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Abstract—Given a graph query 𝑄 posed on a knowledge graph
𝐺, top-k graph querying is to find 𝑘 matches in 𝐺 with the highest
ranking score according to a ranking function. Fast top-k search
in knowledge graphs is challenging as both graph traversal and
similarity search are expensive. Conventional top-k graph search
is typically based on threshold algorithm (TA), which can no long
fit the demand in the new setting.

This work proposes STAR, a top-k knowledge graph search
framework. It has two components: (a) a fast top-k algorithm
for star queries, and (b) an assembling algorithm for general
graph queries. The assembling algorithm uses star query as
a building block and iteratively sweeps the star match lists
with a dynamically adjusted bound. For top-k star graph query
where an edge can be matched to a path with bounded length
𝑑, we develop a message passing algorithm, achieving time
complexity 𝑂(𝑑2∣𝐸∣ + 𝑚𝑑) and space complexity linear to 𝑑∣𝑉 ∣
(assuming the size of 𝑄 and 𝑘 is bounded by a constant), where
𝑚 is the maximum node degree in 𝐺. STAR can further be
leveraged to answer general graph queries by decomposing a
query to multiple star queries and joining their results later.
Learning-based techniques to optimize query decomposition are
also developed. We experimentally verify that STAR is 5-10 times
faster than the state-of-the-art TA-style graph search algorithm,
and 10-100 times faster than a belief propagation approach.

I. INTRODUCTION

Querying knowledge graphs is a challenging task. Due to
their complex schemas and varying information descriptions,
it is hard for users to formulate structured queries in SQL and
SPARQL. Instead, user-friendly query forms such as keyword
query, natural language query, exemplary query, and graph
query are more preferred. These query forms are related to
each other. For example, one can parse a natural language
question to a dependency graph, which can later be converted
to a graph query [1]. In this work, we target graph query and
use it as a vehicle to connect to other query forms.

The query task is as follows [1]–[3]: Given a knowledge
graph 𝐺, a scoring function 𝐹 , and a graph query 𝑄, top-k
subgraph search over 𝐺 returns 𝑘 answers with the highest
matching scores.

A common practice in top-k graph search [4]–[10] fol-
lows conventional top-k aggregation methods over relational
databases, e.g., threshold algorithm [11], to find top matches by
traversing sorted node/edge lists and checking if there are good
matches. Nevertheless, knowledge graph search often requires
approximate matches in terms of content and structure. This
new requirement, together with the sheer size of knowledge
graphs, introduces new challenges and opportunities.

(1) For each query, the matching scores of potential answers
are computed online. While it is possible to index keywords
in nodes and edges, it is too expensive to build indices for
complicated aggregation function like the one used in [2]
(see Eq. 2 in Section II). Using TA algorithms on sorted

node/edge lists is not going to quickly prune the search space
as nodes/edges with top scores might not be connected like a
subgraph similar to the query.

(2) Queries typically have inexact matches: A query edge could
have valid matches with paths of bounded length. Finding
such inexact matches is costly over big graphs. While indices
can be constructed to speedup searching, it often comes with
expensive preprocessing, e.g., 𝑂(∣𝑉 ∣3) for computing transitive
closure [4], [5]. This is no longer practical for big graphs.

(3) Query graphs are usually not big. As observed in [12], most
real-world SPARQL queries in RDF stores such as DBpedia
are star-like. It is more urgent to build a fast query engine for
simple structures first.
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Fig. 1: Top-k subgraph querying

Example 1: Consider graph query 𝑄 on a movie knowledge
graph, shown in Figure 1. It searches for movie makers who
worked with “Brad” and have won awards.

It is nontrivial to find the top answers. Each query node
and edge may correspond to an excessive number of possible
matches. For example, a node Brad may have matches with
any person whose first or last name is Brad. An edge
(movie maker,award) may match a path through an in-
termediate node movie. It is not efficient to enumerate all the
possible matches and then ranking them. □

To the best of our knowledge, we are among the first to
recognize the need of performing top-k search using sophisti-
cated ranking functions in large knowledge graphs. This paper
proposes STAR, a top-k graph query engine that copes with
the new challenges. In a nutshell, it develops search algorithms
for star-shaped queries and makes use of them to solve general
graph queries. We summarize our contribution as follows.

(1) Given a star-shaped query 𝑄∗ and data graph 𝐺, STAR
finds top-1 matches for the center query node (called pivot
node) of 𝑄∗ in 𝐺 and expands new matches from there. For
each node matching the pivot node, it is able to generate the
best matches of 𝑄∗ in decreasing order of matching score. We



show that in order to find top k results of 𝑄∗ pivoted at 𝑣 ∈ 𝑉 ,
we need not find top k matches for individual leaf nodes in
𝑄∗. The algorithm takes 𝑂(∣𝐸∣) time and space, assuming 𝑘
and the size of 𝑄∗ are bounded by a constant.

(2) We further modify the algorithm to support inexact match-
ing where an edge can be matched to a path with bounded
length 𝑑. For each node/edge in data graph, it propagates
matching scores to their neighbors, retains the maximal match-
ing score and then propagates further. Since it does not
compute transitive closure, the time complexity is reduced to
𝑂(𝑑2∣𝐸∣ + 𝑚𝑑) and the space complexity is linear to 𝑑∣𝑉 ∣,
where 𝑚 is the maximum node degree of 𝐺.

(3) Given a general (cyclic) graph query 𝑄, STAR decomposes
it to a set of star-queries, and assembles top answers from
individual star queries. Decomposing a graph query into sub-
structures for fast query processing is not new (see e.g., [13]).
Our novelty is the basic substructure we use here, notably,
stars. STAR generates top answers of star-queries in monotonic
decreasing order of matching score, the answer set is equiva-
lent to a pre-sorted list. This nice property makes it possible
to apply monotonic ranked joins such as [5] to produce the
final top k answers for 𝑄 without losing completeness.

(4) Since a query 𝑄 can be decomposed to multiple star queries
in different manners, we identify new query optimization
opportunities in our problem setting, experiment a few designs
and also demonstrate their effectiveness.

(5) We evaluate the runtime performance of our algorithms. In
comparison with a highly-optimized threshold-based algorithm
(TA) and a belief propagation method (BP) employed in [2],
[14], it was found that STAR is 5-10 times faster than TA and
10-100 times faster than a recently proposed brief propagation
method (BP) for top k graph search [2].

We conclude that optimizing star query processing not
only solves the most popular queries in knowledge graphs,
but also contributes as a building block of efficient algorithms
for answering general graph queries. By effective query de-
composition and star query processing, top k answers can be
found in a much faster manner.

II. PRELIMINARIES

We start with notions and problem formulation.

Knowledge graphs. We consider knowledge graph 𝐺 as a
labeled graph (𝑉, 𝐸,ℒ), with node set 𝑉 and edge set 𝐸. Each
node 𝑣 ∈ 𝑉 (edge 𝑒 ∈ 𝐸) has a description ℒ(𝑣) (ℒ(𝑒)) that
specifies node (edge) information, and each edge represents a
relationship between two nodes. ℒ could be structured with a
schema, e.g., in XML, RDF, and Freebase, not structured, e.g.,
keywords only,, or with mixed structure, e.g., DBpedia. ℒ may
also include heterogeneous attributes, entities and relations of
various types [15].

Queries. We consider query 𝑄 as a graph (𝑉𝑄, 𝐸𝑄). Each
query node in 𝑄 provides information/constraints about an
entity, and an edge between two nodes specifies the relation-
ship or the connectivity constraint posed on the two nodes.
Specifically, we use 𝑄∗ to denote star-shaped query.

Example 2: Figure 1 illustrates querying without node schema.
The query 𝑄 contains nodes as simple keywords, e.g., Brad,
to describe the entities it refers to. For each node in the
knowledge graph 𝐺, a node description ℒ may specify a
type (e.g., actor) and an entity name (e.g., Brad Pitt),
or simply a keyword (e.g., Academy Award). Note that ℒ
may also pertain to specified schema, where each node has
uniformed attributes, and attribute values in accordance. □

Subgraph Matching. Given a graph query 𝑄 and a knowledge
graph 𝐺, a match 𝜙(𝑄) of 𝑄 in 𝐺 is a subgraph of 𝐺,
specified by a one-to-one matching function 𝜙. It maps each
node 𝑢 (resp. edge 𝑒=(𝑢′, 𝑣)) in 𝑄 to a node match 𝜙(𝑢)
(resp. edge match 𝜙(𝑒)=(𝜙(𝑢), 𝜙(𝑢′))) in 𝜙(𝑄). In Section V,
we will relax the edge mapping to path mapping to support
approximate matching.

