Engression: Extrapolation through the Lens of Distributional Learning

Xinwei Shen

Seminar for Statistics, ETH Zurich

Nicolai Meinshausen

July 14, 2024

Outline

- **1** A new method called *engression* for distributional learning
- Applying engression to the extrapolation problem in nonparametric regression

Part I Distributional Learning

Distributional target

Target: the distribution, rather than merely the mean or median

- o Climate science: precipitation (mean, variation, extremes, spatial structure, etc)
- o Medicine: quantiles of children's height given their age and weight

o ...

Global precipitation fields on different days

Regression

Response $Y \in \mathbb{R}^p$; predictors $X \in \mathbb{R}^d$; training distribution P_{tr}

- \circ L_2 or L_1 regression (Legendre, 1806) for conditional mean or median estimation
- Distributional regression via the cdf (Foresi and Peracchi '95; Hothorn et al. '14), pdf (Dunson et al. '07), or quantiles (Koenker et al. '78: Koenker '05: Meinshausen '06) for conditional distribution estimation

Our target: $P_{tr}(y|x)$ Enough?

Application: climate downscaling

High-dimensional response variables

Physical climate models

 \circ Statistical downscaling: emulating RCM by estimating $P_{Y|X}$

Distributional learning via generative modeling

Build a generative model to describe the target distribution:

$$Y = g(X, \varepsilon)$$

where $\varepsilon \sim P_{\varepsilon}$ pre-defined and map $g:(x,\varepsilon)\mapsto y$ is often parametrized by neural networks.

- Rationality: change of variables + universal approximation
- \circ Goal: find g such that $g(x,\varepsilon) \sim P_{\mathrm{tr}}(y|x)$ for any x
- \circ Sampling-based inference: a model to sample from $P_{\mathrm{tr}}(y|x)$.

Our distributional learning method: Engression (S. and Meinshausen, '23)

Model class: $\mathcal{M} = \{ g(x, \varepsilon) \}$, where ε is a standard Gaussian. Denote $g(x, \varepsilon) \sim P_g(y|x)$.

Engression: Energy score regression

$$\tilde{\mathbf{g}} \in \operatorname*{argmin}_{\mathbf{g} \in \mathcal{M}} \mathbb{E}_{(X,Y) \sim P_{\operatorname{tr}}}[-\mathrm{ES}(P_{\mathbf{g}}(y|X),Y)]$$

Energy score (Gneiting and Raftery, '07)

Definition. Given a distribution P and an observation z, the energy score is defined as

$$ES(P, z) = \frac{1}{2} \mathbb{E}_{(Z, Z') \sim P \otimes P} \|Z - Z'\|_2 - \mathbb{E}_P \|Z - z\|_2.$$

Lemma. For any P, we have $\mathbb{E}_{Z \sim P^*}[\mathrm{ES}(P,Z)] \leq \mathbb{E}_{Z \sim P^*}[\mathrm{ES}(P^*,Z)]$, where "=" $\Leftrightarrow P = P^*$.

Corollary. Under correct model specification, we have $\tilde{\mathbf{g}}(x,\varepsilon) \sim P_{\mathrm{tr}}(y|x)$, $\forall x \in \mathrm{supp}(P_{\mathrm{tr}}(x))$.

Engression (S. and Meinshausen, '23)

Engression (explicitly):

$$\min_{\mathbf{g} \in \mathcal{M}} \mathbb{E} \Big[\|Y - \mathbf{g}(X, \varepsilon)\|_2 - \frac{1}{2} \|\mathbf{g}(X, \varepsilon) - \mathbf{g}(X, \varepsilon')\|_2 \Big]$$

- Parametrized by neural networks
- Optimized by gradient-based algorithms

Point estimation by Monte Carlo: for fixed x, draw samples of ε

- o Conditional mean estimation: $\hat{\mathbb{E}}_{\varepsilon}[\tilde{\mathbf{g}}(x,\varepsilon)]$
- Conditional α -quantile estimation: $\hat{Q}_{\alpha}(\tilde{\mathbf{g}}(x,\varepsilon))$

Our R and Python packages (http://github.com/xwshen51/engression)

```
R: install.packages("engression")
Python: pip install engression
```

Support general data types and tasks:

- \circ X,Y can be multivariate; continuous or categorical
- Estimation for the conditional mean or quantiles
- Sampling from the estimated distribution

Demo:

```
> library(engression)  ## load engression package
> engressionFit = engression(X, Y)  ## fit an engression model
> predict(engressionFit, Xtest, type="mean")  ## mean prediction
> predict(engressionFit, Xtest, type="quantile", quantiles=c(0.1, 0.5, 0.9)) ## quantile prediction
> predict(engressionFit, Xtest, type="sample", nsample=100)  ## sampling
```

