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Setup

Let P1, . . . ,Pn be n probability distributions over the same space.

A permutation mixture Pn:

→ draw independent Z1 ∼ P1, . . . ,Zn ∼ Pn;

→ draw a uniformly random permutation π ∼ Unif(Sn);

→ Pn is the joint distribution of (X1, . . . ,Xn) with Xi = Zπ(i);

→ in mathematical terms:

(X1, · · · ,Xn) ∼ Eπ∼Unif(Sn)

[
⊗n

i=1Pπ(i)

]
under Pn.

An i.i.d. (mean-field) approximation Qn:

(X1, · · · ,Xn) ∼

(
1

n

n∑
i=1

Pi

)⊗n

under Qn.

Target of this work

Show that the i.i.d. approximation Qn to Pn is accurate, i.e. the information divergence
(or statistical distance) between Pn and Qn is small (and ideally, independent of n)
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Motivation

Later in the talk:

→ statistical and IT applications involving permutations

→ compound decisions in empirical Bayes

→ de Finetti-style theorems

Bigger picture:

→ general mean-field approximation

→ information geometry of high-dimensional mixtures
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A toy example

Let P1 = · · · = Pn/2 = N (µ, 1) and Pn/2+1 = · · · = Pn = N (−µ, 1)

→ Pn = νP ⋆N (0, In), where νP is the distribution of n uniformly random draws from
the multiset {−µ, . . . ,−µ, µ, . . . , µ} without replacement;

→ Qn = νQ ⋆N (0, In), where νQ is the counterpart with replacement;

Our result

χ2(Pn∥Qn) =

{
O(µ4) if µ ≤ 1,

O(exp(µ2)) if µ > 1.

→ χ2-divergence independent of dimension n

→ smaller than the one-dimensional divergence χ2(N (µ, 1)∥N (−µ, 1))

→ existing approaches fail even for this toy example

χ2(P∥Q) :=
∑

x
(px−qx )

2

qx
4 / 34
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Failed approach I: reduction to two simple distributions

Apply convexity to reduce to the divergence between two simple distributions:

KL(Pn∥Qn) = KL(Eϑ∼νP [N (ϑ, In)]∥Eϑ′∼νQ [N (ϑ′, In)])

≤ min
ρ∈Π(νP,νQ)

E(ϑ,ϑ′)∼ρ

[
KL(N (ϑ, In)∥N (ϑ′, In))

]
=

W 2
2 (νP, νQ)

2
≍

√
nµ2

→ grows with the dimension n

→ wrong dependence on µ

KL(P∥Q) :=
∑

x p(x) log
p(x)
q(x)
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Failed approach II: reduction to one simple distribution

A more careful coupling:

KL(Pn∥Qn) ≤ min
{νθ′}θ′∈{±µ}n

Eϑ′∼νQ

[
KL
(
Eϑ∼νϑ′ [N (ϑ, In)] ∥N (ϑ′, In)

)]
,

where the minimization is over all possible families of distributions {νθ′}θ′∈{±µ}n such
that Eϑ′∼νQ [νϑ′ ] = νP.

→ a judicious choice in [Ding’22] leads to an upper bound O(µ2) for small µ

→ however, can show that any such upper bound must be Ω(µ2)
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Failed approach III: method of moments

A powerful approach to upper bound the statistical difference between two mixtures
distributions, with many recent applications [Cai and Low’11, Hardt and Price’15, Wu
and Yang’20, Han et al.’20, ...]

Idea: express the Gaussian likelihood ratio in terms of Hermite polynomials

φ(x − θ)

φ(x)
=

∞∑
k=0

Hk(x)

k!
θk ,

so that

TV(µ ⋆N (0, 1), ν ⋆N (0, 1))2 =
1

4

(
EZ∼N (0,1)

∣∣∣∣EU∼µ

[
φ(Z − U)

φ(Z)

]
− EV∼ν

[
φ(Z − V )

φ(Z)

]∣∣∣∣)2

=
1

4

(
EZ∼N (0,1)

∣∣∣∣∣
∞∑
k=0

Hk (Z)

k!

