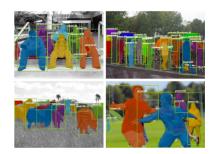
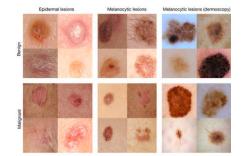
Building Scalable Framework and Environment of Reinforcement Learning

Yuandong Tian Facebook AI Research

Al works in a lot of situations



Object Recognition



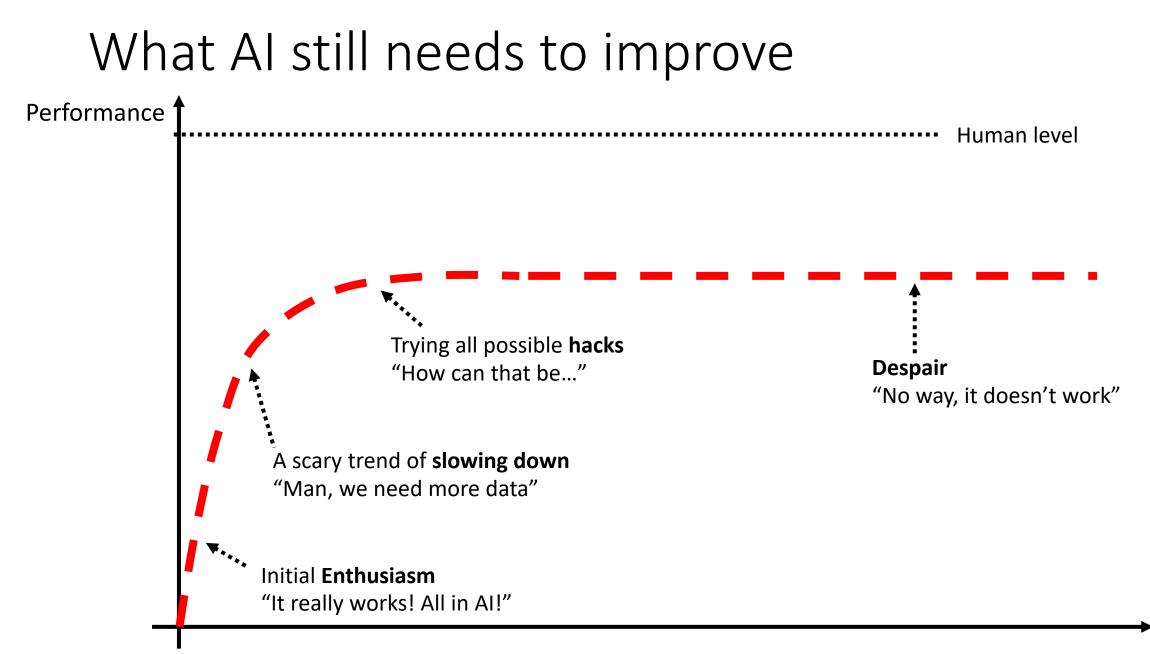
Medical

Translation

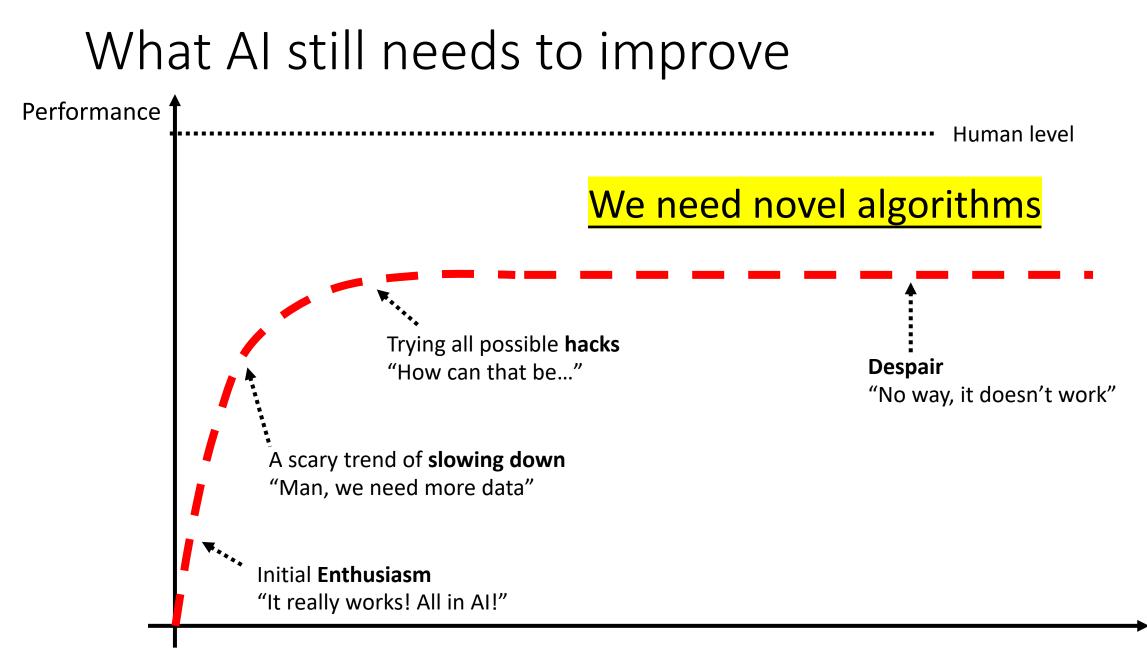
Personalization

Surveillance

Speech Recognition



[•] Efforts



⁻ Efforts

What AI still needs to improve

Question Answering

ChatBot

Common Sense

Autonomous Driving

Home Robotics

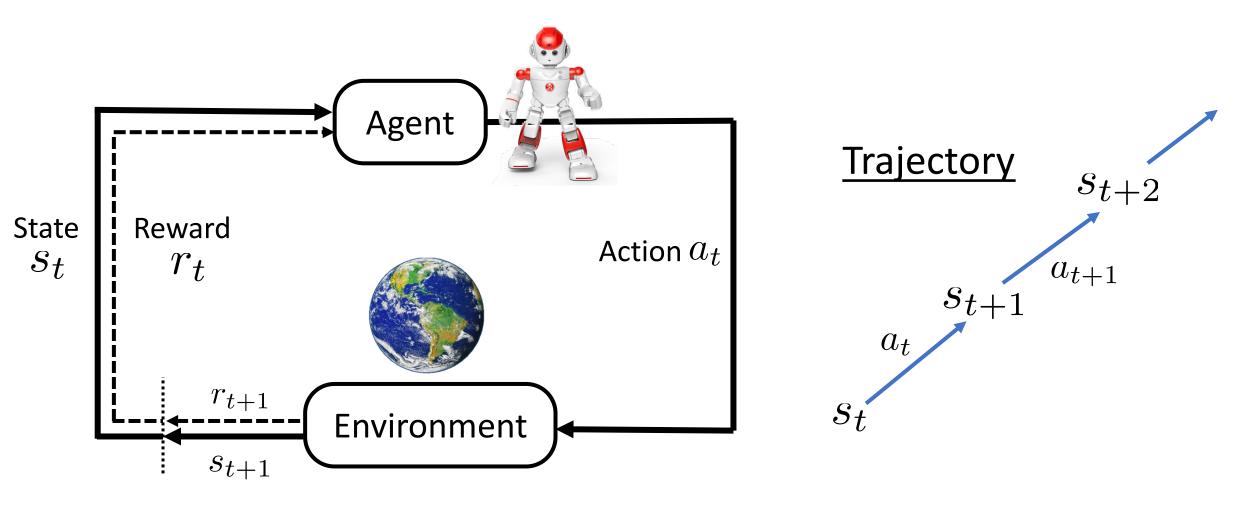
Few supervised data Complicated environments Lots of Corner cases.

Program Induction

Text Generation

High-order Reasoning

Reinforcement Learning



[R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction]

Supervised Learning v.s Reinforcement Learning

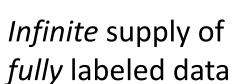
Supervised learning

The boss decides what you will learn You work hard to get them right

Reinforcement learning

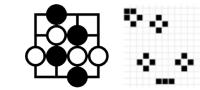
Explore the space to find a good solution You decide what data you want to learn

> More data hungry More computational resources



Controllable and replicable

Low cost per sample



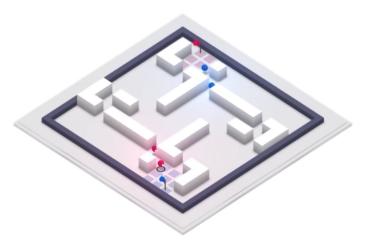
Complicated dynamics with simple rules.

Faster than real-time

Less safety and ethical concerns

Go

Shogi

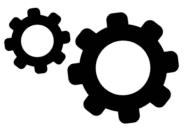


StarCraft II

Dota 2

Chess

Quake 3



Need good simulator

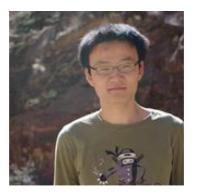
Require a lot of data/resources.

Applications?