Yang et al. [2] adopt a probabilistic approach to learn
a sophisticated ranking function. When mapping a query
node/edge to a data node/edge, it supports various kinds of
transformations such as synonym, abbreviation, and ontology.
For example, “teacher” can be matched with “educator,” and
“J.J. Abrams” with “Jeffrey Jacob Abrams.” Each match
produces a similarity score. This allows ordinary users to
post queries without spending hours or even days to digest
the vocabulary and complex schema specified in a knowledge
graph. A node matching cost function 𝐹𝑉 (𝑣, 𝜙(𝑣)) aggregates
the contribution of all the possible similarity measures {𝑓𝑖}
with weight {𝛼𝑖},

𝐹𝑉 (𝑣, 𝜙(𝑣)) =
∑

𝑖

𝛼𝑖𝑓𝑖(𝑣, 𝜙(𝑣)), (1)

where 𝑓𝑖 refers to the matching score under the 𝑖𝑡ℎ similar-
ity measure. Analogously, an edge matching cost function,
𝐹𝐸(𝑒, 𝜙(𝑒)) can be defined.

All the node and edge scores are then combined together
to produce a final score between query 𝑄 and its match 𝜙(𝑄).
The matching score is computed by a function 𝐹 (𝜙(𝑄)) as

𝐹 (𝜙(𝑄)) =
∑

𝑣∈𝑉𝑄

𝐹𝑉 (𝑣, 𝜙(𝑣)) +
∑

𝑒∈𝐸𝑄

𝐹𝐸(𝑒, 𝜙(𝑒)) (2)

When it is not ambiguous, we write 𝐹𝑉 (𝑣, 𝜙(𝑣)) as 𝐹 (𝜙(𝑣)),
𝐹𝐸(𝑒, 𝜙(𝑒)) as 𝐹 (𝜙(𝑒)) respectively. In practice, we usually
have an additional constraint: 𝐹𝑉 (𝑣, 𝜙(𝑣)) and 𝐹𝐸(𝑒, 𝜙(𝑒))
have to be greater than a threshold, which assures each node
and edge have a good match in an answer.

Top-k subgraph querying. Given 𝑄, 𝐺, and 𝐹 (⋅), the top-k
subgraph querying is to find a set of 𝑘 matches 𝑄(𝐺, 𝑘), such
that for any match 𝜙(𝑄) /∈ 𝑄(𝐺, 𝑘), for all 𝜙′(𝑄) ∈ 𝑄(𝐺, 𝑘),
𝐹 (𝜙′(𝑄)) ≥ 𝐹 (𝜙(𝑄)).

Example 3: For 𝑄 and 𝐺 in Figure 1, a match 𝜙(𝑄) consists
of node matches Brad Pitt, Richard and Academy
Award, where the function 𝜙 maps Brad to Brad Pitt
with node score 0.9 (as shown in Figure 1). Let the three edge
scores be 1.0, 1.0 and 0.8 , then the total score 𝐹 (𝜙(𝑄)) is 5.4,
the sum of node and edge scores. Note that an edge (movie
maker, award) in 𝑄 is matched with a path from Richard
(a director) to Academy Award in 𝐺. □



Procedure graphTA

Input: a subgraph query 𝑄, a knowledge graph 𝐺, integer 𝑘.
Output: top-k match set 𝑄(𝐺, 𝑘).

1. initialize candidate list 𝐿 for each node and edge in 𝑄;
2. for each list 𝐿
3. sort 𝐿 following a ranking function;
4. Set a cursor to each list; set an upper bound 𝑈 ;
5. for each cursor 𝑐 in each list 𝐿 do
6. generate a match that contains 𝑐; update 𝑄(𝐺, 𝑘);
7. update a threshold 𝜃 with the lowest score in 𝑄(𝐺, 𝑘);
8. move all cursors one step ahead;
9. update the upper bound 𝑈 ;
10. if k matches are identified and 𝜃 ≥ 𝑈 then break ;
11. return 𝑄(𝐺, 𝑘);

Fig. 2: Procedure graphTA
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III. THRESHOLD ALGORITHM

We first introduce a top-k graph querying procedure based
on threshold algorithm (TA) [11]. The procedure is adopted
in several state-of-the-art graph pattern matching methods [1],
[16]. We analyze the limitation of this approach.

The threshold algorithm [11] finds the top-k best tuples
from a relational table by optimizing a monotonic aggregation
function. The common practice in existing top-k subgraph
matching is to treat each query node and edge as an attribute,
with its matching score as an attribute value. If a set of matches
can be joined to form a complete match, they are selected to
compute a threshold. An upper bound of the matching score is
estimated for the rest “unseen” matches. Following [11], top-k
matches are identified when the upper bound is smaller than
the threshold. The procedure and its variants are invoked in a
range of existing subgraph matching methods [1], [6], [8], [9].

A TA-algorithm for subgraph matching. We outline the
procedure, denoted as graphTA, in Figure 2. The procedure
typically follows three steps. (1) It initializes a candidate list
𝐿 for each query node and edge. (2) It then sorts each list
following a certain ranking function. For each sorted list, a
cursor is assigned at the head of the list. (3) graphTA iteratively
starts an exploration based subgraph isomorphism search to
expand the node match pointed by each cursor, until a complete
match is identified. It moves all cursors one step forward.
The above step repeats until 𝑘 matches are identified and it
is impossible to generate better matches, or no match can be
generated from the lists.

To achieve early termination, graphTA dynamically main-
tains (1) a lower bound 𝜃 as the smallest top-k match score so
far, and (2) an upper bound 𝑈 to estimate the largest possible
score of a complete match from unseen matches. For example,
an upper bound can be established by aggregating the score of

Framework STAR

Input: a graph query 𝑄, a knowledge graph 𝐺, integer 𝑘.
Output: top-k match set 𝑄(𝐺, 𝑘).

1. decompose 𝑄 to a star query set 𝒬;
2. while top-k matches are not identified do
3. invoke stark or stard to retrieve new top matches
4. for queries in 𝒬;
5. invoke starjoin to assemble new matches;
6. update 𝑄(𝐺, 𝑘);
7. return 𝑄(𝐺, 𝑘);

Fig. 4: Framework STAR

the next match from each list. If 𝑈 is smaller than the current
lower bound 𝜃, graphTA terminates.

Limitation of graphTA. We use an example to demonstrate
the limitations of directly applying TA-style top-k algorithm.
Consider a subgraph query 𝑄 and its top-1 answer in Figure 3.
We observe the following limitations.

(1) Matches for nodes and edges with high matching score
alone do not necessarily indicate top answers. For example, the
top-1 answer is joined from a set of node and edge matches
with quite low matching scores, if ranked independently (Fig-
ure 3). Sorted accessing over single node and edge match lists,
as in graphTA, leads to an excessive amount of useless visits
and enumeration of partial matches.

(2) To explore single node/edge match in a large graph often
leads to expensive match expansion, resulting in significant
performance degradation. For example, each time a new node
match is visited, expanding from single node match requires
a subgraph isomorphism search [1].

(3) It is often hard to estimate a tight enough upper bound,
by using the node or edge matches alone. For example, if
one follows sorted access to 𝐿𝐵 to 𝑏, while all other cursors
are at the top of 𝐿𝐴, 𝐿𝐶 and 𝐿𝐷, respectively, the current
upper bound, determined by 0.5, 0.9, 0.9 and 0.9, can be far
from the “real” upper bound determined by 0.5, 0.5, 0.6 and
0.6. Indeed, the upper bound in conventional TA algorithm
is designed for joining attribute values, where no topological
linkage is enforced. This typically generates quite loose upper
bound that reduces the possibility of early termination.

IV. STAR-BASED TOP-K MATCHING

While a straightforward application of TA has the limi-
tations in subgraph querying, we next outline a framework to
mitigate it by utilizing larger structures as building blocks. The
idea is to find maximal subqueries for which (a) top-k matches
can be quickly retrieved without any TA-based joins, and (b)
the matches of subqueries can be effectively assembled for the
top-k complete matches. We identified star shaped queries as
such structures. This framework kills two birds with one stone.
First, it is observed that most of real-life subgraph queries on
knowledge graphs are “star-like” queries [3], [12]. To deriving
a fast solution for star queries is very appealing. Second, as a
basic building block, it will lead to efficient top-k search for
complex graph queries.

The top-k querying framework, denoted as STAR and
illustrated in Figure 4, has the following steps.



Procedure stark

Input: a star query 𝑄∗, a knowledge graph 𝐺, integer 𝑘.
Output: top-k match set 𝑅.