(
EU∼µ[U

k ]− EV∼ν [V
k ]
)∣∣∣∣∣
)2

C-S
≤

1

4
EZ∼N (0,1)

( ∞∑
k=0

Hk (Z)

k!

(
EU∼µ[U

k ]− EV∼ν [V
k ]
))2

=
1

4

∞∑
k=0

(EU∼µ[U
k ]− EV∼ν [V

k ])2

k!

TV(P,Q) := 1
2

∑
x |px − qx |
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Failed approach III: method of moments (cont’d)

In general dimensions:

TV(νP ⋆N (0, In)∥νQ ⋆N (0, In))
2 ≤ 1

4

∑
α⃗∈Nn

(mα⃗(νP)−mα⃗(νQ))
2

α⃗!

→ α⃗ = (α1, . . . , αn) is a multi-index, with α⃗! := α1! · · ·αn!

→ mα⃗(µ) := Eϑ∼µ[ϑ
α1
1 · · ·ϑαn

n ] denotes the joint moment

Application to our toy example:

→ non-zero moment difference starting from |α⃗| = 2, suggesting an O(µ4) dependence

→ however, too many cross terms in high dimensions: the total contributions of
|α⃗| = 2ℓ are at least Ωℓ(µ

4ℓnℓ−1), which is growing with n for ℓ ≥ 2.
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Failed approach IV: method of cumulants

A recent development based on cumulants [Schramm and Wein’22]:

χ2(νP ⋆N (0, In)∥νQ ⋆N (0, In)) ≤
∑
α⃗∈Nd

κ2
α⃗

α⃗!
,

where κα⃗ is the joint cumulant

κα⃗ = κνQ

(
dνP
dνQ

, ϑ1, . . . , ϑ1, ϑ2, . . . , ϑ2, . . . , ϑn

)
.

→ a better behavior for certain cross terms

→ however, can show that κ(1,ℓ,0,...,0) ≍ C ℓℓ! for odd ℓ, so summing along this
subsequence gives a diverging result

κ(X1, . . . ,Xn) :=
∂n

∂t1···∂tn

∣∣
t1=···=tn=0

log E
[
exp

(∑n
i=1 tiXi

)]
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Main result

Let P1, . . . ,Pn ∈ P. Define the following dimension-independent quantities:

Definition (Quantities of P)

→ χ2 channel capacity: Cχ2(P) = supρ∈∆(P) Iχ2(P;X ), with P ∼ ρ and X ∼ P

→ χ2 diameter: Dχ2(P) = supP1,P2∈P χ2(P1∥P2)

Theorem

χ2(Pn∥Qn) ≤ min

{
10

n∑
ℓ=2

Cχ2(P)ℓ, (1 + Dχ2(P))
1+C

χ2 (P) − 1

}

→ Pn is contiguous to Qn: χ
2(Pn∥Qn) = OP(1) if Dχ2(P) < ∞

→ high-probability events under the simpler product measure Qn translate to
high-probability events under the mixture Pn

Iχ2 (X ;Y ) := χ2(PXY ∥PXPY )
10 / 34
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Examples

Theorem

χ2(Pn∥Qn) ≤ min

{
10

n∑
ℓ=2

Cχ2(P)ℓ, (1 + Dχ2(P))
1+C

χ2 (P) − 1

}

Example I (Two-component Gaussian)

P = {N (µ, 1),N (−µ, 1)}: Cχ2(P) ≤ 1− e−µ2

, so

χ2(Pn∥Qn) =

{
O(µ4) if µ ≤ 1,

O(exp(µ2)) if µ > 1.

Example II (Bounded Gaussian)

P = {N (θ, 1) : |θ| ≤ µ)}: Cχ2(P) = O(µ ∧ µ2),Dχ2(P) = exp(O(µ2)), so

χ2(Pn∥Qn) =

{
O(µ4) if µ ≤ 1,

exp(O(µ3)) if µ > 1.
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Applications
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Permutation prior

Sequence model in statistics: observe Xi ∼ Pθi with unknown θ = (θ1, . . . , θn)

→ statisticians would like to prove lower bounds on the estimation error of θ

→ a prevalent strategy is to impose a prior distribution on θ, and a permutation prior is
sometimes preferred: θ = (vπ(1), . . . , vπ(n)) for a known vector v and a random
permutation π

→ a key quantity in the analysis: mutual information I (θ;X n)

Our result: can pretend as if the coordinates θi ∼ 1
n

∑n
j=1 δvj are i.i.d.