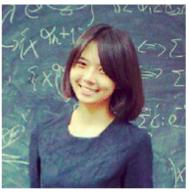
Sim2real issue

ELF: Extensive, Lightweight and Flexible Framework for Game Research

Yuandong Tian



Qucheng Gong



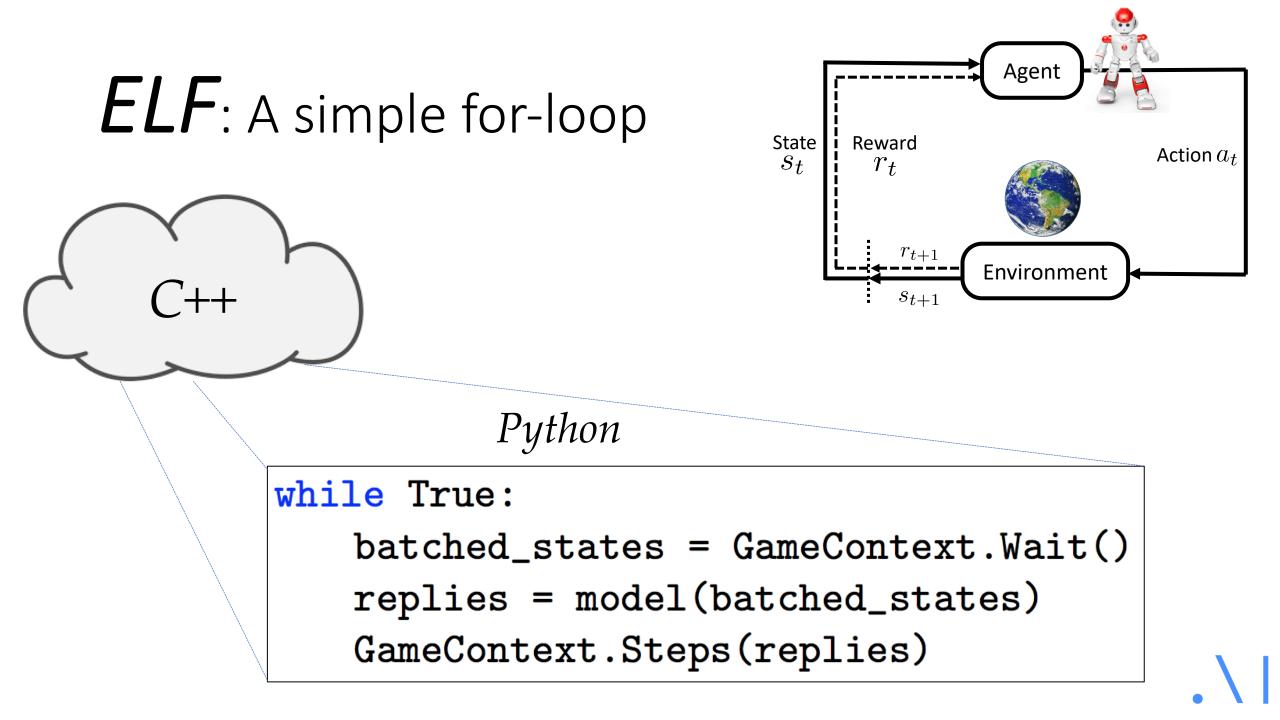
Wenling Shang

Yuxin Wu

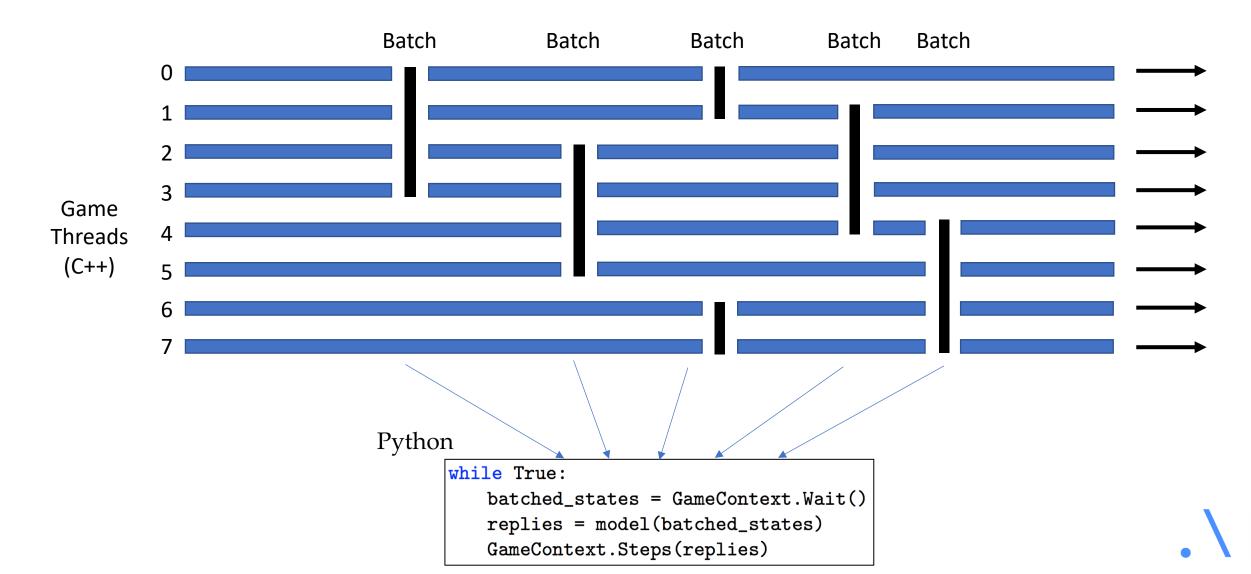
Larry Zitnick

https://github.com/facebookresearch/ELF

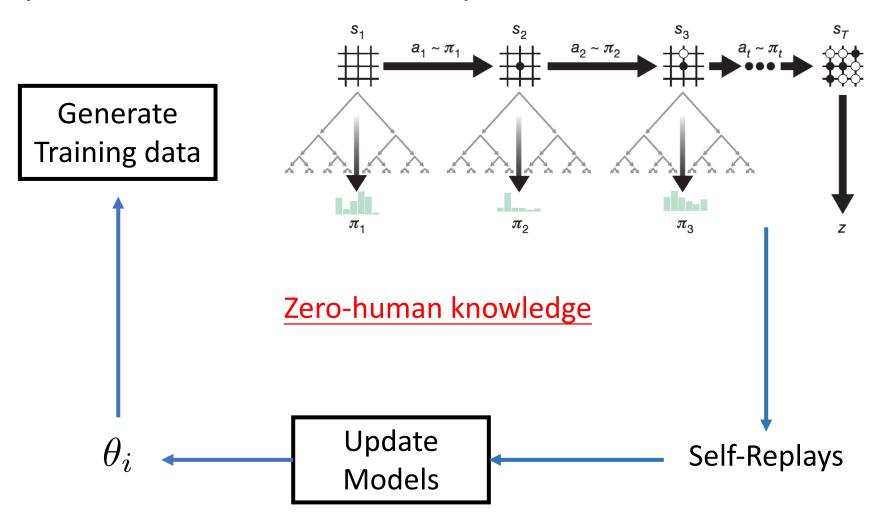
[Y. Tian et al, ELF: An Extensive, Lightweight and Flexible Research Platform for Real-time Strategy Games, NIPS 2017]



How ELF works



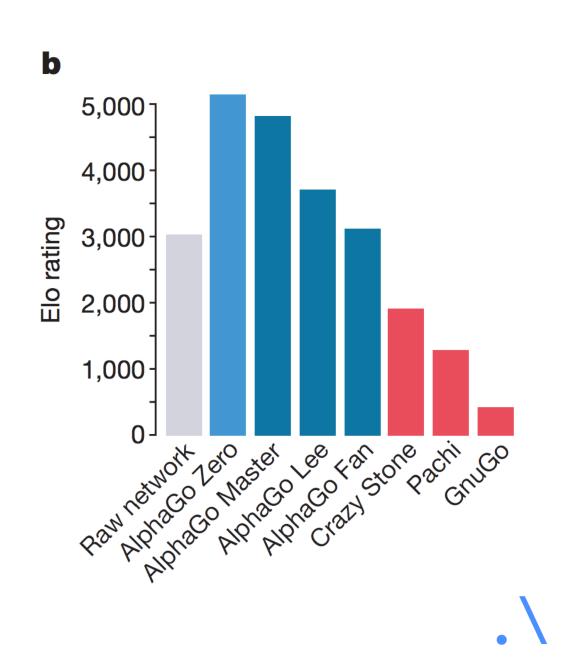
Reimplementation of AlphaGo Zero



[Silver et al, Mastering the game of Go without human knowledge, Nature 2017]

AlphaGo Zero Strength

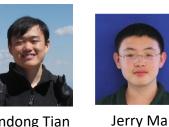
- 3 days version
 - 4.9M Games, 1600 rollouts/move
 - 20 block ResNet
 - Defeat AlphaGo Lee.
- 40 days version
 - 29M Games, 1600 rollouts/move
 - 40 blocks ResNet.
 - Defeat AlphaGo Master by 89:11



Demystifying AlphaGoZero/AlphaZero

- Amazing performance but no code available.
 - Huge computational cost (15.5 years to generate 4.9M selfplays with 1 GPU)
 - Sophisticated (distributed) systems.
- Lack of ablation analysis
 - What factor is critical for the performance?
 - Is the algorithm robust to random initialization and changes of hyper parameters?
 - How the ladder issue is solved?
- Lots of mysteries
 - Is the proposed algorithm really universal?
 - Is the bot almighty? Is there any weakness in the trained bot?

ELF OpenGo





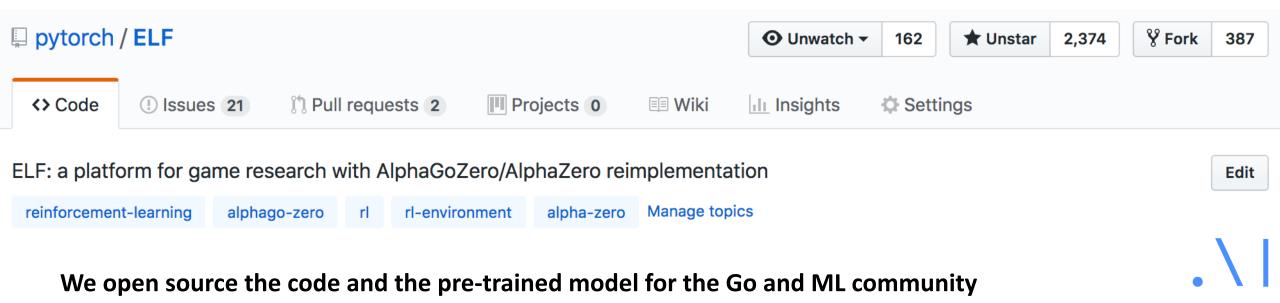
Yuandong Tian

Qucheng Gong Shubho Sengupta

Zhuoyuan Chen James Pinkerton

Larry Zitnick

- System can be trained with 2000 GPUs in 2 weeks (20 block version)
- Superhuman performance against professional players and strong bots.
- Abundant ablation analysis
- Decoupled design, code reusable for other games.