1. initializes set 𝑅=∅;
2. initializes priority queue 𝑃=∅;
3. identify candidate node matches 𝑉 ′ for the pivot node in 𝑄∗;
4. find top-1 match pivoted at each node 𝑣 in 𝑉 ′;
5. add best 𝑘 matches among the top-1 matches to 𝑃 ;
6. while ∣𝑅∣ < 𝑘 do
7. pop the best match 𝑀 (pivoted at 𝑣) from 𝑃 ; 𝑅 = 𝑅 ∪ {𝑀};
8. generate the next best match 𝑀 ′ pivoted at 𝑣;
9. insert 𝑀 ′ to 𝑃 ;
10. return 𝑅 as 𝑄∗(𝐺, 𝑘);

Fig. 5: Procedure stark

(1) Query decomposition. Given a query 𝑄, STAR invokes
a procedure to decompose 𝑄 to a set of star queries 𝒬
(Section VI-B). A star query contains a pivot node and a set
of leaves as its neighbors in 𝑄. After query decomposition, 𝒬
is sent to the star querying engine.

(2) Star querying engine. Using 𝒬 generated in (1) as input, It
invokes a procedure, called stark (resp. stard for approximate
matching), to efficiently generate a set of top matches for each
star query in 𝒬 (Section V). The procedure stark guarantees
that the matches are generated progressively in the descending
order of the match score for each star query.

(3) Top-k rank join. The top matches produced by stark
(or stard) for multiple star queries are then collected and joined
by a procedure starjoin, to produce top-k complete matches
of 𝑄 (Section VI). It terminates once the top-k matches are
identified, or there is no chance to generate better matches.

V. TOP-𝑘 STAR QUERY

We first examine star query evaluation. For simplicity’s
sake, we only use node matches to describe our algorithms.

Top-k tree pattern matching has been extensively studied,
e.g., [4], [5] and its newest improvement [17]. While the design
of these algorithms can be reused for star query, there are two
new problems: (1) Most of these studies assume there is a
pre-sorted node (resp. edge) match list with respect to query
node (resp. edge), which is not true in our problem setting:
𝐹𝑉 (𝑣, 𝜙(𝑣)) and 𝐹𝐸(𝑒, 𝜙(𝑒)) are computed online; (2) For
edge-to-path approximate graph matching, the existing studies
typically require the construction of transitive closure, which
is infeasible over large graphs.

A. Top-k Search

Algorithm. Our star query processing algorithm stark (il-
lustrated in Figure 5) takes the following steps. (1) It first
identifies the candidate node match in graph 𝐺 for the pivot
query node (line 3). For each candidate 𝑣, it then identifies top-
1 match pivoted at 𝑣 (line 4), by finding the best matches for
the leaf nodes of 𝑄∗ in 𝑣’s neighbors and assembling them
as the top-1 match pivoted at 𝑣 (not shown). Among these
matches of 𝑄∗, it selects top k matches to form a pseudo top-k
set 𝑃 (lines 5). (2) It pops up the best match 𝑀 from 𝑃 , insert
it into an answer set 𝑅. For the pivot node in 𝑀 , it generates
the next best match 𝑀 ′ and inserts it to 𝑃 (lines 7-9). (3) The
procedure stark repeats step (2) until ∣𝑅∣ = 𝑘 (lines 6-10).
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Fig. 6: Top-k star querying

In the first step, stark identifies the pseudo top-k set 𝑃 that
contains all the potential pivot nodes in the real top k answers.
We use the following notions. (1) Given a node 𝑣 ∈ 𝑉 , a match
𝑀 in 𝐺 is pivoted at 𝑣 if 𝑣 is matched to the pivot node in
𝑄∗. (2) Given 𝐺, 𝑄∗, 𝐹 , and 𝑘, let ℳ be the set of top-1
matches of 𝑄∗ pivoted at each node in 𝐺. The pivot node set,
𝑉𝑝, refers to the set of nodes 𝑣, where a match 𝑀 is among
the top k matches in ℳ and is pivoted at 𝑣.

Lemma 1: Top-k matches of 𝑄∗ can only come from the
matches pivoted at 𝑣, 𝑣 ∈ 𝑉𝑝. □

For the complexity of step (1), we shall use a well-known
result for finding top k numbers in an unsorted list.

Lemma 2: [18] Given a set of 𝑛 numbers and an integer 𝑘,
it takes 𝑂(𝑛) time to find top 𝑘 number, and 𝑂(𝑛 + 𝑘 log 𝑘)
time to find sorted top 𝑘 numbers. □

The procedure stark takes 𝑂(∣𝑉 ∣) time to find the potential
node candidate match of the pivot node of 𝑄∗ (line 3). This
can be further optimized with various indices, as discussed
in [2]. stark next finds a top-1 match pivoted at 𝑣. It scans all
𝑣’s neighbor nodes, thus taking 𝑂(∣𝐸∣∣𝑉 ∗∣) time (line 4). It
next finds the 𝑘 best matches among these matches. This can
be done in 𝑂(∣𝑉 ∣) time (Lemma 2). Therefore, the first step
of stark takes 𝑂(∣𝐸∣∣𝑉 ∗∣) time.

Example 4: We demonstrate how stark computes top-3
matches for the star query 𝑄∗ in Figure 6. It first finds the top-
1 matches for each match of A, and then selects the best 3 of
the matches 𝑀1, 𝑀2 and 𝑀3, pivoted at e.g., 𝑎1, 𝑎2 and 𝑎3 (𝑎3

is omitted from the figure), respectively. The procedure stark
adds all the three matches to a priority queue 𝑃 . The minimum
value in the queue is 2.9, which is the score of the top-1 match
for pivot 𝑎3. It next pops from 𝑃 the best match 𝑀1, which
is the top-1 match pivoted at 𝑎1, with cursor index (1, 1, 1).
𝑀1 is then inserted into 𝑅. Based on 𝑀1, stark fetches the
next best match from the union of the three lists 𝐿𝐵 , 𝐿𝐶 , and
𝐿𝐷 calculated from the neighbors of 𝑎1. This gives one new
match 𝑀 ′

1 pivoted at 𝑎1, with match score 3.0. It pushes 𝑀 ′
to 𝑃 . In this case, it is not going to search node 𝑎3 any more.
The searching continues over each match in 𝑃 , until ∣𝑅∣=3.
When stark terminates, 𝑅 is returned as {𝑀1, 𝑀2, 𝑀

′
1}, with

scores 3.2, 3.1, and 3.0, respectively. □

In the second step, stark retrieves the top-1 match 𝑀 from
𝑃 and its pivot node 𝑣 (line 7). It then fetches the next best
match pivoted at 𝑣 (line 8). As 𝑣’s neighbors are not sorted
with respect to their similarity to the leaf nodes in 𝑄∗, one
needs to scan the entire neighbor set to find the second largest
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value w.r.t each query leaf node. This takes 𝑂(𝑚∣𝑉 ∗∣) time,
where 𝑚 refers to the largest node degree in 𝐺. The issue
becomes more severe if all of the remaining top-k matches
actually come from 𝑣. The cost will grow to 𝑂(𝑘 ∗ 𝑚∣𝑉 ∗∣),
as step (2) will run k-1 times on 𝑣. Instead, stark finds and
sorts top-k node matches w.r.t each query leaf node, which is
in 𝑂((𝑚+𝑘 log 𝑘)∣𝑉 ∗∣) time. Better still, the following result
shows that the cost can be reduced to 𝑂(𝑚∣𝑉 ∗∣ + 𝑘 log 𝑘),
which is optimal in the worst case.

Proposition 3: Given 𝑠 lists of unsorted numbers
𝐿1, 𝐿2, . . . , 𝐿𝑠, each of size 𝑚, and an aggregation function,

𝐹 =

𝑠∑

𝑖=1

𝑥𝑖, 𝑥𝑖 ∈ 𝐿𝑖,

(1) there exists a set 𝐿̄ ⊆ 𝐿 =
∪

𝑖 𝐿𝑖, ∣𝐿̄∣ ≤ 𝑘 + 𝑠 − 1, s.t.,
any number in 𝐿 ∖ 𝐿̄ does not contribute to the top-k values
of 𝐹 ; (2) It takes 𝑂(𝑠𝑚) time to find 𝐿̄. □

Proof sketch: We first construct 𝐿̄. Denote the largest
number in 𝐿𝑖 as 𝑥𝑚𝑎𝑥

𝑖 , 𝐿̂𝑖 = {𝑥 − 𝑥𝑚𝑎𝑥
𝑖 ∣𝑥 ∈ 𝐿𝑖}, 𝐿𝑚𝑎𝑥 =

{𝑥𝑚𝑎𝑥
𝑖 } and 𝐿̂ =

∪
𝑖 𝐿̂𝑖. Let 𝐿̄ = {𝑥 ∈ 𝐿 ∖ 𝐿𝑚𝑎𝑥∣𝑥 −

𝑥𝑚𝑎𝑥
𝑖 ranks top-k+s-1 in 𝐿̂}. We then prove the theorem by

contradiction: Suppose 𝑥′ ∈ 𝐿 ∖ (𝐿̄ ∪ 𝐿𝑚𝑎𝑥) contributes to
one of the top-k sums, denoted as 𝐹 ′. It is easy to see
𝐹 ′ ≤ 𝑥′ +