Mutual information under a permutation prior

IQn (θ;X
n)−OP(1) ≤ IPn (θ;X

n) ≤ IQn (θ;X
n)

13 / 34
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Permutation channel

The noisy permutation channel introduced in [Makur’20]

→ target: find the channel capacity Cn(P) = maxp(xn) I (X
n;Y n)

→ known achievability [Makur’20] and converse [Tang and Polyanskiy’23]:

Cn(P) ∼
rank(PZ |X )− 1

2
log n for discrete P.

Our result: for general P, can pretend as if Y n have independent coordinates

Converse for general permutation channels

Cn(P) ≤ Red(conv(P)⊗n) +OP(1)

14 / 34
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finite de Finetti theorems

Theorem (de Finetti)

Any exchangeable distribution PX∞ can be written as an i.i.d. mixture:

PX∞(x∞) = Eθ

[
∞∏
i=1

Qθ(xi )

]
.

Approximately holds for exchangeable distribution PXn with finite n:

→ [Diaconis and Freedman’80]: KL(PX k ∥Eθ[Q
⊗k
θ ]) ≲ k2

n

→ [Stam’78]: for small |X |, KL(PX k ∥Eθ[Q
⊗k
θ ]) ≲ |X|k2

n(n+1−k)

→ some recent refinements in [Gavalakis and Kontoyiannis’21; Johnson, Gavalakis, and
Kontoyiannis’24]

The joint distribution of (X1, . . . ,Xn) is exchangeable if (X1, . . . ,Xn)
d
= (Xπ(1), . . . ,Xπ(n))
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Our extensions

Using first upper bound and Cχ2(P) ≤ |X |:

χ2-type finite de Finetti

For exchangeable distribution PXn and k ≤ n:

χ2
(
PX k ∥Eθ[Q

⊗k
θ ]
)
≲

k2|X |2

n2
if k <

n

|X | .

Using second upper bound:

Noisy de Finetti

Let PY n be the output distribution with an input exchangeable distribution PXn and a
channel P. Then for k ≤ n:

χ2
(
PY k ∥Eθ[Q

⊗k
θ ]
)
= OP

(
k2

n2

)
if Dχ2(P) < ∞.
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Empirical Bayes

The empirical Bayes framework [Robbins’51; ’56]:

→ idea: estimate the prior distribution from data

→ lots of empirical successes but limited theoretical understanding

A new theoretical paradigm [Hannan and Robbins’55; Greenshtein and Ritov’09]:

→ a simple setting: independent Xi ∼ Pθi , aim to estimate θ = (θ1, . . . , θn)

→ target: find an estimator with a small regret compared with powerful oracles

regret(θ̂) = Eθ[L(θ, θ̂)]− inf
θ̂oracle

Eθ[L(θ, θ̂
oracle)]

→ simple/separable oracle: θ̂Si = f (Xi ) for a single function f

→ permutation invariant oracle:

θ̂PI
π(i)(Xπ(1), . . . ,Xπ(n)) = θ̂PI

i (X1, . . . ,Xn)

Question

Do these oracles have similar estimation power?
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Our results

Oracle analysis:

→ the true parameter θ = (θ1, . . . , θn) is known to both oracles

→ because of the limitations on the oracles, an equivalent formulation is that the oracle
only knows the multiset {θ1, . . . , θn} but not the order

→ equivalently, θ follows a permutation prior

Our technical ingredient: upper bound the distance between two permutation mixtures

TV upper bound for two permutation mixtures

TV(P−i
n ,P−j

n ) = OP

(
1√
n

)
.

