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Outline

@ A new method called engression for distributional learning

@ Applying engression to the extrapolation problem in nonparametric regression
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Part | Distributional Learning



Distributional target

Target: the distribution, rather than merely the mean or median

o Climate science: precipitation (mean, variation, extremes, spatial structure, etc)
o Medicine: quantiles of children’s height given their age and weight

o ...

Global precipitation fields on different days
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Regression

Response Y € RP; predictors X € RY; training distribution P,

o Lo or Lj regression (Legendre, 1806) for conditional mean or median estimation

o Distributional regression via the cdf (Foresi and Peracchi '95; Hothorn et al. '14), pdf (Dunson et al. '07),
or quantiles (Koenker et al. '78; Koenker '05; Meinshausen '06) for conditional distribution estimation

Our target: Py (y|z)
Enough?
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Application: climate downscaling
High-dimensional response variables

o Physical climate models

Low-resolution High-resolution

— ’
Global climate model (GCM) Regional climate model (RCM)
X Y ¢ R128>< 128

o Statistical downscaling: emulating RCM by estimating Py |x
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Distributional learning via generative modeling

o Build a generative model to describe the target distribution:
Y = g(X7 5)

where € ~ P, pre-defined and map g : (z,¢) — vy is often parametrized by neural networks.

Rationality: change of variables + universal approximation

o

Goal: find g such that g(z,¢) ~ Py (y|z) for any x

[}

Sampling-based inference: a model to sample from P, (y|x).

o
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Our distributional learning method: Engression (S. and Meinshausen, '23)

Model class: M = {g(x, )}, where ¢ is a standard Gaussian. Denote g(z,e) ~ P,(y|x).

Engression: Energy score regression

g € argmin E(x yy.p, [~ES(Pg(y|X),Y)]
geM

Energy SCOre (Gneiting and Raftery, '07)

Definition. Given a distribution P and an observation z, the energy score is defined as

1
ES(P,z) = §E(Z,Z’)~P®P||Z —Z'2 = Ep||Z - 2|>.

Lemma. For any P, we have Ez.p«[ES(P, Z)] < Ez.p«[ES(P*, Z)], where "=" & P = P*.

Corollary. Under correct model specification, we have g(x,¢c) ~ Py (y|z), Vo € supp(Pi(z)).
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Engression (S. and Meinshausen, '23)

Engression (explicitly):

1
inE|||Y — g(X,e)ll2 — - [l&(X,c) — g(X,& }
iy 1Y — g(X,e)ll2 = S llg(X. €) — g(X, )2

o Parametrized by neural networks

o Optimized by gradient-based algorithms

Point estimation by Monte Carlo: for fixed x, draw samples of ¢
o Conditional mean estimation: E.[g(z, ¢)]

o Conditional a-quantile estimation: Qq(g(z,¢))
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Our R and Python packages (http://github.com/xwshen51/engression)

R: install.packages("engression")

Python: pip install engression

Support general data types and tasks:

o X,Y can be multivariate; continuous or categorica
o Estimation for the conditional mean or quantiles

o Sampling from the estimated distribution

Demo:

> library(engression) ## load engression package
> engressionFit = engression(X, Y) ## fit an engression model
> predict(engressionFit, Xtest, type="mean") ## mean prediction

> predict(engressionFit, Xtest, type="quantile", quantiles=c(0.1, 0.5, 0.9)) ## quantile prediction

> predict(engressionFit, Xtest, type="sample", nsample=100) ## sampling
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http://github.com/xwshen51/engression

EngreSSion for downscaling (Joint with Maybritt Schillinger, Maxim Samarin, and Nicolai Meinshausen)

Low-resolution Engression model High-resolution
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Summary of Part |

Engression as a general distributional learning method
o Estimate (conditional) distributions

o Compared to traditional distributional regression (e.g., quantile regression):

o no quantile crossing
o expressive capacity of neural networks alleviates limitations of parametric model specifications
o scalable to (very) high-dimensional X and Y

o Compared to modern generative models (e.g., diffusion model, GAN):
o computationally lighter, fewer tuning parameters, especially suitable for non-image data
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Part Il Extrapolation in Nonparametric Regression



Today's prediction models

Linear models

Y=8"TX+¢

Random Forests, gradient-boosted trees
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What could go wrong?

It is common to observe training data within a bounded support and encounter test data
outside the training support.

o Biodiversity: predicting how species respond to climate change
o Counterfactual prediction: covariate shifts from the treatment to control groups

o ...