∑
𝑗 ∕=1 𝑥𝑚𝑎𝑥

𝑗 ≤ 𝑥′ − 𝑥𝑚𝑎𝑥
1 +

∑
𝑗 𝑥𝑚𝑎𝑥

𝑗 , where
w.l.o.g. 𝑥′ ∈ 𝐿1. However, besides the 𝑠 largest numbers
{𝑥𝑚𝑎𝑥

𝑖 }, there are at least 𝑘 − 1 numbers 𝑥𝑖 ∈ 𝐿̄, such that
𝑥′−𝑥𝑚𝑎𝑥

1 ≤ 𝑥𝑖−𝑥𝑚𝑎𝑥
𝑖 . Thus 𝐹 ′ is not among the top-k sums

since there are at least 𝑘 sums no less than 𝐹 ′. □

Prop. 3 shows that in order to find top-k w.r.t the score
function 𝐹 , we need not find top-k numbers for each list 𝐿𝑖.
Instead, with a minor modification, we only need to find 𝑘 +
𝑠 − 1 numbers in the union of the lists.

Example 5: Consider three lists 𝐿𝐵 , 𝐿𝐶 and 𝐿𝐷 in Figure 7,
with largest number 𝑥𝑚𝑎𝑥

𝐵 =0.9, 𝑥𝑚𝑎𝑥
𝐶 =0.7 and 𝑥𝑚𝑎𝑥

𝐷 =0.8,
respectively. To find top-3 values of the function 𝐹 , one only
needs to find the largest numbers of each list and additional
2 numbers from the combined list. To this end, a set 𝐿̂ is
constructed by subtracting the largest number in each list, e.g.,
0.8 in 𝐿𝐷, from each other numbers in the list, e.g., 0.7. The
set 𝐿̄ is then constructed by including the three largest numbers
from each list, and two numbers 0.7 and 0.5, corresponding
to top ranked numbers −0.1 and −0.2 in 𝐿̂, respectively. □

Following Prop. 3, we only need to retain at most 𝑠+𝑘−1
numbers from

∪
𝑖 𝐿𝑖 to fetch the next best match.

The remaining step of stark follows the lattice search [4].
It maintains a priority queue (with size at most 𝑘) to bookkeep
the top k matches. For each match, stark records its pivot node
and a cursor to remember the index of sorted lists. It takes
𝑂(𝑘 log 𝑘) to put the matches in the candidate pool 𝑃 (line 7)
into the queue. When it pops up the current best match from
the the queue (line 8), it retrieves the cursor. Let 𝑠 = ∣𝑉 ∗∣−1.
Assume the cursor index is (𝑙1, 𝑙2, . . . 𝑙𝑠), it calculates the 𝐹
value for (𝑙1+1, 𝑙2, . . . 𝑙𝑠), (𝑙1, 𝑙2+1, . . . 𝑙𝑠), . . . , (𝑙1, 𝑙2, . . . 𝑙𝑠+
1). In total, there are total 𝑠 matches, which shall be pushed
into the queue if they are greater than the minimum value in
the queue. The time cost is 𝑠 log 𝑘. There is an evidence to
further improve it using the lattice structure shown in [4].

Putting the above analysis together, Step 2 takes
𝑂(𝑚∣𝑉 ∗∣+ 𝑘 log 𝑘 + ∣𝑉 ∗∣ log 𝑘) time in total 𝑘 − 1 iterations.
As 𝑘 is a small constant, the time complexity is dominated by
𝑂(𝑚∣𝑉 ∗∣). Here 𝑚 is the largest node degree.

Analysis. As stark always selects the top 𝑘 matches from the
matches pivoted at the nodes in pivot node set 𝑉𝑝, it correctly
identifies top 𝑘 matches for 𝑄∗ (Lemma 1).

For the time complexity, Step 1 takes 𝑂(∣𝑉 ∣ + ∣𝐸∣∣𝑉 ∗∣)
time to find best 𝑘 top-1 matches. Step 2 takes 𝑂(𝑚𝑘∣𝑉 ∗∣+
𝑘2 log 𝑘 + ∣𝑉 ∗∣𝑘 log 𝑘), in total. Assuming 𝑄∗ and 𝑘 bounded
by a small constant, stark is linear in terms of 𝑂(∣𝐸∣). In
practice, not every node in 𝐺 will be matched with the query
pivot node. A cutoff threshold will be applied to retain a few
candidate nodes. Let 𝑛′ be the size of candidate nodes. In this
case, Step 1 takes 𝑂(𝑛′𝑚∣𝑉 ∗∣), dominating the cost. When
𝑛′ is very large, the aggregation overlay graph and a “push”
strategy from [19] could be applied to sharing computation.

B. 𝑑-bounded Star Query

𝑑-bounded subgraph matching. As illustrated earlier, an edge
may be matched with a path of bounded length in querying
knowledge graphs. Given 𝐺, 𝑄 and an integer 𝑑, a 𝑑-bounded
subgraph querying extends subgraph querying with a matching
function 𝜙𝑑, such that each edge 𝑒 = (𝑢, 𝑢′) can be mapped to a
path 𝜙𝑑(𝑒), connecting two node matches 𝜙(𝑢) and 𝜙(𝑢′) with
length bounded by 𝑑. The conventional subgraph isomorphism
is a special case of 𝑑-bounded subgraph querying.

Edge-Path Similarity Function. When an edge 𝑒 in a star
query is matched to a path 𝜙𝑑(𝑒) in 𝐺, we need to define
a similarity function 𝐹 (𝑒, 𝜙𝑑(𝑒)). The algorithm proposed in
this section is valid as long as 𝐹 (𝑒, 𝜙ℎ(𝑒)) is monotonically
decreasing in terms of 𝑑. A typical example is 𝐹 (𝑒, 𝜙𝑑(𝑒)) =
𝜆(ℎ−1), 𝜆 ∈ (0, 1], where ℎ is the length of path 𝜙𝑑(𝑒).

The major challenge of answering 𝑑-bounded star queries is
twofold. (1) Traversing 𝑑-hop neighbors of pivot nodes incurs
excessive cost. Moreover, pre-computing 𝑑-hop neighborhood
indexes for each node is no longer practical for large graphs.
(2) The bottleneck is to find top-1 matches from a potentially
large number of matches to identify the pivot node set 𝑉𝑝.
Following Lemma 1, the next step is to find top-k matches
pivoted at nodes in 𝑉𝑝, where traversing is typically more
affordable for typically small 𝑘.

We present the main result for 𝑑-bounded star queries.

Theorem 4: Given 𝐺, 𝑄∗, 𝑘, and 𝑑, when ∣𝑄∗∣ and 𝑘 are
bounded by a small constant, there exists an algorithm that
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computes top 𝑘 answers in 𝑂(𝑑2∣𝐸∣ + 𝑚𝑑) time, where 𝑚
refers to the largest node degree in 𝐺. □

We next introduce a message propagation algorithm, de-
noted as stard (star-d), that achieves the above time complexity.
In a nutshell, it leverages message passing to exchange the
maximal node and edge matching scores.

Message propagation. The algorithm stard identifies all the
node matches 𝑣 for each query leaf node 𝑢∗ in 𝑄∗. Instead
of “pulling” the neighbors’ score for each potential pivot node
match in 𝐺, it collects, aggregates and propagates messages
encoding the matching score of each node in 𝐺 to its 1-hop
neighbors and repeats 𝑑 times.

Message. The algorithm stard encodes a message 𝑠 as a set
of triples <(𝑢∗, 𝑣), 𝐹, ℎ>. If a node 𝑣′ in 𝐺 receives such a
message, it means in ℎ hop of 𝑣′ in 𝐺, there is a node 𝑣
matched to 𝑢∗ with score 𝐹 .

Example 6: Consider query 𝑄∗ in Figure 8. A message 𝑠
is initialized at 𝑐1 as <(𝐶, 𝑐1), 0.9, 0>, indicating that 𝑐1
is matched to query node 𝐶, with node score 0.9, and the
message resides at node 𝑐1 (with hop number 0). □

Message passing. stard initializes a message 𝑠 that contains a
single triple <(𝑢∗, 𝑣), 𝐹 (𝑢∗, 𝑣), ℎ = 0> at each match 𝑣 of
𝑢∗. It then propagates 𝑠 (by forking it to multiple copies and
distributing all the copies to the nodes at the same time) from
𝑣 towards its 1-hop neighbors. For each node 𝑣 that receives
a message 𝑠1 = <(𝑢∗, 𝑣1), 𝐹1, ℎ1>, it increases ℎ1 by 1 and
then performs the following aggregation task:

1) If 𝑣 has no local copy of any message containing 𝑢∗,
it keeps a copy of 𝑠1.

