MiniRTS

Build workers and collect resources.

Resource

Contains 1000 minerals.

Build melee attacker and range attacker.

Build barracks and gather resource. Low speed in movement and low attack damage.

<u>o</u>

High HP, medium movement speed, short attack range, high attack damage.

Low HP, high movement speed, long attack range and medium attack damage.

(respecting fog of war)

Training Al

Using Internal Game data and Actor-Critic Models. Reward is only available once the game is over.

9 Discrete Strategic Actions

No.	Action name	Descriptions
1	IDLE	Do nothing
2	BUILD WORKER	If the base is idle, build a worker
3	BUILD BARRACK	Move a worker (gathering or idle) to an empty place and build a barrack.
4	BUILD MELEE ATTACKER	If we have an idle barrack, build an melee attacker.
5	BUILD RANGE ATTACKER	If we have an idle barrack, build a range attacker.
6	HIT AND RUN	If we have range attackers, move towards opponent base and attack. Take advantage of their long attack range and high movement speed to hit and run if enemy counter-attack.
7	ATTACK	All melee and range attackers attack the opponent's base.
8	ATTACK IN RANGE	All melee and range attackers attack enemies in sight.
9	ALL DEFEND	All troops attack enemy troops near the base and resource.

Rule-based Als

AI_SIMPLE Build 5 tanks and attack AI_HIT_AND_RUN Build 2 tanks and harass

MiniRTS trains with a single GPU and 6 CPUs in half a day.

Win rate against rule-based Al

Network Architecture

Win Rate (10K games)	SIMPLE (median)	SIMPLE (mean/std)	HIT_AND_RUN (median)	HIT_AND_RUN (mean/std)
ReLU	52.8	54.7(±4.2)	60.4	57.0(±6.8)
Leaky ReLU	59.8	61.0(±2.6)	60.2	60.3(±3.3)
ReLU + BN	61.0	64.4(±7.4)	55.6	57.5(±6.8)
Leaky ReLU + BN	72.2	68.4(±4.3)	65.5	63.6(±7.9)

Curriculum Training

Win Rate	Without curriculum training	With curriculum training		
AI_SIMPLE	66.0 (±2.4)	68.4 (±4.3)		
AI_HIT_AND_RUN	54.4 (±15.9)	63.6 (±7.9)		

First k decisions made by AI_SIMPLE then made by trained AI

 $k \sim \text{Uniform}[0, K]$ $K \propto \beta^{-\#\text{game_played}}$

Transfer Learning

Win Rate	AI_SIMPLE	Combined (50%SIMPLE+50% H&R)	
SIMPLE	68.4 (±4.3)	26.6(±7.6)	47.5(±5.1)
HIT_AND_RUN	34.6(±13.1)	63.6 (±7.9)	49.1(±10.5)
Combined	51.8(±10.6)	54.7(±11.2)	53.2(±8.5)

* repeat on 1000 games, each using 800 rollouts.

MCTS uses complete information and perfect dynamics

Recent Update

Method	Vanilla	Vanilla(hist=4)	RNN	BuildHistory	PrevSeen	Complete Info
Win rate	72.9±1.8	79.8±0.7	79.7±1.3	80.8 ± 1.7	$81.4{\pm}0.8$	81.7±0.7

Ongoing Work

Engineering

- Richer game scenarios for MiniRTS.
 - LUA scripting support
 - Multiple bases (Expand? Rush? Defending?)
 - More complicated units.
- Realistic action space
 - One command per unit

Research

- Model-based Reinforcement Learning
- Hierarchical RL
- Self-Play (Trained AI versus Trained AI)