Application to empirical Bayes:

Simple oracles are as powerful as permutation-invariant oracles

For bounded separable loss L(θ, θ̂) =
∑n

i=1 Li (θi , θ̂i ):

inf
θ̂S

1

n
Eθ[L(θ, θ̂

S)]− inf
θ̂PI

1

n
Eθ[L(θ, θ̂

PI)] = OP

(
1√
n

)
.
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First upper bound via a new basis expansion
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Toy example: a different basis

Hermite basis:

φ(x − θ)

φ(x)
=

∞∑
k=0

Hk(x)

k!
θk

where φ is the density of N (0, 1).

{H0(x),H1(x), . . . } are orthogonal in L2(φ)

E[θk ] possibly non-zero for θ ∼ Unif({±µ})

Hyperbolic basis?

φ(x − θ)

φ0(x)
= 1 + tanh(µx)

θ

µ
, θ ∈ {±µ}

where φ0(x) =
φ(x−µ)+φ(x+µ)

2
is the

common marginal distribution of Pn and Qn

{1, tanh(µx)} are orthogonal in L2(φ0)

E[ θ
µ
] = 0 for θ ∼ Unif({±µ})

Under the new basis:

dPn

dQn
(xn) = Eπ

[
n∏

i=1

φ(xi − θπ(i))

φ0(xi )

]
= Eπ

[
n∏

i=1

(
1 + tanh(µxi )

θπ(i)

µ

)]

=
∑
S⊆[n]

Eπ

[∏
i∈S

θπ(i)

µ

]∏
i∈S

tanh(µxi )

(θ1, . . . , θn) = (µ, . . . , µ,−µ, . . . ,−µ).
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Toy example: full analysis

dPn

dQn
(xn) =

∑
S⊆[n]

Eπ

[∏
i∈S

θπ(i)

µ

]∏
i∈S

tanh(µxi )

→ orthogonality of {1, tanh(µx)} under L2(φ0):

EQn

[(
dPn

dQn

)2
]
=
∑
S⊆[n]

(
Eπ

[∏
i∈S

θπ(i)

µ

])2

Cχ2(P)|S|

→ the inner expectation: for |S | = ℓ,(
Eπ

[∏
i∈S

θπ(i)

µ

])2

≤ 1ℓ is even(
n
ℓ

)
→ piecing everything together:

χ2(Pn∥Qn) = EQn

[(
dPn

dQn

)2
]
− 1 ≤ Cχ2(P)2 + Cχ2(P)4 + · · ·+ Cχ2(P)n
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General case: doubly centered expansion

Doubly centered expansion:

dPi

dP
(x) = 1 + Ψi (x)

Centered in the x direction: Ex∼P [Ψi (x)] = 0 for all i

→ this leads to

EQn

[(
dPn

dQn

)2
]
=
∑
S⊆[n]

EQn

[
Eπ

(∏
i∈S

Ψπ(i)(Xi )

)]2

Centered in the i direction: EI∼Unif({1,...,n})[ΨI (x)] = 0 for all x

→ how does this lead to a small value of
∣∣Eπ

(∏
i∈S Ψπ(i)(Xi )

)∣∣?

P := 1
n

∑n
i=1 Pi
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Importance of centering

EQn

[(
dPn

dQn

)2
]
=
∑
S⊆[n]

EQn

[
Eπ

(∏
i∈S

Ψπ(i)(Xi )

)]2

A key technical lemma:

An inequality for centered matrix

Let A = (aij) ∈ Rℓ×n be a real matrix with 1 ≤ ℓ ≤ n with all row sums being zero, and
normalized properly with

∑n
j=1 a

2
ij = n for all i ∈ [ℓ]. Then the following inequality holds:∣∣∣∣∣∣ 1ℓ!
∑

T⊆[n],|T |=ℓ

Perm(AT )

∣∣∣∣∣∣ ≤
√√√√10

(
n

ℓ

)

→ centering is important: without it, the quantity is
(
n
ℓ

)
for the all-ones matrix A

→ this squared root saving crucially prevents the final coefficients from growing with n

→ the proof is the main technical challenge (see following slides)

Perm(A) :=
∑

π∈Sn

∏n
i=1 Ai,π(i) is the matrix permanent, and AT selects the columns of A with indices in T
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Perm(AT )