2) If 𝑣 has a local copy of a message, 𝑠2 =
<(𝑢∗, 𝑣2), 𝐹2, ℎ2>. If 𝐹1 ≤ 𝐹2 and ℎ1 ≥ ℎ2, discard
𝑠1; Otherwise keep both 𝑠1 and 𝑠2.

Intuitively, stard always keeps track of the node match with
a greater “potential” to be the top-1 match, measured by the
sum of its node score and “up to the moment” edge score 𝐹 (𝑒)
at the ℎth hop of propagation.

Example 7: Given query 𝑄∗ in Figure 8 for 3-bounded search,
𝐹𝐸 is defined as 0.8ℎ−1 for a path match of length ℎ. stard
iteratively propagates 𝑠 from node 𝑐1 to its neighbors. When
𝑠 is propagated to node 𝑣, it finds a local copy of message 𝑠′
with an entry <(𝐶, 𝑐2), 0.4, 1>, indicating that a match 𝑐2 is
1 hop away from 𝑣. stard replaces the entry of 𝑐2 with 𝑐1, and
continue propagation with 𝑠. □

Algorithm. We outline the complete algorithm stard below.
Given a 𝑑-bounded star query 𝑄∗, it performs 𝑑 rounds
message propagation, from all the leaf node matches in 𝐺.

It then selects 𝑉𝑝 along the same line as stark. For each node
match in 𝑉𝑝, it performs a traversal to collect the distance and
score information to compute top-k matches, similar to stark.

Ping-Pong effect. It is possible that a node 𝑣 could have a
similarity score with both the pivot node and a leaf node 𝑢∗ in
𝑄. When a message initiated at 𝑣 for matching 𝑢∗ is passed
around, it may arrive at 𝑣 again. When 𝑣 is matched to the
pivot node, it might lose the trace of any other node that could
be matched to 𝑢∗. In this case, we can not derive the top-1
match pivoted at 𝑣 correctly. One way to solve this issue is to
record two best matches for 𝑢∗ and pass them around. This
will guarantee at least one match can be used later.

Analysis. When the message propagation terminates, the algo-
rithm stard correctly computes top-k matches, following stark.
Hence it suffices to show that all the top-1 matches are
correctly gathered and computed. Indeed, stard keeps the
invariant below: (1) at any time, the message 𝑠 which carries
the information of top-1 node and edge matches are not
replaced by any other message; and (2) when the propagation
terminates, all the 𝑠 in (1) are guaranteed to be fetched. The
correctness of stard hence follows.

The main time cost of stard is dominated by the message
passing. There are at most 𝑑 rounds of message propagation for
every node. For each node in 𝐺, we need to maintain at most
𝑑∣𝑉 ∗∣ messages (ie., ℎ = 1, 2, . . . , 𝑑). Hence the total time is
in 𝑂(𝑑2∣𝐸∣∣𝑉 ∗∣) for finding the pivot node set 𝑉𝑝. Once it
is found, the time to find top-k matches is in 𝑂(𝑚𝑑∣𝑉 ∗∣ +
𝑘2 log 𝑘 + ∣𝑉 ∗∣𝑘 log 𝑘). When ∣𝑄∗∣ and 𝑘 are bounded by a
small constant, the total time complexity is 𝑂(𝑑2∣𝐸∣+ 𝑚𝑑).

The above analysis completes the proof of Theorem 4.

Remark. The implementation of stard allows multi-level of
parallelism. In an extreme case of vertex-centric program-
ming [20], each node can exchange messages between their
neighbors in parallel, which can complete all message propa-
gation in at most 𝑑 rounds of communication.

C. Alternatives

The algorithms graphTA, stark, and stard adapt different
search strategies to find top-k answers for star-shaped queries.
It is possible to factorize them to a few components and
recombine them to generate new alternatives. In the following
discussion, we present one of them. Empirical examination of
these alternatives will be left to future study.

We next outline an approach that combines the search
strategies of graphTA, stark, and stard. The algorithm searches
pivot and leaf node lists alternatively. In Stage 1, (1) Sort
𝐿𝐴, 𝐿𝐵 , 𝐿𝐶 , . . . in decreasing order of node score. (2) Fetch
nodes from 𝐿𝐴, 𝐿𝐵 , 𝐿𝐶 , . . . alternatively in a top-down man-
ner. For a node fetched from 𝐿𝐴, the algorithm searches its
neighbors for its top-1 match. Update the pseudo top-k set. For
a node fetched from 𝐿𝐵 , 𝐿𝐶 , . . ., the algorithm propagates its
score to its neighbors. Update the upper bound of the best
answer that can be found at each neighbor. Whenever finding
a new top-1 match, update the pseudo top-k set. (3) When
the upper bound of the remaining unseen answers is smaller
than the pseudo top-k scores found so far, stop searching. In
Stage 2, follow the remaining steps in stark by searching other
good matches for each pivot node in the pseudo top-k set, and
generate the final top-k matches.



VI. TOP-K STAR JOIN

The star query framework stark can not only process star
queries quickly, but also serve as a foundation to answer
general graph queries. A graph query 𝑄 can be decomposed to
a set of star-shaped queries {𝑄∗}. Top-k answers to 𝑄 can be
assembled by collecting the top matches of each 𝑄∗, followed
by a multi-way join process.

There is a great advantage of leveraging star queries. First,
stark is able to quickly generate matches in a monotonic
decreasing order of the matching score. As manifested in
Section VI-A, this property is critical when joining multiple
subqueries: It produces an upper bound for those matches that
have not been seen yet. Second, although a similar method [5]
exists for other basic structures like edges, a “bigger” structure
like star-shaped subqueries can reduce the number of joins,
thus improving query processing time.

We address two challenges in this section:

1) Query decomposition. Consider different query de-
composition strategies and determine an efficient way
to execute a query.

2) Top-k ranked joins. Efficiently construct a complete
match from star matches and derive an upper-bound
for the remaining possible matches.

We first study the top-k ranked join problem (Sec-
tion VI-A). We then develop the intuition from the join
problem for query optimization in Section VI-B.

A. Top-k Star Rank Join

Given a query 𝑄 decomposed to a set of star queries 𝒬 =
{𝑄∗

1, 𝑄
∗
2, . . . 𝑄∗

𝑚}, the rank join is to find the top-k matches
for 𝑄 by assembling the matches retrieved by stark on each
𝑄∗

𝑖 . This is outlined as starjoin in Figure 9.

starjoin performs in a similar way as the hash rank join
strategy (HRJN [21]). It iteratively fetches 𝑘 matches for each
star and joins them with the existing matches for the other
stars (line 5 and 6). In order to compute the joins, a hash table
for each 𝐿𝑖 maintains the mapping of the joint nodes to the
matches seen so far. starjoin keeps track of lower bound 𝜃 as
the 𝑘-th match in the priority queue 𝑅 (line 7). It can be seen
that the efficiency of the algorithm relies on the upper bound
𝜃𝑖 for each star (line 8 and 9).

Procedure starjoin

Input: 𝒬 = {𝑄∗
1, 𝑄

∗
2, . . . 𝑄

∗
𝑚}.

Output: top-k join matches.

1. initialize a priority queue 𝑅=∅; set 𝜃 = −∞;
2. initialize the match list 𝐿𝑖 for each 𝑄∗

𝑖 ∈ 𝒬;
3. while 𝒬 ∕= ∅ do
4. for each 𝑄∗

𝑖 ∈ 𝒬 do
5. invoke stark on 𝑄∗

𝑖 to find the next match 𝑀 ;
6. join 𝑀 with 𝐿𝑗 (𝑗 ∕= 𝑖) and add the join results to 𝑅;
7. update 𝜃 as the k-th score in 𝑅 if ∣𝑅∣ ≥ 𝑘;
8. compute upper bound 𝜃𝑖 based on 𝑀 ;
9. add 𝑀 to 𝐿𝑖; remove 𝑄∗

𝑖 from 𝒬 if 𝜃𝑖 < 𝜃;
10. return the first k results in 𝑅;

Fig. 9: Procedure starjoin

Upper bound [21]. Consider m match lists {𝐿1, . . . , 𝐿𝑚}. For
a list 𝐿𝑖 of size 𝑛𝑖, denote 𝜙𝑖𝑗 as the 𝑗th ranked match in 𝐿𝑖.
The upper bound 𝜃𝑖 is defined as

𝜃𝑖 = 𝐹 (𝜙𝑖𝑛𝑖
) +

𝑚∑

𝑗=1,𝑗 ∕=𝑖

𝐹 (𝜙𝑗1). (3)

Intuitively, an upper bound is estimated as the sum of the
scores from the last match in one list and the top-1 matches
all the others.