Extrapolation is a fundamental challenge for nonlinear regression.
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Air quality data example

6 training data
test data
4
x 2
o
4
0
-2
-4

-2.5 0.0 2.5 5.0 7.5 10.0 12.5 15.0
NMHC

Measurements of two pollutants: Total Nitrogen Oxides (NOx) and non-methane hydrocarbons
(NMHC) concentration.
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Challenge of nonlinear extrapolation

training data
test data
« predictions

-2 [ 2 6 8

4
NMHC

Linear regression

NOx

training data
test data
« predictions

-2 0 2 6 8

4
NMHC

Random Forests

10

NOx

training data
6 test data
«  predictions(3)
predictions(5)
4l ¢ predictions(7) |

predictions(9)
B /
2% :"/

-2

-2 0

Neural network regression

!Predictions from different random initializations and NN architectures with 3, 5, 7, or 9 layers
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Engression makes a difference

The reliability of engression does not break down immediately at the support boundary.

training data

6 test data

« predictions(3-layer)
« predictions(5-layer)
4 « predictions(7-layer)
predictions(9-layer)

x D
N
g N
\\n
0
-2
-4
-2 0 2 a 6 8 10
NMHC

Results of engression with 3, 5, 7, or 9 layers and random initializations.
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Additive noise models (ANMs)

50 50
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All models are wrong, but can one of them be useful in terms of extrapolation?
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Additive noise models (ANMs)

Post-ANM: Y = g(X)+n Pre-ANM: Y = g(X+n)
50 50
training data training data
— 9 — 9(x)
40 quantiles 40 quantiles
. |
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V" Pre-additive noises reveal some information about the true function outside the support.
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Distributional learning

Pre-ANM: Y = g(X +n)

50
training data
— 9x)
40 quantiles
: n
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V™ To capture the information from the pre-additive noise, one
needs to fit the full conditional distribution of Y given X.
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Engression has the two ingredients for extrapolation

v Engression is a distributional learning method.

v Engression model M = {g(x,¢)} contains pre-ANMs {g(W T2 + h(e)): g € G,h € H},
where h(e) represents the pre-additive noise; g, h, and W are to be learned.
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Regression fails to extrapolate

Setup:

o True model Y = g*(X +n); pre-ANM class M = {g(x +h(e)) : g € G,h € H}; G strictly monotone;
o (For simplicity) symmetric noise 17 € [—7max; max); training support (—00, Zmax-

Proposition (S. and Meinshausen, '23)

Let 1, := argmin g Ep,|Y — g(X)|. For any & > xpax, we have

sup |g(z) — g"(x)| = oo.
9€F 1,
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Engression can extrapolate up to a certain point

Setup:

o True model Y = ¢g*(X +n); pre-ANM class M = {g(x+h(e)) : g € G,h € H}; G strictly monotone;

o (For simplicity) symmetric noise 1 € [—Nmax; Pmax); training support (—00, Tmax]-
Theorem (S. and Meinshausen, '23)

We have j(z) = g*(x) for all < Zmax + Tmax, and h(e) 4 n.

o Population engression (g, h) recovers the true model beyond the training support.

o Blessing of noise: the more (pre-additive) noise there is, the farther one can extrapolate.

Xinwei Shen Engression July 14, 2024 21



Relax the assumptions?

“truth Y = ¢*(X +7); pre-ANM class M = {g(x + h(¢)) : g € G,h € H}; G monotone”?

o Model Y = g*(X 4 n) + £ to allow both pre and post-additive noises
o Monotone g* only around the support boundary.

For conditional distribution estimation, engression is rather general.

In practice, engression uses general models {g(z,¢)}.
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Finite-sample bounds for quadratic models

Setup:
o Quadratic pre-ANM class:

{60+51(x+77)+62(x+77)262 (/307617182) EB?UNPW Ep’f?}v

o Training support X = {z1, 2}
o Training data: (z1,Y1,),i=1,...,nand (x2,Y2;),i=1,...,n
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Failure of Ly and quantile regression

Lo regression estimators:

B = argmln — z Z — (Bo + Braj + Bl

] 1:=1
Quantile regression estimators:

B = argmln—zz,oa i — (Bo + Bz -1-52% )

7j=11i=1
Proposition
For all z ¢ X, we have

sup E[(Y — (Bo + Biz + B22?))?] = o0,
BeBH

sup (g5 (z) — (Bo + frz + Bax?)| = oc.
BeBd
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Finite-sample bounds for engression

Theorem
With probability exceeding 1 — §, we have

A o 4 log(2/9) 5
17=F7 < (w2 — 1) ( )

n

For any z € R, it holds with probability exceeding 1 — ¢ that

(fi(z) — p*(x))? < Cy max{l, |z|,2%} <log(2/5)>

For any z € R and « € [0, 1], it holds with probability exceeding 1 — J that

lGa(z) — ¢ (z)| < Cymax{l, |z, 2}|Qn | (10g(2/5))
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Misspecified pre-ANM

True data generating model is a post-ANM: Y = 3% + Bfx + B5z% + n*
With a quadratic pre-ANM class.