ELF OpenGo Performance

Vs top professional players

Name (rank)	ELO (world rank)	Result		
Kim Ji-seok	3590 (#3)	5-0		
Shin Jin-seo	3570 (#5)	5-0		
Park Yeonghun	3481 (#23)	5-0		
Choi Cheolhan	3466 (#30)	5-0		

Single GPU, 80k rollouts, 50 seconds Offer unlimited thinking time for the players

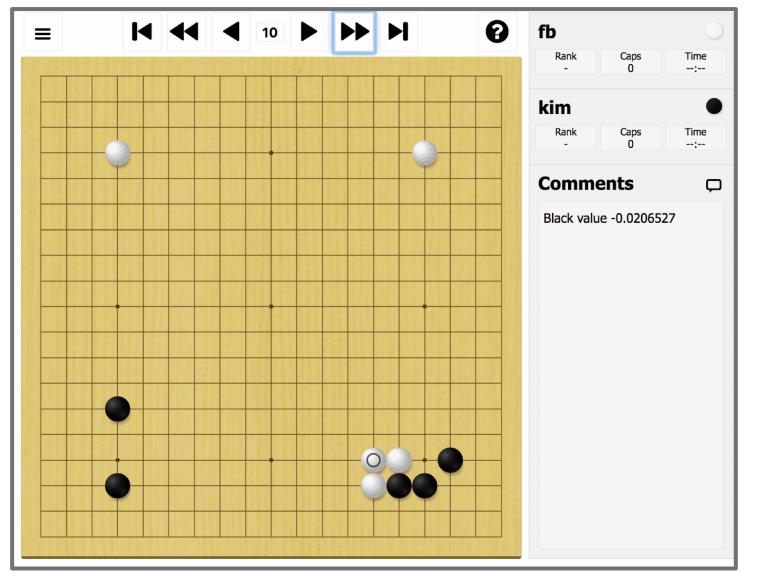
Vs professional players

Single GPU, 2k rollouts, 27-0 against Taiwanese pros.

Vs strong bot (LeelaZero)

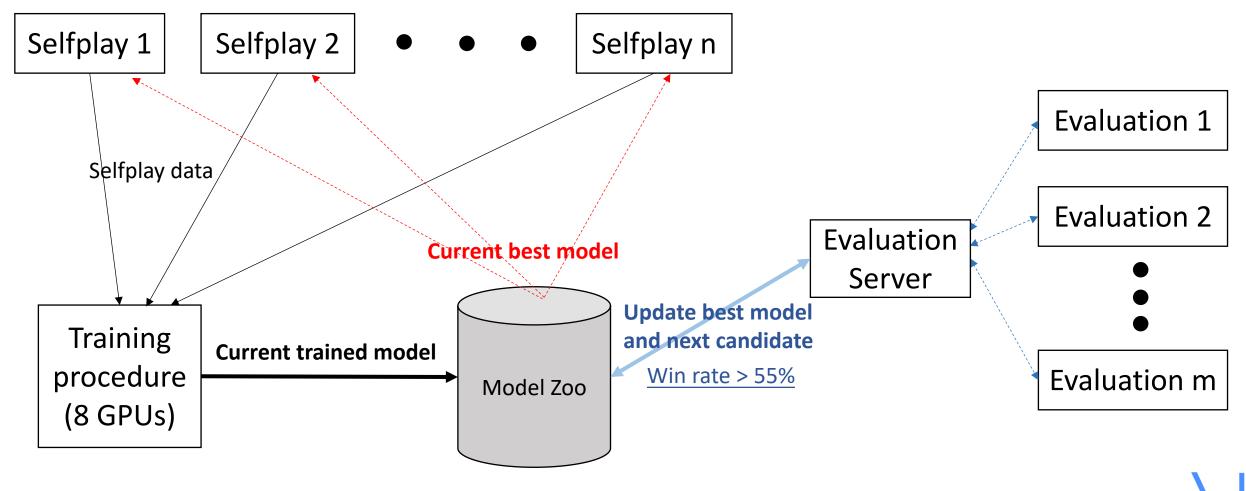
[158603eb, 192x15, Apr. 25, 2018]: 980 wins, 18 losses (98.2%)

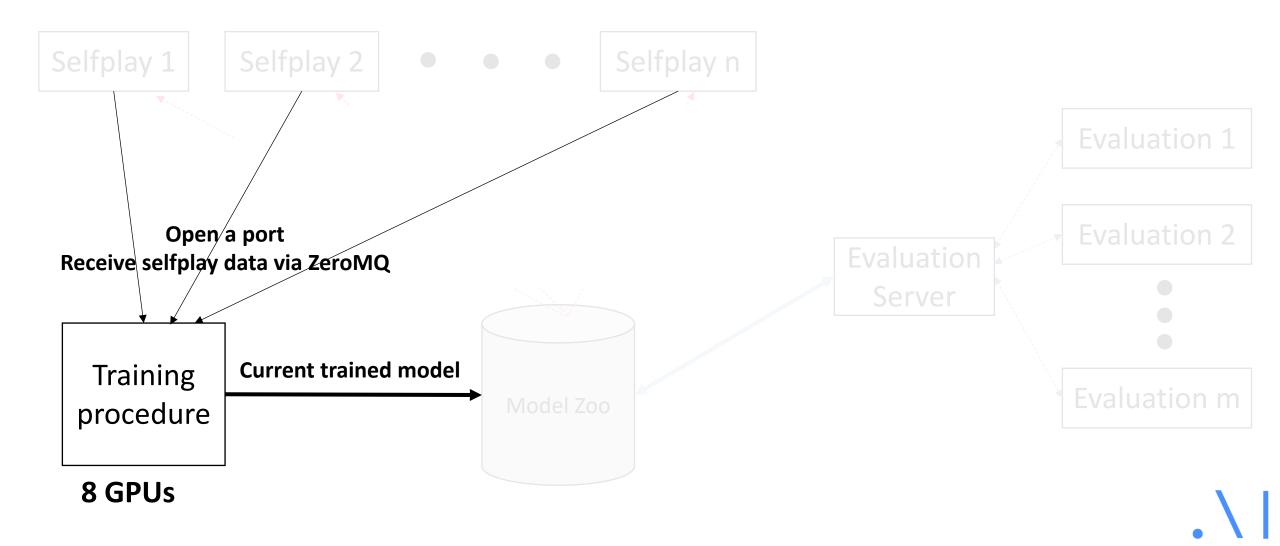
ELF OpenGo Sample Game

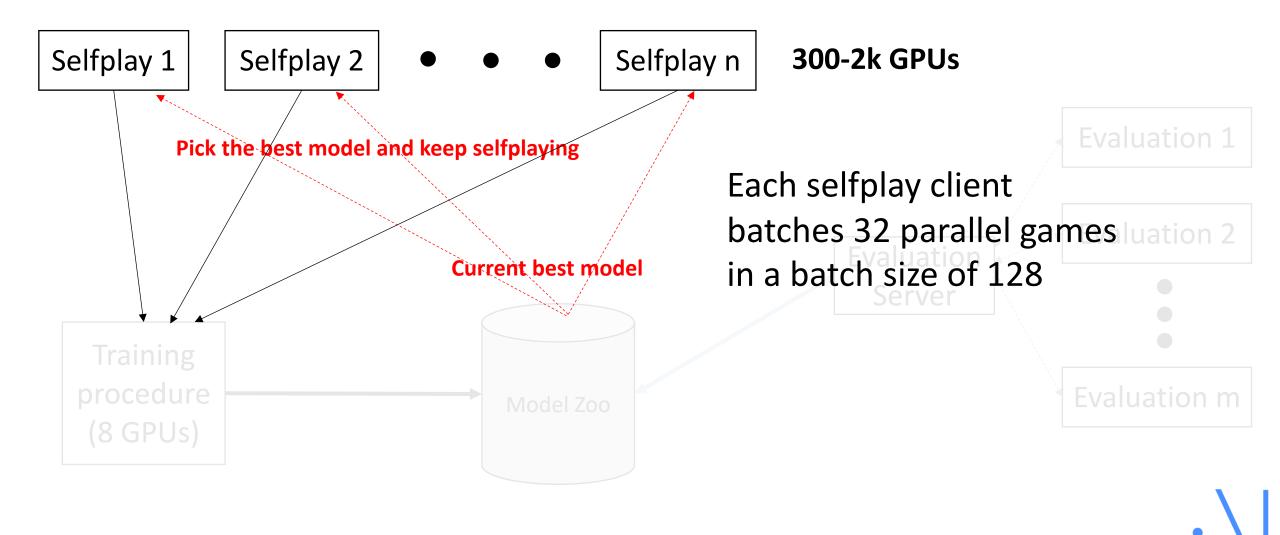


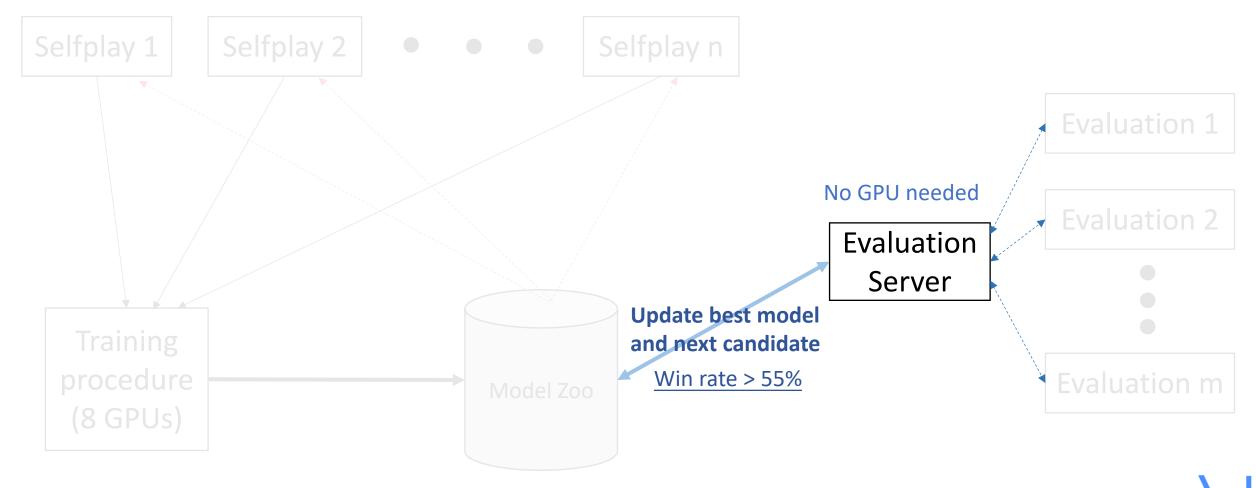
.\|

Distributed ELF (version 1)