The HRJN strategy was widely adopted in RDBMS and
demonstrated the superior performance over the traditional
join-then-sort approach [21]. However, there is a difference
between HRJN and starjoin. Directly applying 𝜃𝑖 as Eq. 2
results in an invalid upper bound, as the scores for the joint
nodes shared by several stars are counted multiple times. This
can be seen as the example shown in Figure 10(a). Given a
query 𝑄 and the score function 𝐹 , let (𝐴 = 𝑎𝑛, 𝑈 = 𝑢𝑛)
and (𝐵 = 𝑏1, 𝑈 = 𝑢1) be the 𝑛-th match and the first
match in 𝐿1 and 𝐿2, respectively. According to Eq. 2, 𝜃1 =
𝐹 (𝑎𝑛)+𝐹 (𝑢𝑛)+𝐹 (𝑢1)+𝐹 (𝑏1), which cannot be considered as
the upper bound and directly compared with the lower bound
𝜃 for the top-k join results. To overcome this problem, we
introduce the starjoin with the 𝛼-scheme.

Rank Join with 𝛼-scheme. Let 𝑈 be the set of the joint nodes
for two stars 𝑄∗

1 and 𝑄∗
2, and 𝐴 (resp. 𝐵) is the set of nodes

that appear only in query 𝑄∗
1 (resp. 𝑄∗

2). Then based on a
parameter 𝛼, we introduce a new ranking function scheme,
denoted as 𝐹 ′(𝜙(𝑄∗

1)) = 𝐹 (𝜙(𝐴)) + 𝛼 ⋅ 𝐹 (𝜙(𝑈)) for 𝑄∗
1

and 𝐹 ′(𝜙(𝑄∗
2)) = 𝐹 (𝜙(𝐵)) + (1 − 𝛼) ⋅ 𝐹 (𝜙(𝑈)) for 𝑄∗

2.
Accordingly, given the two match lists, 𝐿1 for 𝑄∗

1 and 𝐿2

for 𝑄∗
2, the upper bound can be refined as

𝜃′1 = 𝐹 ′(𝜙1𝑛1
) + 𝐹 ′(𝜙21), 𝜃

′
2 = 𝐹 ′(𝜙11) + 𝐹 ′(𝜙2𝑛2

), (4)

where 𝜙1𝑛1
and 𝜙21 are the last match and top match in 𝐿1

and 𝐿2, 𝜙11 and 𝜙2𝑛2
are the top match and last match in 𝐿1

and 𝐿2, respectively. When 𝛼 ∈ [0, 1], one may verify that
𝜃′1 and 𝜃′2 are valid upper bound for the search on 𝑄∗

1 and
𝑄∗

2, respectively. It is worth mentioning that the selection of
𝛼 affects the number of matches to be fetched for assembling.

Example 8: Given query 𝑄 in Figure 10(a) that is decomposed
to two stars 𝑄∗

1 and 𝑄∗
2. Denote 𝑎𝑖(𝑗) in the figure as the 𝑖-th

largest entry in the match list for 𝐴 with the match score 𝑗.
For example, 𝑎2(0.9) (𝐿1, Figure 10(c)) refers to the match
𝑎2 for 𝐴 with score 0.9 and 𝑢1(0.5) refers to the match 𝑢1 for
𝑈 with score 1.0∗𝛼 = 0.5. To identify the top-4 join matches
as in Figure 10(b), it only needs to reach the top-3 matches
in 𝐿1 and 𝐿2 with 𝛼 = 0.5. While for 𝛼 = 0.9, at least top-3
and top-11 matches in 𝐿1 and 𝐿2, respectively, are required.

□

The effectiveness of starjoin can be evaluated by the total
search depth, 𝐷 =

∑
𝑖 ∣𝐿𝑖∣, when the algorithm terminates.

Example 8 implicates that when using a proper 𝛼, starjoin will
likely require a smaller 𝐷 to identify the top-k join matches,
e.g., 𝐷 = 6 (resp. 𝐷 = 14) when 𝛼 = 0.5 (resp. 𝛼 = 0.9) in
the example. To determine an optimal 𝛼 value for minimizing
𝐷, nevertheless, is not trivial. We introduce a principled way
to determine 𝛼 in Section VI-C.

The 𝛼 scheme works for assembling two star matches, i.e.,
two-way join. For multiple stars, we perform a sequence of
two-way join (as a left-deep pipeline [21]) and apply the 𝛼
scheme for each two-way join.
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B. Query Decomposition

We next discuss the query decomposition problem, which
has been studied for solving complex queries, e.g., twig queries
on XML data [5], [6] and SPARQL on RDFs [3]. However,
the traditional techniques are not applicable in our problem
setting since the match score has to be calculated online.

Given a query graph, we expect a decomposition to gen-
erate a set of star subqueries that minimize the total depth
𝐷. Since all match scores are generated on the fly, it is
very challenging to analyze the search depth accurately. We
investigate several heuristics and evaluate their performance
on real-world graphs, based on the following observations.

(1) A reasonable decomposition derives as small number of
stars as possible, which intuitively reduces the number of joins.

(2) To make the upper bound estimation tighter in Eq. 3
(Section VI-A), we shall make 𝐹 (𝜙𝑖𝑛𝑖

) as small as possible.
Therefore, a large score decrement for the matches in 𝐿𝑖 will
likely lead to small search depth.

(3) We observe that many real-world star queries share the
similar distribution of the match scores with a long-tail effect,
as illustrated in Figure 11. Given a query decomposed to
several stars, the search for each star that stops at similar
positions, say 𝑛𝑏, is likely to yield smaller 𝐷, in comparison
with the case that one star search stops at 𝑛𝑎 while the
others stop at 𝑛𝑐 with a much larger position gap. Based
on these observations, the third intuition is to decompose a
query to a few stars that have similar distribution of matching
scores. While it is hard to derive the actual distribution, we
approximately characterize it with similar size, similar top-1
match score or similar match score decrement.

Based on the above intuitions, given 𝑄, the objective of
the query decomposition is to derive a minimum number of
stars with similar features, such that the score decrement of
the matches for each star 𝑄∗

𝑖 can be maximized. This can be
described as an optimization problem,

maximize
{𝑄∗

1 ,...,𝑄
∗
𝑚}

𝑚∑

𝑖=1

𝛿(𝑄∗
𝑖 )− 𝜆

𝑚∑

𝑖=1

∣𝑓(𝑄∗
𝑖 )− 𝑓 ∣ (5)

subject to minimum m, (6)
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Fig. 11: The distribution of the match score

where 𝛿(𝑄∗
𝑖 ) is the score decrement of the top matches

in 𝐿𝑖, 𝑓(𝑄∗
𝑖 ) is the feature score of 𝑄∗

𝑖 while 𝑓 is their
average, i.e., 1

𝑚

∑𝑚
𝑖=1 𝑓(𝑄∗

𝑖 ). Intuitively, it aims to maximize
the score decrement and minimize the feature difference of the
subqueries, where 𝜆 is a parameter to make a trade-off.

Since it is costly to accurately compute the score decrement
𝛿 and exhaust all the feature measurements, we consider
several simple but effective features below:

SimSize: 𝑓(𝑄∗
𝑖 ) = ∣𝐸∗

𝑖 ∣: Star size.

SimTop: 𝑓(𝑄∗
𝑖 ) = 𝐹 (𝜙𝑖1), where 𝜙𝑖1 is the top-1 match for

𝑄∗
𝑖 . Unfortunately, 𝜙𝑖1 is difficult to observe without executing

𝑄∗
𝑖 . Hence we use the top-1 pivot node match score to

represent 𝐹 (𝜙𝑖1). In practice, we sample nodes in knowledge
graphs and calculate the match score.

SimDec: 𝛿(𝑄∗
𝑖 ) = 𝑓(𝑄∗

𝑖 ) =
𝐹 (𝜙𝑖1)−𝐹 (𝜙𝑖𝑛𝑖

)

𝑛𝑖
, where 𝑛𝑖 is the

number of top matches checked for 𝑄∗
𝑖 . SimDec measures

the average match score decrement for 𝑄∗
𝑖 . In practice, we

approximate 𝑛𝑖 by 𝑝∣𝑉
∗
𝑖 ∣−1

∏
𝑣∈𝑉 ∗

𝑖
𝑛𝑣 , where 𝑛𝑣 is the number

of node matches and 𝑝 is the probability that two node
matches are connected. 𝑝 is a parameter estimated off-line by
conducting a set of edge queries. 𝑛𝑣 is estimated by sampling
nodes in knowledge graphs calculating their match score with
the pivot node of 𝑄∗

𝑖 , and selecting relevant ones.