LUA Interface for MiniRTS

- Easy to change game dynamics
 - Don't need to touch C++.
- Comparable speed to C++
 - 1.5x slower than compiled code.

```
q funcs = \{ \}
function g_funcs.attack(env, cmd)
     local target = env:unit(cmd.target)
     local u = env:self()
     if target:isdead() or not u:can_see(target) then
         -- c_print("Task finished!")
         return global.CMD_COMPLETE
     end
     local att_r = u:att_r()
     local in_range = env:dist_sqr(target:p()) <= att_r * att_r</pre>
     if u:cd_expired(global.CD_ATTACK) and in_range then
         -- print("Attacking .. ")
         -- Then we need to attack.
         if att r <= 1.0 then
             env:send_cmd_melee_attack(cmd.target, u:att())
         else
             env:send_cmd_emit_bullet(cmd.target, u:att())
         end
         env:cd_start(global.CD_ATTACK)
     else
         if not in_range then
             -- print("Moving towards target .. ")
             env:move_towards(target)
         end
    end
    -- print("Done with Attacking .. ")
```

RLPytorch

- A RL platform in PyTorch
- A3C in 30 lines.

```
for t in range(T - 2, -1, -1):
    # Forward pass
    curr = self.model_interface.forward("model", batch.hist(t))
```

```
# Compute the reward.
R = R * self.args.discount + batch["r"][t]
# If we see any terminal signal, do not backprop
for i, terminal in enumerate(batch["terminal"][t]):
    if terminal: R[t][i] = curr["V"].data[i]
```

```
# We need to set it beforehand.
self.policy_gradient_weights = R - curr["V"].data
```

```
# Compute policy gradient error:
errs = self._compute_policy_entropy_err(curr["pi"], batch["a"][t])
# Compute critic error
value_err = self.value_loss(curr["V"], Variable(R))
```

```
overall_err = value_err + errs["policy_err"]
overall_err += errs["entropy_err"] * self.args.entropy_ratio
overall_err.backward()
```


House3D: A rich and realistic 3D environment

Yi Wu

Georgia Gkioxari

Yuxin Wu

[Yi Wu et al, Building Generalizable Agents with a Realistic and Rich 3D Environment, ICLR 2018 submission]

SUNCG Dataset

SUNCG dataset, 45K scenes, all objects are fully labeled.

Multi-modality

Top-down map

Segmentation mask

RGB image

Depth

Architecture

Comparison

Environment		Realistic	Large-scale	Fast-speed	Customizable
Atari (Bellemare et al., 2013)				•	
OpenAI Universe (Shi et al., 2017)		•	•		•
Malmo (Johnson et al., 2016)	•		•	•	•
DeepMind Lab (Beattie et al., 2016)	•			•	•
VizDoom (Kempka et al., 2016)	•			•	•
AI2-THOR (Zhu et al., 2017)	•	•		•	
House3D	•	•	•	•	•

Successful Rate

(a) Training performances

(b) Generalization performances on the test set

Videos

DarkForest: Go engine

Yuandong Tian and Yan Zhu, ICLR 2016

- DCNN as a tree policy
 - Predict next k moves (rather than next move)
 - Trained on 170k KGS dataset/80k GoGoD, 57.1% accuracy.
 - KGS 3D without search (0.1s per move)
 - Release 3 month before AlphaGo, < 1% GPUs (from Aja Huang)

Yan Zhu

Our computer Go player: DarkForest

Name

Our/enemy liberties

Ko location

Our/enemy stones/empty place

Our/enemy stone history

Opponent rank

Feature used for DCNN

Pure DCNN

darkforest: Only use top-1 prediction, trained on KGS
darkfores1: Use top-3 prediction, trained on GoGoD
darkfores2: darkfores1 with fine-tuning.