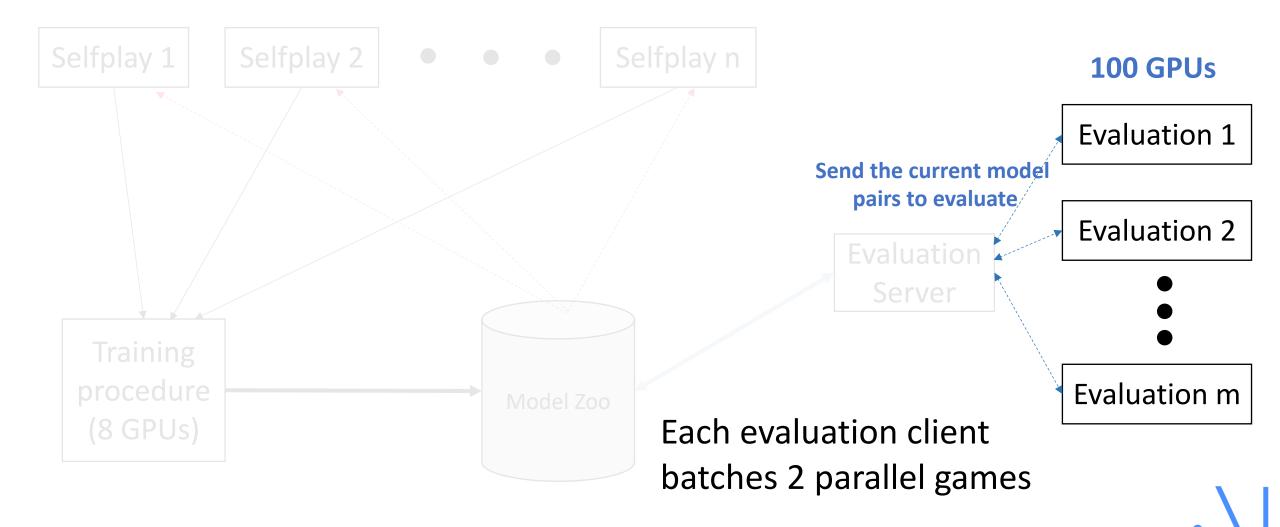




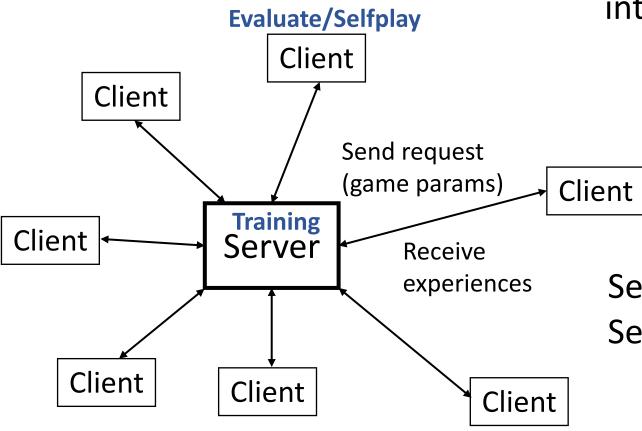




. \ |



Distributed ELF (v2)



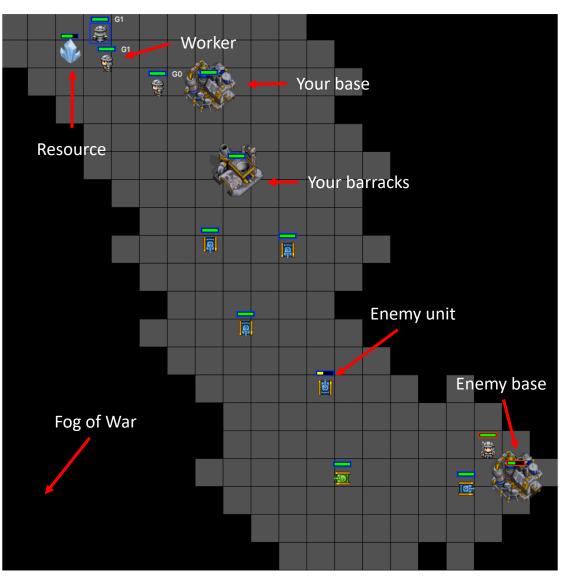
Putting AlphaGoZero and AlphaZero into the same framework

AlphaGoZero (more synchronization) AlphaZero (less synchronization)

Server controls synchronization Server also does training.

. \

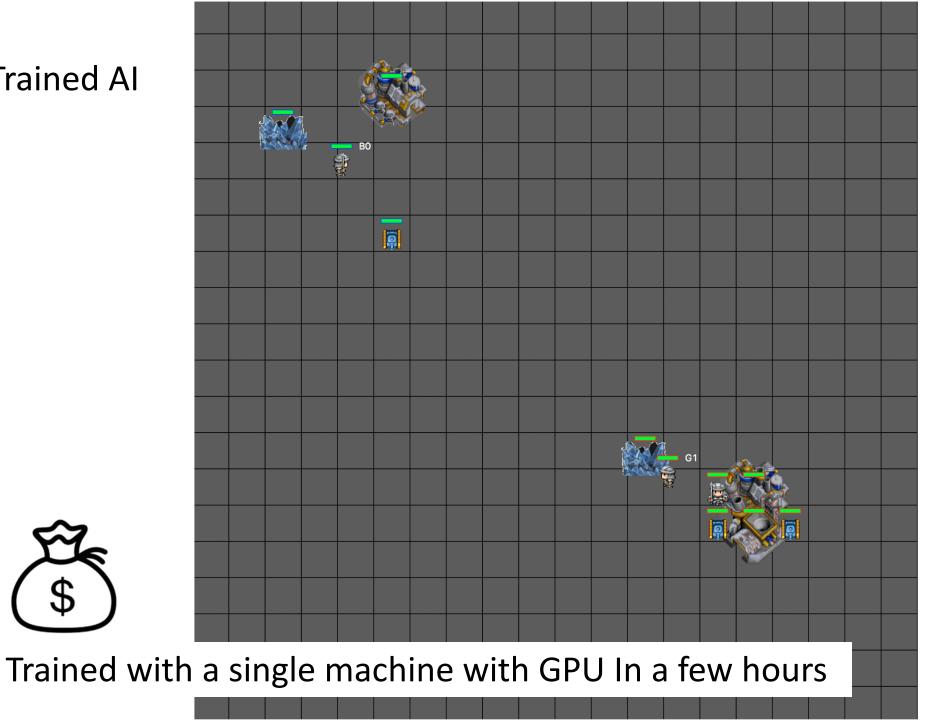
MiniRTS: A miniature RTS engine



Platform	Frame per second
ALE	6,000
Open Al Universe	60
Malmo	120
DeepMind Lab	287*/866**
VizDoom	7,000
TorchCraft	2,000
MiniRTS	40,000
* Using CPU only **	Using CPUs and GPU

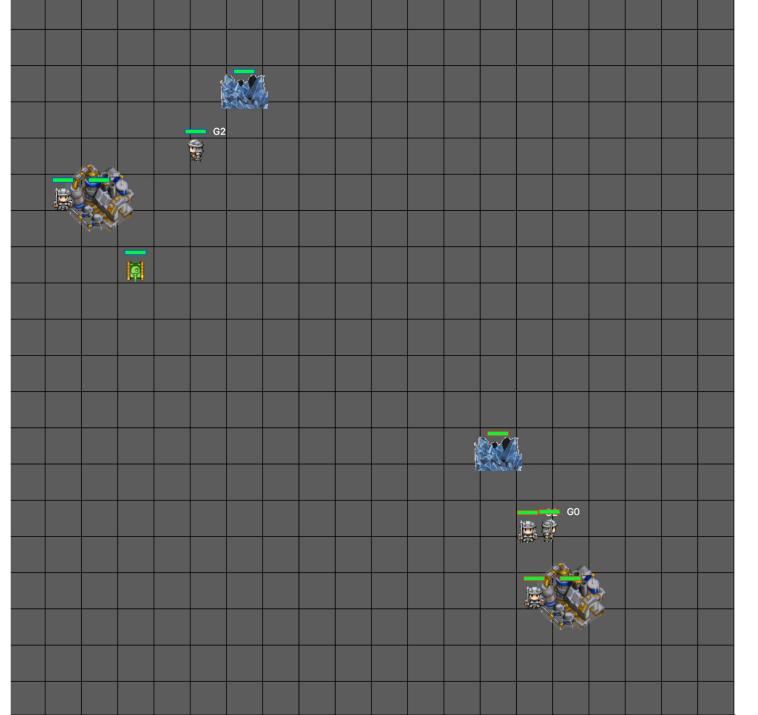
9 Discrete Strategic Actions

No.	Action name	Descriptions
1	IDLE	Do nothing
2	BUILD WORKER	If the base is idle, build a worker
3	BUILD BARRACK	Move a worker (gathering or idle) to an empty place and build a barrack.
4	BUILD MELEE ATTACKER	If we have an idle barrack, build an melee attacker.
5	BUILD RANGE ATTACKER	If we have an idle barrack, build a range attacker.
6	HIT AND RUN	If we have range attackers, move towards opponent base and attack. Take advantage of their long attack range and high movement speed to hit and run if enemy counter-attack.
7	ATTACK	All melee and range attackers attack the opponent's base.
8	ATTACK IN RANGE	All melee and range attackers attack enemies in sight.
9	ALL DEFEND	All troops attack enemy troops near the base and resource.