Query decomposition based on SimSize only considers
query structures. Nevertheless, such problems (balanced edge
partition) are in general hard (NP-hard) [22]. We employ the
efficient greedy algorithm designed in [22] for SimSize. In
practice, since most queries would not have many star sub-
queries, we use dynamic programming to enumerate possible
star decompositions starting with 𝑚 = 2. For each 𝑚, the
decomposition with the best score of Eq. 5 will be picked and
returned immediately.

C. Optimization: Determine the Parameters

The above top-k rank join technique has two parameters, 𝛼
and 𝜆, which can be learned off-line by a testing and validation
method. Suppose we have a sample query workload 𝑊 . Our
top-k join algorithm is assumed as a black-box 𝐴 with three
input 𝛼, 𝜆 and 𝑊 . The output of 𝐴 is the aggregated total depth
𝐷 for the queries in 𝑊 . Let 𝛼 ∈ [0, 1.0] and 𝜆 ∈ [0, 2.0].
By iteratively running 𝐴 and setting a small constant e.g.,
0.1 as the adjustment step for 𝛼 and 𝜆, we can derive an
optimal setting of 𝛼 and 𝜆 that minimizes 𝐷. As verified
in Section VII, with proper 𝛼 and 𝜆, our query optimization
technique improves the runtime of baseline algorithms by 45%.

VII. EXPERIMENTAL EVALUATION

We conduct a set of experiments, using real-world knowl-
edge graphs to examine the efficiency of STAR and its



components including the star query engine, stark/stard, and
the top-k rank join, starjoin. The effectiveness of top-k search
is referred to the previous work, e.g., [2]. We applied 46
similarity functions, covering acronym, synonym, abbreviation,
ontology, unit conversion, frequency, TF/IDF, NLP parse tree
distance, type, edit distance, path distance etc. The weights of
these functions are learned through training [2].

A. Experimental Setup

Datasets. We use three real-world graphs. DBpedia [23] is
a complex knowledge graph with each node representing a
real entity and an edge indicating the relationship between
two entities. YAGO2 [24] is a knowledge base derived from
multiple public data sources. Freebase [25] is designed as a
collaboratively created large knowledge base. Note that these
graphs are quite heterogeneous with many different types of
nodes (e.g., ’place’, ’people’) associated with various
kinds of links. Additionally, we retain the rich content informa-
tion attached to each node and edge in the graphs. Thus given
a labeled query, a large amount of match candidates might be
acquired, with varying matching scores. The following table
summarizes these graphs.

Graph Nodes Edges Node types Relations Size
DBpedia 4.2M 133.4M 359 800 40G
YAGO2 2.9M 11M 6,543 349 18.5G
Freebase 40.3M 180M 10,110 9,101 88G

Query workload. Two sets of query workload are designed
for the evaluation. (1) We adopt the DBPSB benchmark [26]
and derive 50 star query templates. Each template contains a
set of nodes and edges which are augmented by either the real
labels, e.g., ‘Person’, or a variable label ‘?’. The percent of the
variable label is ≤ 50% in each template. The variable node
(resp. edge) in a template query can be matched to any node
(resp. edge) in the graph. To generate a query, we search the
template in the graphs and select the most common labels from
the data entity that are matched to the variables. The selected
labels are then used to instantiate the variable nodes/edges in
the template. (2) Since the templates are only stars, we extend
the templates by adding nodes and edges to generate queries
with complex structure, e.g., cycles and multiple stars. Figure
1 shows a sample query.

Algorithms. We implement the STAR framework, including
algorithms stark, stard and starjoin. In order to run stark
for 𝑑-bounded star queries, 𝑑-hop traversal is performed for
each node match of the pivot node. For comparison, we also
developed two top-k search algorithms, graphTA and BP.

(1) The algorithm graphTA (Section III) is a direct application
of the threshold (TA) algorithm over top-k subgraph querying
[1]. For a fair comparison, we implement graphTA with two
optimizations. (a) The neighbors and their matching scores
are cached in each node when the node is visited during
the traversal. The cache serves as an index to reduce the
unnecessary graph traversal when the node is visited again; (b)
Instead of using the widely adopted DFS traversal, it adopts
BFS traversal so that the neighbor nodes are sorted based on
their scores before carrying out the next round of exploration.
These two strategies reduce the runtime of graphTA by 90%.
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Fig. 12: The effect of search bound 𝑑

(2) The label propagation based algorithm [2], [14], such
as Belief Propagation (BP), was also employed recently for
approximate top-k pattern matching. BP [2] considers the
nodes/edges in a query as a set of random variables and
converts the top-k matching problem to the probabilistic in-
ference on the label (match) for each random variable. It
finds approximate matches for cyclic patterns, by exchanging
probability scores as messages among node matches. For
acyclic queries, BP outputs the exact top-k matches. But for
cyclic queries, different from the STAR framework, it does
not guarantee the completeness. We did not employ the graph
sketch technique developed in [2] as it can benefit all the
search algorithms.

Metrics. Given the query workload, the search runtime corre-
sponds to the end-to-end query processing time, i.e., the total
CPU time spent from receiving the query to the output of the
top-k results. The time includes not only the cost of the top-
k search time but also the cost of other tasks, such as node
matching and query decomposition, which account for a small
amount of runtime (≤ 1%).

Setup and Memory Usage. All the algorithms are imple-
mented in Java. We conduct the experiments on a server
with Intel Core i7 2.8GHz CPU and 32GB RAM, running
64-bit Linux. To serve online queries, the graph is stored in
main memory while the attribute information attached to the
nodes/edges is stored in a MongoDB server on a 512GB SSD.
Each result reported in the following is averaged over 5 cold
runs. The memory consumed by our algorithms is negligible, in
comparison with the memory used to store the graph data. The
time spent on fetching entities and relations from MongoDB
is around 5− 10% of total query processing time.

B. Evaluation results

Exp-1: Runtime over star queries. In this experiment, we
examine the impact of the search bound 𝑑. We employ a query
workload consisting of 1, 000 star queries which are randomly
generated based on the query templates with different size.
By fixing 𝑘=20 and varying 𝑑, we compare the performance
of stark, stard, graphTA and BP.

The results over DBpedia and YAGO2 are reported in
Figure 12(a) and (b) respectively, in log scale. The result
shows that stark and stard outperform BP and graphTA by
almost one order of magnitude. Note that when 𝑑 = 1, stard
degrades to stark, thus having the same runtime. When 𝑑 ≥ 2,
stark is slower than stard as it has to search 𝑑-hops for each
node. Indeed, for large 𝑑, BP, graphTA and stark may incur
a humongous amount of message passing and neighborhood
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(c) Varying query size: DBpedia
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(d) Varying query size: YAGO2

Fig. 13: Efficiency of star querying

exploration, which can be reduced by stard.

Exp-2: Impact of 𝑘 and query size. In this set of experiments,
we evaluate the impact of 𝑘 and query size to the runtime.
Fixing 𝑑 = 2 and use the same query workload as in the
previous experiment, we vary 𝑘 from 1 to 100. The results
are plotted in Figure 13(a-b), which shows that the runtime
of BP and graphTA grows dramatically when 𝑘 increases.
Indeed, both BP and graphTA use top scored node matches
to find complete matches, which incurs considerable useless
enumeration and traversal, especially for larger 𝑘. The top
scored node matches might not lead to the best matches of
the query. In contrast, stark and stard outperform all other
methods in orders of magnitude, and their performance is much
less sensitive to the growth of 𝑘. We observe that the main
bottleneck for stark is the expensive graph traversal, especially
for larger 𝑑 and denser graphs (DBpedia). stard copes with this
quite well: Almost all results are acquired in 1 second.

To evaluate the impact of query size, we use star query
templates with different numbers of nodes varying from 2 to
6. We generate 5 query workloads accordingly, each contains
1, 000 instantiated queries. We fix 𝑑=2 and 𝑘=20. Figures 13(c-
d) show the exponential runtime growth of BP and graphTA,
while stark and stard are less sensitive. stark (resp. stard)
improves BP and graphTA better over larger queries, and is
twice (resp. 8 times) faster than graphTA for even single edge
query with 2 nodes.

We conduct the above experiments on more complicated
graph queries and had very similar observations. The reason
is obvious. Since stark and stard optimize the search based on
bigger structures (star vs. single node/edge), their search will
have a lower chance to be stuck in local optimum.