	GnuGo (level 10)	Pachi 10k	Pachi 100k	Fuego 10k	Fuego 100k
Clark & Storkey (2015)	91.0	-	-	14.0	
Maddison et al. (2015)	97.2	47.4	11.0	23.3	12.5
darkforest	98.0 ± 1.0	71.5 ± 2.1	27.3 ± 3.0	84.5 ± 1.5	56.7 ± 2.5
darkfores1	99.7 ± 0.3	88.7 ± 2.1	59.0 ± 3.3	93.2 ± 1.5	78.0 ± 1.7
darkfores2	$ 100 \pm 0.0$	$egin{array}{c} 94.3 \pm 1.7 \end{array}$	$egin{array}{c} 72.6 \pm 1.9 \end{array}$	$egin{array}{c} 98.5\pm0.1 \end{array}$	$ \hspace{0.1cm} \mathbf{89.7 \pm 2.1} \hspace{0.1cm} $

Win rate between DCNN and open source engines.

Monte Carlo Tree Search

Aggregate win rates, and search towards the good nodes.

DCNN + MCTS

darkfmcts3: Top-3/5, 75k rollouts, ~12sec/move, KGS 5d

	darkforest+MCTS	darkfores1+MCTS	darkfores2+MCTS
Vs pure DCNN (1000rl/top-20)	84.8%	74.0%	62.8%
Vs pure DCNN (1000rl/top-5)	89.6%	76.4%	68.4%
Vs pure DCNN (1000rl/top-3)	91.6%	89.6%	79.2% 94.2%
Vs pure DCNN (5000rl/top-5)	96.8%	94.3%	82.3%
Vs Pachi 10k (pure DCNN baseline)	71.5%	88.7%	94.3%
Vs Pachi 10k (1000rl/top-20)	91.2% (+19.7%)	92.0% (+3.3%)	95.2% (+0.9%)
Vs Pachi 10k (1000rl/top-5)	88.4% (+16.9%)	94.4% (+5.7%)	97.6% (+3.3%)
Vs Pachi 10k (1000rl/top-3)	95.2% (+23.7%)	98.4% (+9.7%)	99.2% (+4.9%)
Vs Pachi 10k (5000/top-5)	98.4%	99.6%	100.0%

Win rate between DCNN + MCTS and open source engines.

DarkForest

- DCNN+MCTS
 - Use top3/5 moves from DCNN, 75k rollouts.
 - Stable KGS 5d. Open source. <u>https://github.com/facebookresearch/darkforestGo</u>
 - 3rd place on KGS January Tournaments
 - 2nd place in 9th UEC Computer Go Competition (Not this time ^(C))

DarkForest versus Koichi Kobayashi (9p)

Win Rate analysis (using DarkForest) (AlphaGo versus Lee Sedol)

New version of DarkForest on ELF platform

https://github.com/facebookresearch/ELF/tree/master/go

First Person Shooter (FPS) Game

Yuxin Wu, Yuandong Tian, ICLR 2017

Yuxin Wu

Play the game from the raw image!

Network Structure

Simple Frame Stacking is very useful (rather than Using LSTM)

Encourage actions leading to states with high-than-expected value. Encourage value function to converge to the true cumulative rewards. Keep the diversity of actions

Curriculum Training

FlatMap

Curriculum Training

	Class 0	Class 1	Class 2	Class 3	Class 4	Class 5	Class 6	Class 7
Speed	0.2	0.2	0.4	0.4	0.6	0.8	0.8	1.0
Health	40	40	40	60	60	60	80	100

FlatMap

VizDoom AI Competition 2016 (Track1)

We won the first place!

Rank	Bot	1	2	3	4	5	6	7	8	9	10	11	Total frags
1	F1	56	62	n/a	54	47	43	47	55	50	48	50	559
2	Arnold	36	34	42	36	36	45	36	39	n/a	33	36	413
3	CLYDE	37	n/a	38	32	37	30	46	42	33	24	44	393

Videos:

https://www.youtube.com/watch?v=94EPSjQH38Y https://www.youtube.com/watch?v=Qv4esGWOg7w&t=394s

Visualization of Value functions

Best 4 frames (agent is about to shoot the enemy)

Worst 4 frames (agent missed the shoot and is out of ammo)

Thanks!