AI_SIMPLE

Trained AI



AI_SIMPLE

First Person Shooter (FPS) Game

Yuxin Wu, Yuandong Tian, ICLR 2017

Yuxin Wu

Yuandong Tian

Play the game from the raw image!

VizDoom AI Competition 2016 (Track1)

We won the first place!

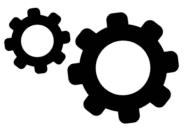
Rank	Bot	1	2	3	4	5	6	7	8	9	10	11	Total frags
1	F1	56	62	n/a	54	47	43	47	55	50	48	50	559
2	Arnold	36	34	42	36	36	45	36	39	n/a	33	36	413
3	CLYDE	37	n/a	38	32	37	30	46	42	33	24	44	393

Videos:

https://www.youtube.com/watch?v=94EPSjQH38Y https://www.youtube.com/watch?v=Qv4esGWOg7w&t=394s

.\|

What's Beyond Game for RL?



Need good simulator

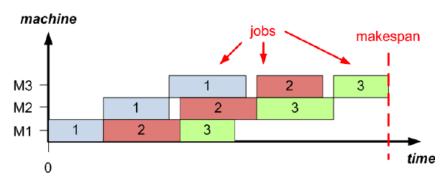
Require a lot of data/resources.

Applications?

Sim2real issue

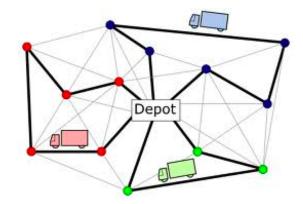
RL for optimization

Travel Salesman Problem

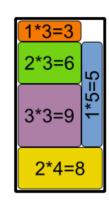


APPPa

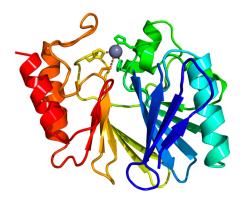
Job Scheduling



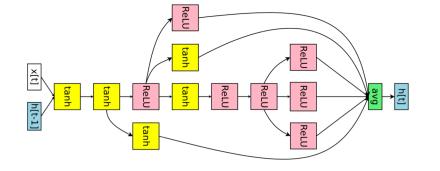
Vehicle Routing



Bin Packing



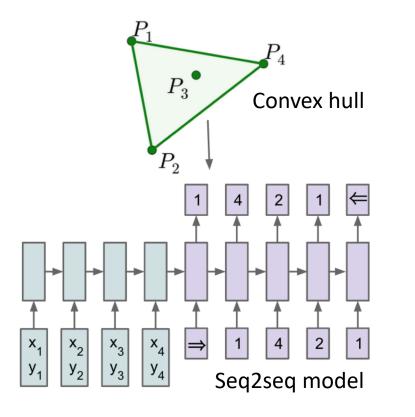
Protein Folding



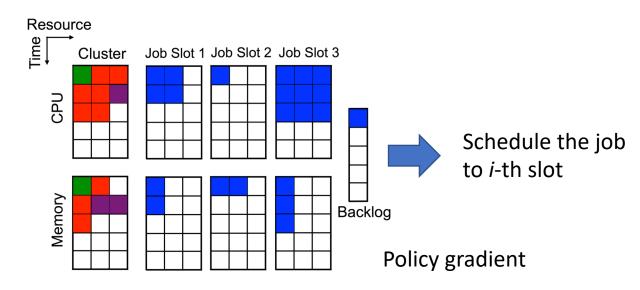
Model-Search

Non-differentiability

• Direct predicting combinatorial solutions.

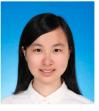


[O. Vinyals. et al, Pointer Networks, NIPS 2015]



[H. Mao et al, Resource Management with Deep Reinforcement Learning, ACM Workshop on Hot Topics in Networks, 2016]

Local Rewriting Framework

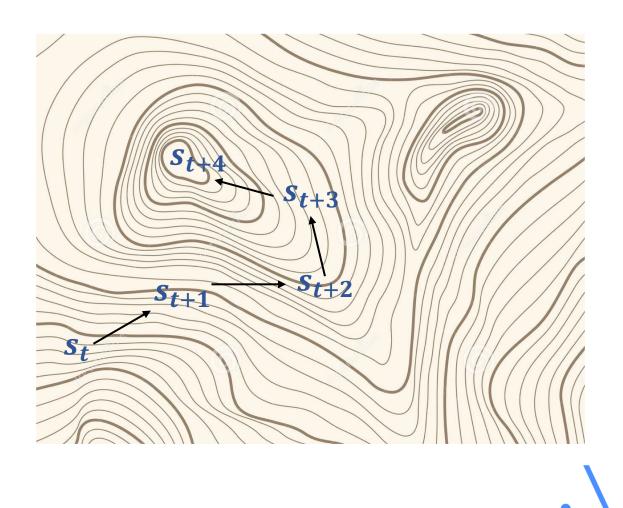


Xinyun Chen Yuandong Tian

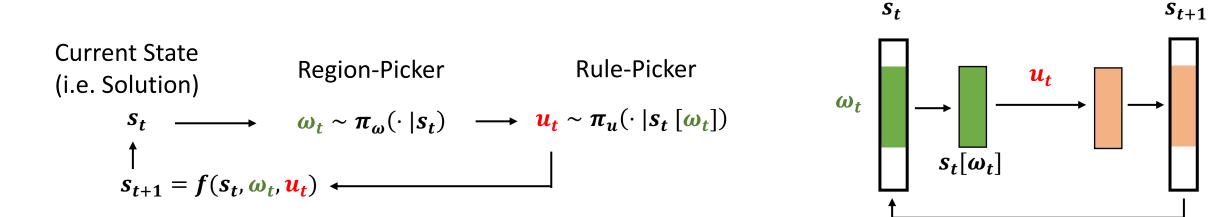
A learned "gradient descent" that

starts from a feasible solution iteratively converges to a good solution

How to learn it?



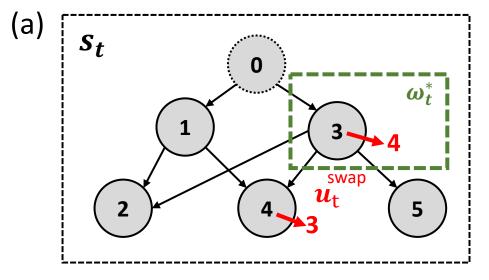
Local Rewriting Framework



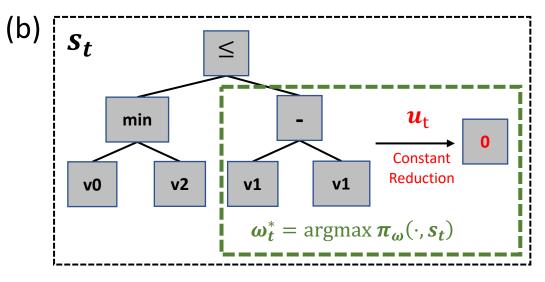
Q-Actor-Critic Training of two policies $\pi_{\omega}(\cdot | s_t)$ and $\pi_u(\cdot | s_t [\omega_t])$

$$\boldsymbol{\pi}_{\boldsymbol{\omega}}(\cdot | \boldsymbol{s}_{\boldsymbol{t}}): \text{Q-learning with soft policy } \boldsymbol{\pi}_{\boldsymbol{\omega}}(\omega_t | s_t; \theta) = \frac{\exp(Q(s_t, \omega_t; \theta))}{\sum_{\omega_t} \exp(Q(s_t, \omega_t; \theta))}$$
$$\boldsymbol{\pi}_{\boldsymbol{u}}(\cdot | \boldsymbol{s}_{\boldsymbol{t}} [\boldsymbol{\omega}_{\boldsymbol{t}}]): \text{Actor-Critic with learned } \boldsymbol{Q} \quad L_u(\phi) = -\sum_{t=0}^{T-1} \Delta(s_t, (\omega_t, u_t)) \log \boldsymbol{\pi}_u(u_t | s_t[\omega_t]; \phi)$$