∣∣∣∣∣∣ ≤
√√√√10

(
n

ℓ

)

→ centering is important: without it, the quantity is
(
n
ℓ

)
for the all-ones matrix A

→ this squared root saving crucially prevents the final coefficients from growing with n

→ the proof is the main technical challenge (see following slides)

Perm(A) :=
∑

π∈Sn

∏n
i=1 Ai,π(i) is the matrix permanent, and AT selects the columns of A with indices in T
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Step I: symmetric multilinear forms

A deep result due to S. Banach [Banach’38]:

Banach’s Theorem

Let L(x1, . . . , xn) be a symmetric multilinear form from a Hilbert space to either R or C.
Then

sup {|L(x1, x2, . . . , xn)| : |x1| ≤ 1, . . . , |xn| ≤ 1} = sup {|L(x , x , . . . , x)| : |x | ≤ 1} .

→ the target quantity

L(r1, . . . , rℓ) :=
1

ℓ!

∑
T⊆[n],|T |=ℓ

Perm(AT )

is symmetric and multilinear in the rows r1, . . . , rℓ ∈ {x ∈ Rn :
∑n

i=1 xi = 0}
→ Banach’s theorem shows that it suffices to consider A with identical rows x ∈ Rn

→ the target quantity then becomes the elementary symmetric polynomial (ESP)
eℓ(x) =

∑
|S|=ℓ

∏
i∈S xi
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Step II: a Maclaurin-type inequality

We are done once we prove the following inequality for ESPs:

Theorem (Upper bound on ESPs for centered vector)

Let
∑n

i=1 xi = 0 and
∑n

i=1 |xi |
2 = n.

→ If x ∈ Rn, then |eℓ(x)|2 ≤ 10
(
n
ℓ

)
;

→ If x ∈ Cn, a weaker upper bound holds:

|eℓ(x)|2 ≤
nn

ℓℓ(n − ℓ)n−ℓ
< 3

√
ℓ+ 1

(
n

ℓ

)
.

→ similar problems have been recently studied in [Gopalan and Yehudayoff’14; Meka,
Reingold, and Tal’19; Doron, Hatami, and Hoza’20; Tao’23]

→ best known bound due to [Tao’23]:

|eℓ(x)|2 ≤

(
n

ℓ

)2(
ℓ− 1

n − 1

)ℓ

≤ eℓ
(
n

ℓ

)
→ we crucially need to improve the base e to the best possible constant 1

eℓ(x) :=
∑

|S|=ℓ

∏
i∈S xi
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Proof of the key inequality

For the real case, can argue via the method of Lagrangian multipliers that the maximizer
x⋆ is only supported on two points, i.e. it suffices to consider x = x (k) for some k:

x (k) =
(√ k

n − k
, . . . ,

√
k

n − k︸ ︷︷ ︸
n−k copies

,−
√

n − k

k
, . . . ,−

√
n − k

k︸ ︷︷ ︸
k copies

)

However, upper bounding |eℓ(x (k))| is still very challenging!!

0 100 200 300 400 500
k

0.0

0.1

0.2

0.3

0.4

0.5

The quantity |eℓ(x(k))|2/
(n
ℓ

)
vs. k for n = 1000, ℓ = 300.
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Saddle point analysis

Cauchy’s formula : eℓ(x) =
1

2πi

∮
Γ

∏n
i=1(1 + xiz)

zℓ
dz

z

Saddle point equation :
ℓ

z
=

n∑
i=1

xi
1 + xiz

Re

Im

z+

z−

|z |2 = ℓ
n−ℓ

k increases

k increases

Saddle points for x = x(k)

Illustration of saddle point method
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Application of saddle point method

Saddle points suggest the contour choice of Γ = {z : |z | = r} with r =
√

ℓ
n−ℓ

:

|eℓ(x)| =
∣∣∣∣ 1

2πi

∮
Γ

∏n
i=1(1 + xiz)

zℓ
dz

z

∣∣∣∣ ≤ max
|z|=r

∣∣∣∣∏n
i=1(1 + xiz)

zℓ

∣∣∣∣

Use AM-GM:

n∏
i=1

|1 + xiz |2 =
n∏

i=1

(1 + 2ℜ(xiz) + |xi |2r 2)

≤

(
1

n

n∑
i=1

(1 + 2ℜ(xiz) + |xi |2r 2)

)n

= (1 + r 2)n.