Exp-3: Efficiency of top-k join. This experiment running on
DBpedia, examines the proposed top-k rank join technique.
The three query decomposition methods, i.e.,
SimSize, SimTop and SimDec, are inspected, respectively.
The node score variance in SimTop and SimDec is estimated
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Fig. 14: Evaluation on the top-k join

online by randomly sampling 200 matches for each query
node. The sampling time only accounts for ≤ 1% of the total
search time and hence is not reported separately. In SimDec,
𝑝 = 4.5× 10−4, estimated by checking a set of edge queries.
Additionally, two baselines are compared: (1) Rand refers to a
method that randomly selects the pivot nodes to generate star
subqueries; (2) MaxDeg greedily selects the pivots with the
highest degree in the query graph.

We first test the effect of the 𝛼-schema. A query workload
is generated using randomly selected query templates. We
choose 𝑘=100 and 𝑑=1 in the experiment. Figure 14(a) depicts
the average search time by varying 𝛼. It shows that a well
selected 𝛼 value indeed leads to less runtime. Considering
each method, the best performance can be achieved when
𝛼 = 0.3 for MaxDeg, 𝛼 = 0.3 for SimTop and 𝛼 = 0.9 for
SimDec (𝜆 = 1.0), respectively. These 𝛼 values are used in
the following tests. We choose 𝛼 = 0.5 for Rand and SimSize
due to their random and symmetrical nature (verified by real
test). We also evaluate each method by varying 𝑘 and plot
the time efficiency in Figure 14(b). The result tells when 𝑘
increases, the search time increases accordingly. Moreover,
SimSize, SimTop and SimDec demonstrate constantly better
runtime performance than Rand and MaxDeg for each 𝑘
setting. Among all the methods, SimDec performs best, saving
up to 45% w.r.t. Rand in terms of search time.

The experiment in Figure 14(c) examines top-k join by
the query workloads with different query size, ranging from
𝑄(3, 3) to 𝑄(5, 6). We observe when the query size increases,
the runtime increases for all the methods. This is because a
larger query is usually decomposed into more stars, leading to
more expensive multi-way joins. In the figure, SimDec shows
the best time efficiency compared with the others. Moreover,
the top-k join incurs large search depth for each star subquery.
This effect can be seen in Figure 14(d), which reports the
average search depth. Among all the methods, SimDec re-
sults in the smallest search depth for each query workload.
Figure 14(d) also shows the average standard deviation as the
error bar for each workload. When serving a query, small depth
deviation indicates similar search depth for each star subquery,



(10,51) (20,91) (30,130) (40,180)

10
3

10
4

10
5

Graph size (nodes, edges in million)

S
ea

rc
h 

tim
e 

(m
s)

 

 

BP graphTA stark stard

(a) Efficiency of star query

(10,51) (20,91) (30,130) (40,180)
0.5

0.7

0.9

1.1

1.3

1.5x 10
4

Graph size (nodes, edges in million)

S
ea

rc
h 

tim
e 

(m
s)

 

 

Rand MaxDeg SimSize SimTop SimDec

(b) Efficiency of top-k join

Fig. 15: Scalability evaluation: Freebase

leading to a balanced search effort. As shown in the figure, the
heuristic employed in SimDec is quite effective, showing the
smallest deviation. Note that this balance merit might have
significant impact on distributed graph query processing and
thus is worth investigating in the future.

Exp-5: Scalability. This experiment studies the scalability
of the algorithms over Freebase. Specifically, we extract a
graph 𝐺1(10𝑀, 51𝑀), i.e., 10M nodes and 51M edges, from
Freebase and expand it in a BFS manner (each time randomly
pick up a node and add the new edge from Freebase) to
three larger graphs 𝐺2(20𝑀, 91𝑀), 𝐺3(30𝑀, 130𝑀) and
𝐺4(40𝑀, 180𝑀). We use a query workload with 1, 000 ran-
domly generated queries and fixed 𝑘 = 20 and 𝑑 = 2. Since 𝑘
is fixed, the runtime might not increase linearly w.r.t the graph
size. Figure 15(a) reports the result of top-k star querying in
log scale. When the graph size increases, the runtime of all the
algorithms increases, as expected. stark and stard outperform
their competitors by at least one order of magnitude. Moreover,
stard further improve stark by 35%− 45%.

We also verify the scalability of starjoin and report the
result in Figure 15(b). Using the 𝛼 schema, the proposed
decomposition techniques, SimSize, SimTop and SimDec, are
20%− 44% faster than the baselines Rand and MaxDeg. This
again demonstrates the effectiveness of the 𝛼-scheme and the
decomposition heuristics.

VIII. RELATED WORK

The top-k search has been studied extensively in various
contexts, including relational data, XML and graph.

Top-𝑘 Relational Queries. Top-k search over relational data
is to find top-k tuples for a scoring function [27]. Given a
monotonic aggregation function, and a sorted list for each
attribute, Fagin’s algorithm [28] reads the attribute values
from the lists and constructs complete tuples. It stops when
𝑘 complete tuples are found from the top-ranked attributes
that have been seen. It then performs random access to find
missing scores. The algorithm is optimal with high probability
for some monotonic scoring functions. The threshold algorithm
(TA) [11] improves Fagin’s algorithm in that it is optimal for
all monotonic scoring functions, and allows early termination.
In a nutshell, it reads the scores of a tuple from the lists and
performs sorted access by predicting maximum possible score
in the unseen ones, until top-k tuples are identified.

Ranked join queries are studied over relational data [21],
[29]–[31]. Assuming that random access is not available, 𝐽∗
search [29] tries to identify a combination of attributes at the
top of priority queues by selecting the stream to be joined,

and pulls the next tuple from the selected stream. Ranked
join queries are also studied in NoSQL databases [32], which
leverage indices and MapReduce optimization, as well as
statistical structures (histogram and bloom filter) to reduce
the cost and identify promising values. Distance join index
is proposed in [31] to find matches with static scores for
graph patterns, where edges can be matched to paths. A recent
work [33] introduces the hybrid indexing on weighted attribute
graphs. The indexing considers the weights of the attributes on
the nodes as well as the structure of the graph.

In this work we study top-k queries on knowledge graphs.
(1) We do not assume static node/edge weights; instead,
the matching scores are computed online. (2) We study a
general graph matching problem, where the matching quality
is determined by scores from nodes and edges, and edges can
be matched to paths of bounded length.

Top-k graph search. Top-𝑘 graph search have been studied for
keyword queries [34], [35], twig queries [4], [5] and subgraph
isomorphism [1], [6], [8]–[10], [36].

Keyword search. Top-k efficient keyword search on relation
data, XML, RDFs, was extensively studied [34], [35], [37]–
[40]. There are works on query relaxation and approximate
matching on SPARQL queries, e.g., [41]. Most of the existing
keyword search algorithms use relatively simple ranking func-
tions such as TF/IDF and do not consider the links among
keywords. In this study, the scoring function is far more
sophisticated, combining 46 similarity measures (structure and
content) together, which makes query processing a challenging
issue. The effectiveness of using a learning-based ranking
function over traditional keyword methods has already been
demonstrated in [2]. It is like Google vs. traditional IR.

Twig query. In a more general setting, top-k graph pattern
matching for twig queries are studied [4], [5], [17]. A bottom-
up strategy is studied [4] where sorted access is used to
generate matches for the leaf nodes in the twig query, and top
matches for subqueries are obtained by merging top matches
from their leaf nodes. [5] studies top-k graph pattern matching
when strict monotonicity may not hold for some twig queries.
These studies typically require sorted node/edge matches and
the construction of transitive closure for the data graph, which
are expensive over large graphs. In contrast, our method does
not require transitive closure and is able to perform top-k join
using partial matching lists generated online.

Graph query. Top-k search for general graph queries was
studied [1], [6], [8]–[10], [36]. The common practice in these
studies for early termination is, in general, conservative TA-
style test. [9] uses multiple match lists of spanning trees from
a pattern to answer top-k graph pattern matching. Instead
of accessing node/edge matches in the list, we resort to
big structure – star subquery, which can be solved in an
efficient manner. This is not addressed in [9]. Furthermore,
our decomposition technique identifies promising stars as the
subqueries when serving the general graph query.

IX. CONCLUSIONS

We developed STAR, a top-k subgraph searching frame-
work over knowledge graphs. We have shown that STAR
can efficiently solve popular star queries posed on knowl-



edge graphs. It can also be conveniently exploited for more
complicated graph queries, by incorporating a join algorithm
and an upper bound scheme. Experimental results show that
STAR is 5-10 times faster than the state-of-the-art TA-style
subgraph matching algorithm, and 10-100 times faster than
belief propagation based graph matching algorithms.
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