Applications



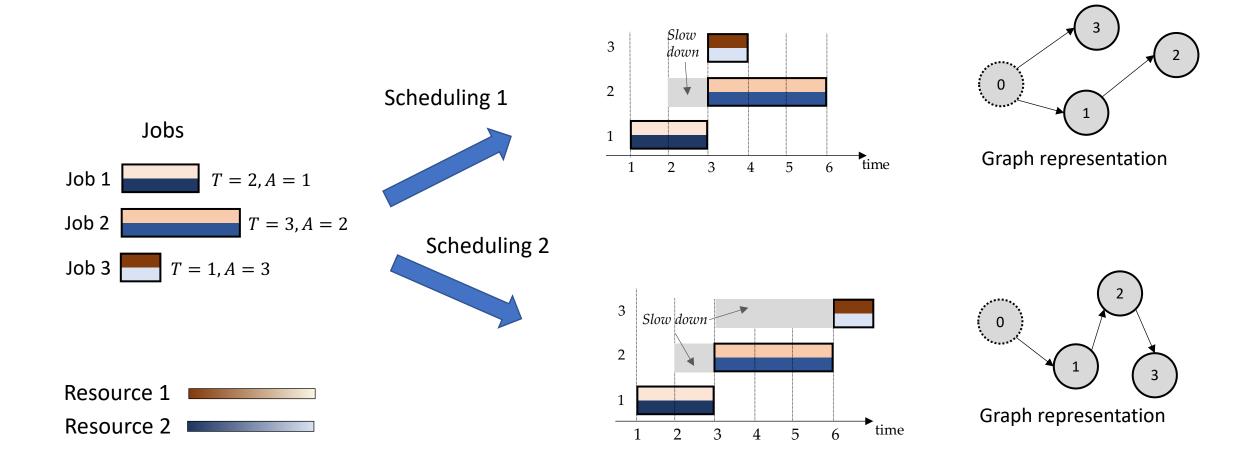
Online Job Scheduling



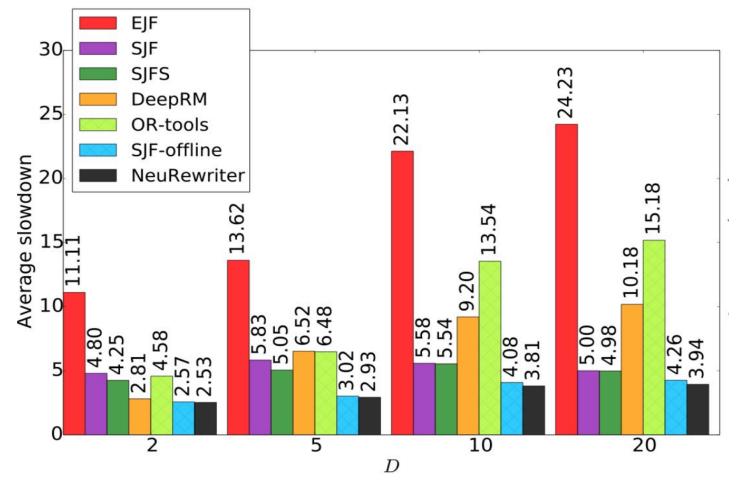
Expression Simplification

.\

Online Job Scheduling



Online Job Scheduling



Baselines:

Earliest Job First (EJF) Shortest Job First (SJF) Shortest First Search (SJFS) DeepRM

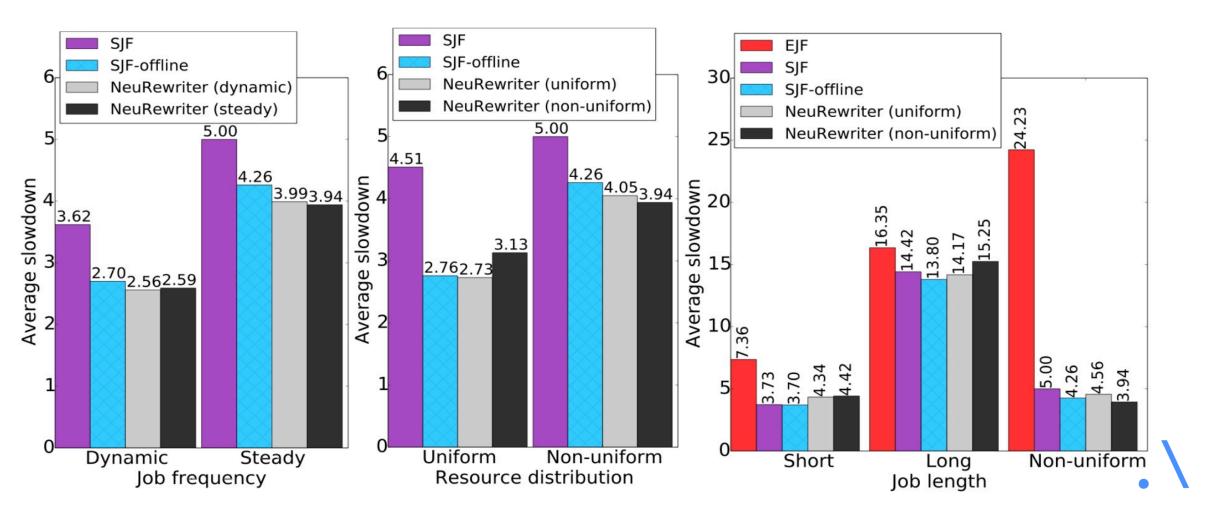
Offline baselines:

Google OR-tools (OR-tools) SJF-offline

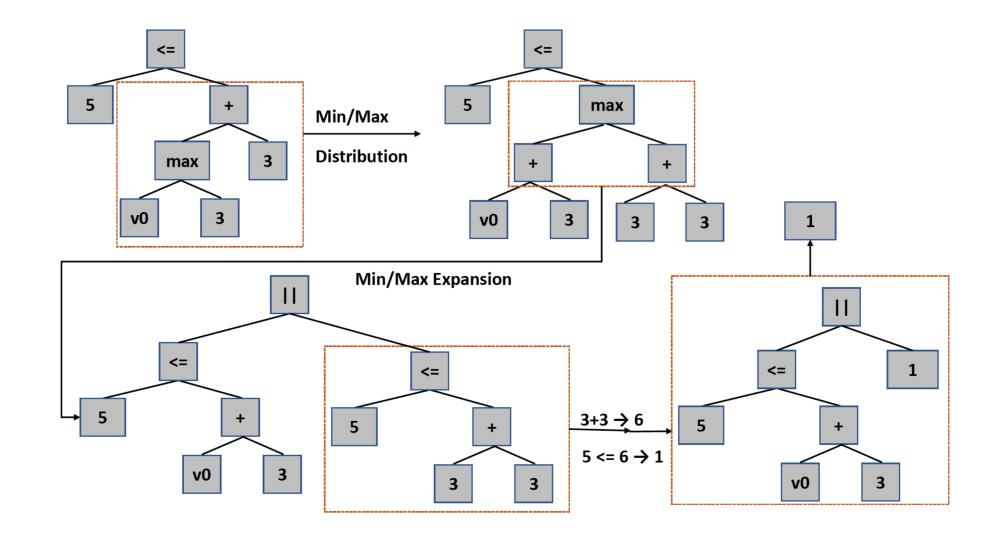
D: Number of resources

Online Job Scheduling: Ablation Study

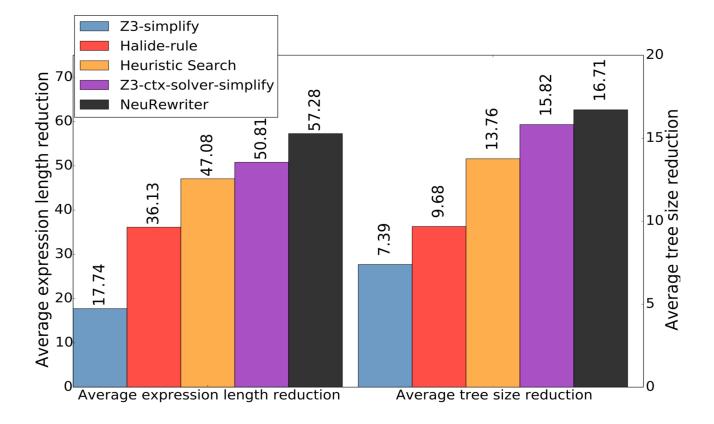
The learned model can generalize to different job distributions.



Expression Simplification



Expression Simplification



Baselines:

Z3-simplify Z3-ctx-solver-simplify Heuristic Search Halide rules

Z3 is a state-of-the-art theorem prover.

Expression Simplification

Transfer learning still works well.

Halide-rule Z3-ctx-solver-simplify NeuRewriter (Train) NeuRewriter (Train < 100) Average expression length reduction 100 NeuRewriter (*Train* < 50) 79.08 NeuRewriter (*Train* < 30) 72.95 69.79 69.93 NeuRewriter (*Train* < 20) 80 65.09 64.44 57.28 54.35 51.49 50.81 50.74 50.55 60 45.25 36.13 40 20 $Test_{>100}$ Test

A model trained with expression length ≤ 50 has good performance on test set with expression length ≥ 100 , and better than Z3

Navigation:

Yi Wu

Yuxin Wu

Georgia Gkioxari Yuandong Tian

TH LINEN Target How to plan the trajectory in **unknown** environments?

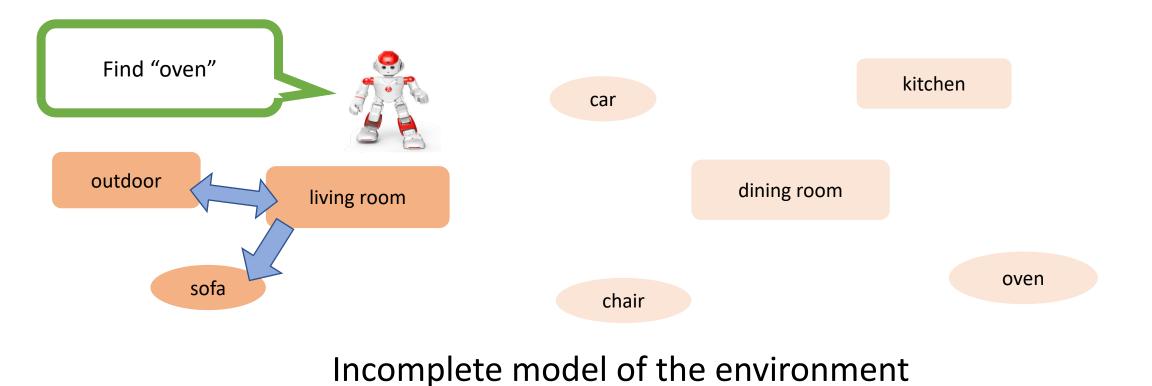
Depth

SUNCG dataset, 45K scenes, all objects are fully labeled.