This proves the inequality for the complex case.

Real case: a more careful saddle point analysis for x = x (k).
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Second upper bound via matrix permanent
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An alternative view from matrix permanent

Drawbacks of the first upper bound:

→ meaningless when Cχ2(P) ≥ 1

→ why loose: Banach’s inequality may overlook the benefits from different rows

An observation thanks to permutations:

χ2 divergence as matrix permanents

χ2(Pn∥Qn) =
nn

n!
Perm(A)− 1,

where A ∈ Rn×n is given by Ai,j = EP

[
dPi

dP

dPj

dP

]
.

The famous van der Waerden conjecture (proven in 1980’s) states that Perm(A) ≥ n!
nn

for all doubly stochastic matrices, so showing χ2(Pn∥Qn) = O(1) essentially means that
Perm(A) is nearly as small as possible

Perm(A) :=
∑

π∈Sn

∏n
i=1 Ai,π(i), P := 1

n

∑n
i=1 Pi
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Properties of matrix A

Properties of A

→ A is PSD and doubly stochastic;

→ Tr(A) ≤ Cχ2(P) + 1;

→ its spectral gap satisfies 1− λ2(A) ≥ 1
D
χ2 (P)+1

.

Suggests to use the eigendecomposition A = UDU⊤ and expand

nn

n!
Perm(UDU⊤) =

n∑
ℓ=0

Sℓ(λ2, . . . , λn),

with homogeneous polynomials Sℓ of total degree ℓ

Key idea: express Sℓ using complex normal random variables
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Expressing the sum
∑n

ℓ=0 Sℓ

Complex normal random variable:

→ z ∼ CN (0, 1) iff z = x + iy with independent x , y ∼ N (0, 1
2
)

→ moment condition: E[zmz̄n] = n!1m=n for z ∼ CN (0, 1)

Fact I (observed in [Gurvit’03])

n∑
ℓ=0

Sℓ ∝ E

[
n∏

i=1

∣∣∣(UD1/2z
)
i

∣∣∣2] , z1, . . . , zn ∼ CN (0, 1).

Applying AM-GM to the product gives

n∑
ℓ=0

Sℓ ≤
∑

ℓ2+···+ℓn≤n

λℓ2
2 · · ·λℓn

n ≤
n∏

i=2

1

1− λi

→ the trace and spectral gap properties lead to the second upper bound
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Expressing the individual term Sℓ

Fact II

Sℓ ∝ E
[∣∣∣eℓ ((ŨD̃1/2z)1, . . . , (ŨD̃1/2z)n

)∣∣∣2] , z1, . . . , zn−1 ∼ CN (0, 1),

where (Ũ, D̃) takes out the leading eigenvector/eigenvalue in (U,D).

→ can show that the vector ŨD̃1/2z sums into zero

→ using our key inequality eventually leads to

Sℓ ≤ 3
√
ℓ+ 1

∑
ℓ2+···+ℓn=ℓ

λℓ2
2 · · ·λℓn

n

→ useful in empirical Bayes applications

recall that eℓ(x1, . . . , xn) =
∑

|S|=ℓ

∏
i∈S xi .
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where (Ũ, D̃) takes out the leading eigenvector/eigenvalue in (U,D).

→ can show that the vector ŨD̃1/2z sums into zero
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Concluding remarks

Take home messages:

→ permutations induce weak dependency, quantitatively

→ centered basis is preferred in the method of “moments”

→ lifting to complex domains makes a theorist’s life less complex

Further questions:

→ remove the O(
√
ℓ) factor for centered complex vectors?

→ for bounded Gaussian case, improve the χ2 upper bound exp(O(µ3)) to exp(O(µ2))?

→ method of “moments” for two high-dimensional mixtures?

Thank You!
arXiv: 2408.09341
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