Proposition
With probability exceeding 1 — §, we have

max {80 — (8 — Bizrza)l, 1By — (81 + Bi(ar + ), 1Bal} < (M) "

n

Defaults to a linear extrapolation v/
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Consistency for general pre-ANMs

General pre-ANM class:

{9(x+h(e)):9g€G,heH}
Training support X = [Zmin, Tmax]
True model g*(x 4+ h*(g))

Theorem (S. and Meinshausen, '23)

Under suitable conditions, we have for all # € X := {z+h*(¢) : z € X, € [0,1]} and € € [0, 1]

(@) 5 g*(@) and h(e) B h*(e) asn — .

Xinwei Shen Engression July 14, 2024 27



Simulation settings

Table: Y = g*(X + 7]), Tmax = 2, Mmax ~ 2

Name g () X n

softplus ¢*(x) = log(1 + €%) Unif[-2,2]  N(0,1)

square g*(z) = (z1)%/2 Unif[0,2]  N(0,1)

cubic g*(z) = 23/3 Unif[-2,2]  N(0,1.1%)

log g*(z) = 5 tloa(3) <2 Unif[0,2]  N(0,1)
log(x) x> 2
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Conditional median estimation

Engression L regression Engression

L regression

July 14, 2024

softplus square
training data training data 20.0 20. -
8 true median true median training data training data
17.5 — true median 175 — true median
—— engression L, regression )
engression Ly regression
6
N
4
2
o
training data training data
true median true median
60 —— engression 60 Ly regression
40 40
N
20 20
-2 -2
o 0 training data training data
—— true median —— true median
-4 -4
—— engression L, regression
- -20
-2 o 2 -2 o 2 o 2 4 10 o 2 4 10
X x x
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Numerical example

training data test data
> &4
C" L T T T T OI L T T T T T
-2 0 2 4 -10 -5 0 5 10
X X
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NN quantile regression. Top to bottom: 10,100 and 1000 hidden dimension. Left to right: 2,3, 5,10 and 20 layers.

3 /m‘/ﬂ
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Engression. Top to bottom: 10,100 and 1000 hidden dimension. Left to right: 2,3,5,10 and 20 layers.
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Large-scale real-data experiments for univariate prediction

590 data configurations:
o Real data sets from various application domains
o Pairwise prediction for all variables

o Split the training and test data at the 0.3-0.7 quantiles of the predictor

18 hyperparameter settings of neural network architectures and optimization

In total: 590*18=10'620 models for each method

Xinwei Shen Engression July 14, 2024
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Figure: Out-of-support losses (in log-scale) of engression and regression for various data configurations,
averaging over all hyperparameter settings.
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The ratio (in log-scale) between out-of-support and in-support Lo losses of engression and regression
for all hyperparameter settings.

out-of-support/in-support L2-regression

10.0 20.0

5.0

2.0

0.5

o Engression has comparable out-of-support and in-

support performance.

o Regression degrades drastically out-of-support.

o Engression is much more robust to the choice of

%,
e

hyperparameters than NN regression.
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Multivariate prediction

NN regression

(0.0017, 2.9041)

Linear regression
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Engression
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Prediction intervals

Proposition (S. and Meinshausen, '23)
For ae € [0, 1], it holds for all z < Zyax + Mmax — Qa(n) that do(z) = ¢4 (), ie.,

PY<G@G-oX)|X=2)=1-a.

= prediction intervals with conditional coverage guarantee outside the support (in population).
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-75
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Summary of Part Il

Engression for extrapolation
o Inferential target: conditional mean or quantile function beyond the training support

o Recipe: distributional learning 4 pre-additive noise models
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Outlook

o For statisticians, engression provides a flexible tool for statistical inference problems that
involve distribution estimation.

o For applied researchers, engression can be an interesting addition to the current data analysis
toolkit: comprehensive quantification of the full distribution; different behavior when it comes
to data outside the training support
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Outlook

o Robustness (invariance) against distribution shifts:
Henzi, S., Law, and Biihlmann. Invariant Probabilistic Prediction. arXiv:2309.10083

o Dimensionality reduction (unsupervised):
S. and Meinshausen. Distributional Principal Autoencoders. arXiv:2404.13649

o Distributional causal effect estimation: coming soon
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