https://github.com/facebookresearch/House3D

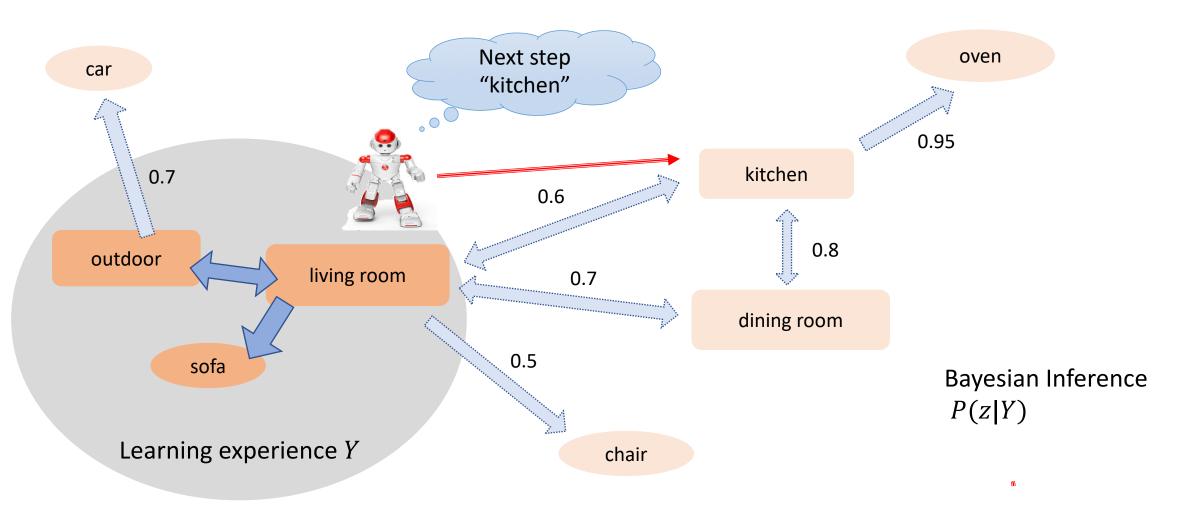
Top-down map

Build a semantic model

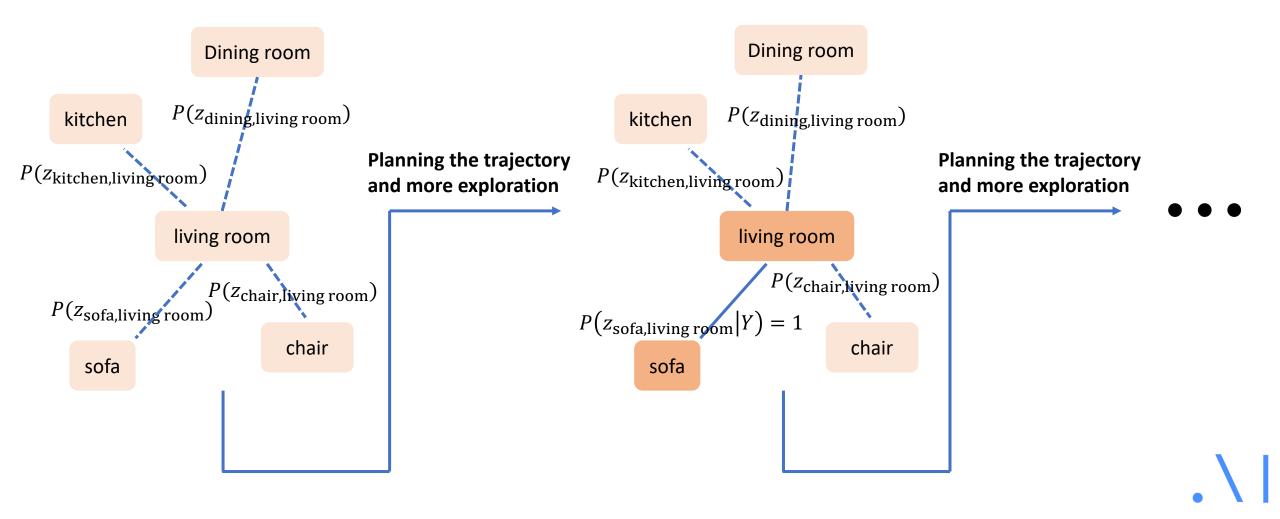


[Y. Wu et al, Learning and Planning with a Semantic Model, submitted to ICLR 2019]

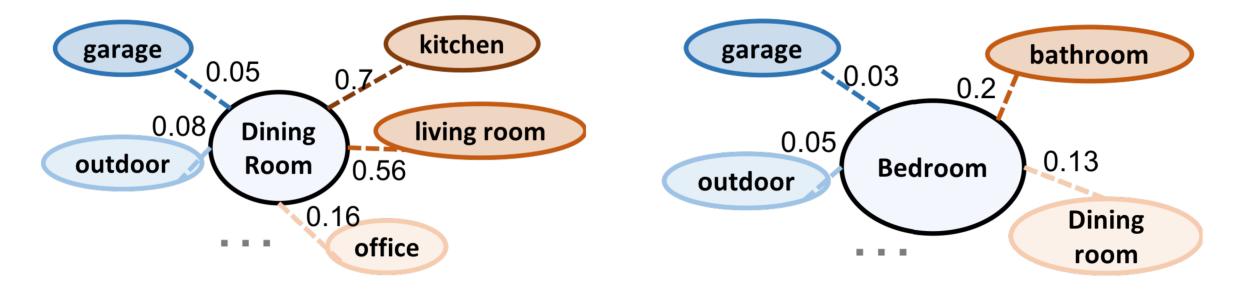
Build a semantic model

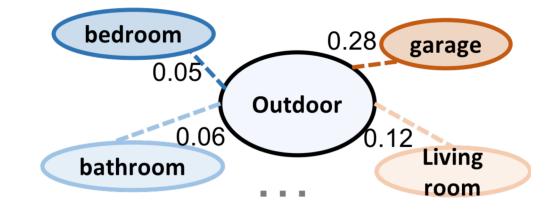


LEAPS LEArning and Planning with a Semantic model

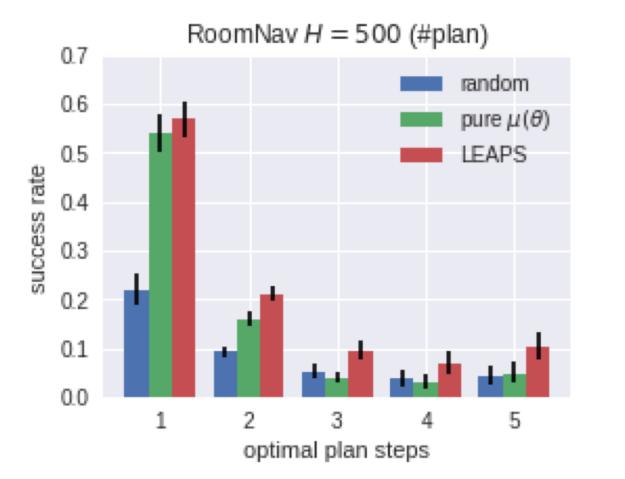


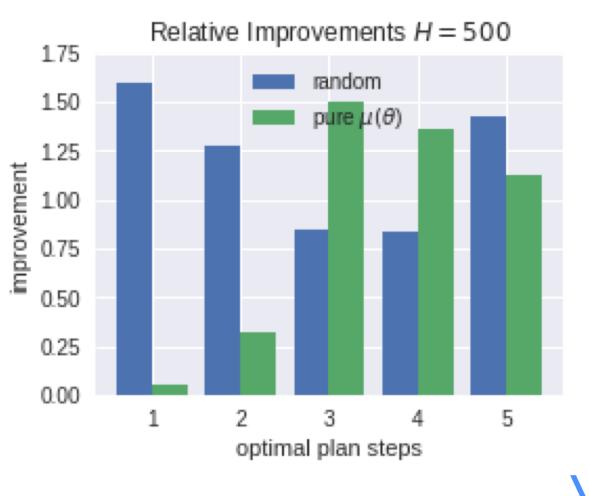
Learning the Prior between Different Rooms



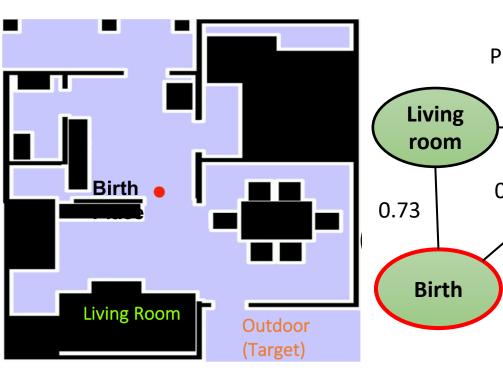


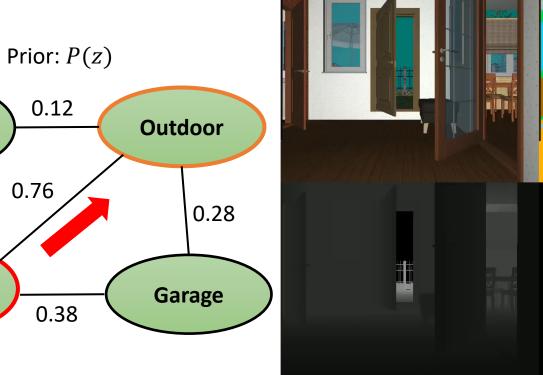
Test Performance on ConceptNav



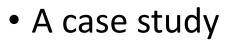


• Go to "outdoor"

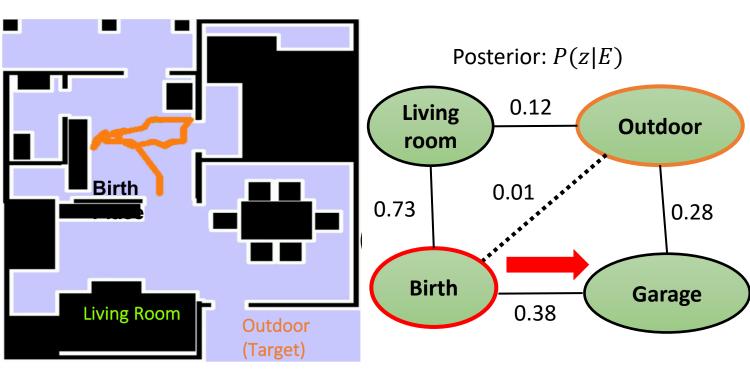


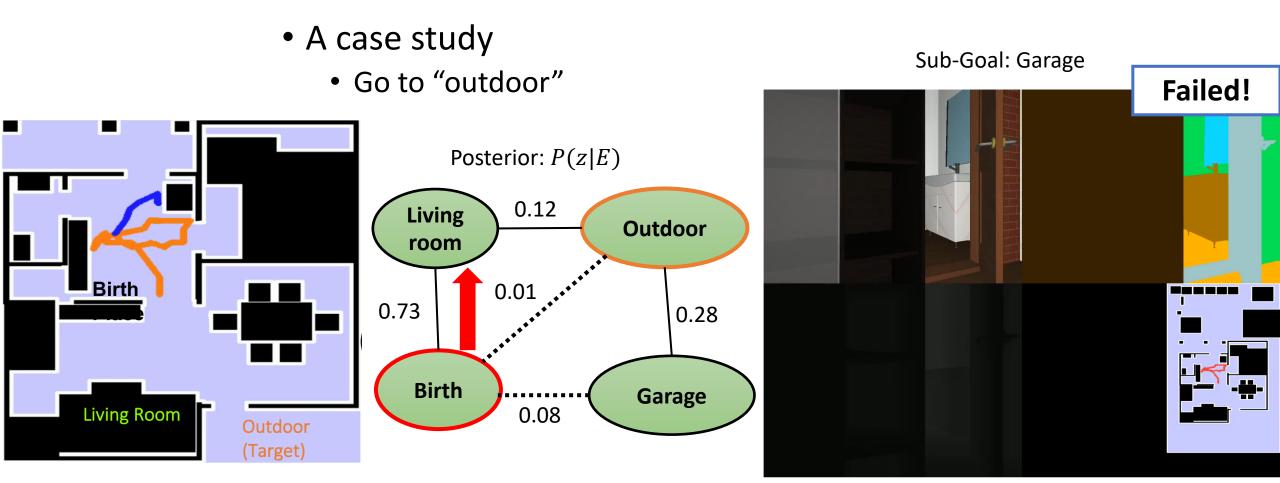


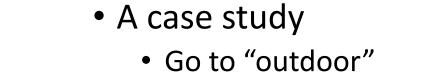
Sub-Goal: Outdoor

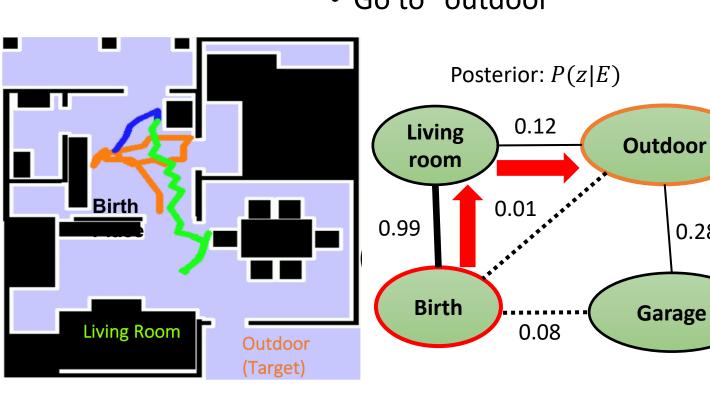


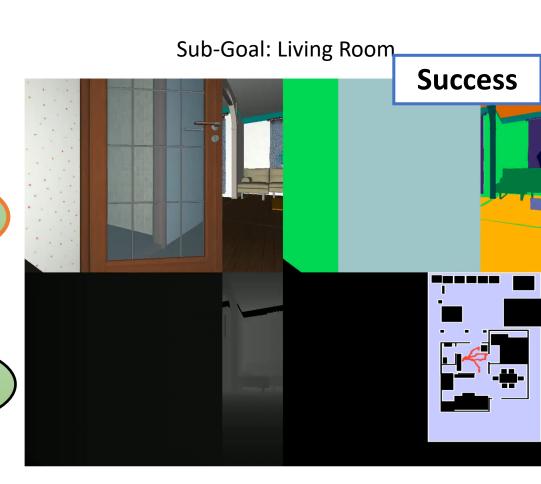
• Go to "outdoor"







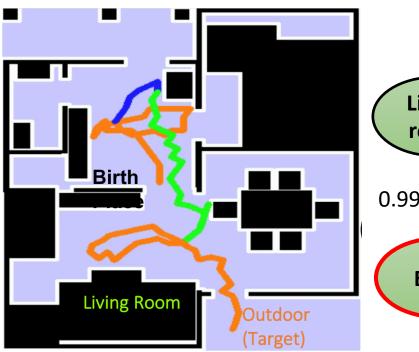


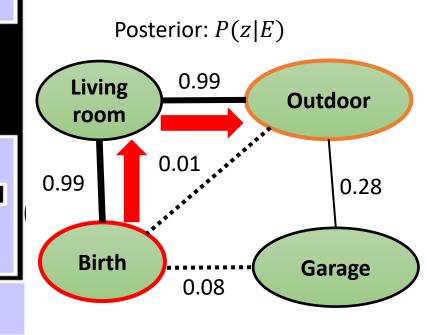


0.28

Garage

• Go to "outdoor"





opt. plan-steps	1	2	3	4	5	overall
Horizon $H = 300$						
random	20.5 / 15.9	6.9 / 16.7	3.8 / 10.7	1.6 / 4.2	3.0 / 8.8	7.2 / 13.6
pure $\mu(\theta)$	49.4 / 47.6	11.8 / 27.6	2.0 / 4.8	2.6 / 10.8	4.2 / 13.2	13.1 / 22.9
aug. $\mu_S(heta_s)$	47.8 / 45.3	11.4 / 23.1	3.0 / 7.8	3.4 / 8.1	4.4 / 11.2	13.0 / 20.5
RNN control.	52.7 / 45.2	13.6 / 23.6	3.4 / 9.6	3.4 / 10.2	6.0 / 17.6	14.9 / 21.9
LEAPS	53.4 / 58.4	15.6 / 31.5	4.5 / 12.5	3.6 / 6.6	7.0 / 18.0	16.4 / 27.9
Horizon $H = 500$						
random	21.9 / 16.9	9.3 / 18.3	5.2 / 12.1	3.6 / 6.1	4.2 / 9.9	9.1 / 15.1
pure $\mu(\theta)$	54.0 / 57.5	15.9 / 25.6	3.8 / 7.7	2.8 / 6.4	4.8 / 8.6	16.2 / 22.9
aug. $\mu_S(\theta_s)$	54.1 / 51.8	15.5 / 26.5	4.6 / 8.2	3.0 / 11.8	4.6 / 12.5	16.1 / 23.5
RNN control.	57.4 / 43.8	20.2 / 28.0	7.2 / 14.6	4.2 / 8.0	9.0 / 16.0	19.9 / 24.6
LEAPS	57.2 / 61.9	21.5 / 34.4	10.0 / 14.8	6.4 / 11.6	12.0 / 23.5	21.6 / 31.1
Horizon $H = 1000$						
random	24.3 / 17.6	13.5 / 20.3	9.1 / 14.3	8.0/9.3	7.0 / 11.5	13.0 / 17.0
pure $\mu(\theta)$	60.8 / 58.4	23.3 / 29.5	7.6 / 8.8	8.2 / 12.9	11.0 / 17.2	22.5 / 26.5
aug. $\mu_S(\theta_s)$	61.3 / 50.1	23.0 / 26.2	9.4 / 12.0	5.8/9.6	9.0 / 13.6	22.4 / 23.8
RNN control.	66.7 / 49.0	30.1 / 31.5	13.8 / 15.4	9.0 / 10.0	14.0 / 20.8	28.2 / 27.7
LEAPS	66.4 / 58.4	31.9 / 40.5	15.0 / 18.3	11.4 / 17.0	15.4 / 27.1	29.7 / 35.2

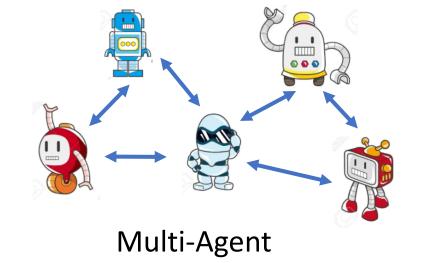
Future Directions

Admiral (General)

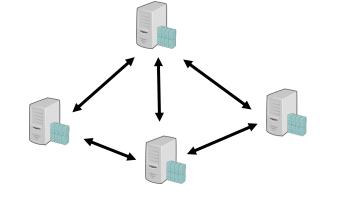
Captain

Lieutenant

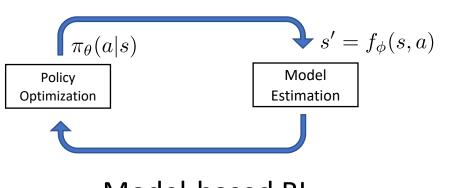
Hierarchical RL

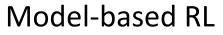


RL applications



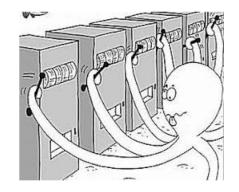
RL Systems



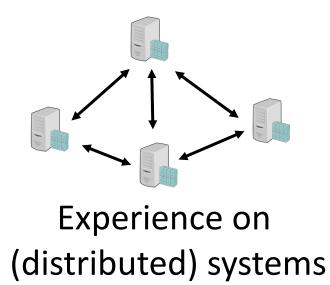


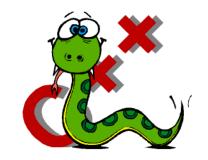
RL for Optimization

How to do well in Reinforcement Learning?



Parameter tuning skills





Strong coding skills

Thanks!