Engression for downscaling (Joint with Maybritt Schillinger, Maxim Samarin, and Nicolai Meinshausen)

Summary of Part I

Engression as a general distributional learning method

- Estimate (conditional) distributions
- Compared to traditional distributional regression (e.g., quantile regression):
 - no quantile crossing
 - o expressive capacity of neural networks alleviates limitations of parametric model specifications
 - \circ scalable to (very) high-dimensional X and Y
- Compared to modern generative models (e.g., diffusion model, GAN):
 - $\circ\,$ computationally lighter, fewer tuning parameters, especially suitable for non-image data

Part II Extrapolation in Nonparametric Regression

Today's prediction models

Linear models

$$Y = \beta^\top X + \varepsilon$$

Random Forests, gradient-boosted trees

Neural networks

July 14, 2024

What could go wrong?

It is common to observe training data within a bounded support and encounter test data outside the training support.

- Biodiversity: predicting how species respond to climate change
- o Counterfactual prediction: covariate shifts from the treatment to control groups

o ...

Extrapolation is a fundamental challenge for nonlinear regression.

Air quality data example

Measurements of two pollutants: Total Nitrogen Oxides (NOx) and non-methane hydrocarbons (NMHC) concentration.

Challenge of nonlinear extrapolation

Xinwei Shen Engression July 14, 2024

¹Predictions from different random initializations and NN architectures with 3, 5, 7, or 9 layers

Engression makes a difference

The reliability of engression does not break down immediately at the support boundary.

Results of engression with 3, 5, 7, or 9 layers and random initializations.

Additive noise models (ANMs)

All models are wrong, but can one of them be useful in terms of extrapolation?

Additive noise models (ANMs)

50 training data 40 quantiles (x_1, y_1) $g(x_1) + \eta_1$ × 20 10 $g(x_2) + \eta_2$ x_2 4

Pre-ANM: $Y = g(X + \eta)$

17

 $\stackrel{\smile}{V}$ Pre-additive noises reveal some information about the true function outside the support.

Distributional learning

Pre-ANM:
$$Y = g(X + \eta)$$

To capture the information from the pre-additive noise, one needs to fit the full conditional distribution of Y given X.

Engression has the two ingredients for extrapolation

- ✓ Engression is a distributional learning method.
- ✓ Engression model $\mathcal{M} = \{g(x, \varepsilon)\}$ contains **pre-ANMs** $\{g(W^{\top}x + h(\varepsilon)) : g \in \mathcal{G}, h \in \mathcal{H}\}$, where $h(\varepsilon)$ represents the pre-additive noise; g, h, and W are to be learned.

Regression fails to extrapolate

Setup:

- $\text{o} \ \, \mathsf{True} \ \, \mathsf{model} \ \, Y = g^\star(X + \eta); \, \mathsf{pre-ANM} \ \, \mathsf{class} \, \, \mathcal{M} = \{g(x + h(\varepsilon)) : g \in \mathcal{G}, h \in \mathcal{H}\}; \, \mathcal{G} \, \, \mathsf{strictly} \, \, \mathsf{monotone}; \, \, \mathsf{monotone}; \, \mathsf{monotone};$
- (For simplicity) symmetric noise $\eta \in [-\eta_{\max}, \eta_{\max}]$; training support $(-\infty, x_{\max}]$.

Proposition (S. and Meinshausen, '23)

Let $\mathcal{F}_{L_1} := \operatorname{argmin}_{q \in \mathcal{G}} \mathbb{E}_{P_{\operatorname{tr}}} |Y - g(X)|$. For any $x > x_{\max}$, we have

$$\sup_{g \in \mathcal{F}_{L_1}} |g(x) - g^{\star}(x)| = \infty.$$

Engression can extrapolate up to a certain point

Setup:

- $\quad \text{True model } Y = g^{\star}(X + \eta); \text{ pre-ANM class } \mathcal{M} = \{g(x + h(\varepsilon)) : g \in \mathcal{G}, h \in \mathcal{H}\}; \ \mathcal{G} \text{ strictly monotone};$
- (For simplicity) symmetric noise $\eta \in [-\eta_{\max}, \eta_{\max}]$; training support $(-\infty, x_{\max}]$.

Theorem (S. and Meinshausen, '23)

We have
$$\tilde{g}(x) = g^*(x)$$
 for all $x \leq x_{\max} + \eta_{\max}$, and $\tilde{h}(\varepsilon) \stackrel{d}{=} \eta$.

- \circ Population engression (\tilde{q}, \tilde{h}) recovers the true model beyond the training support.
- o Blessing of noise: the more (pre-additive) noise there is, the farther one can extrapolate.

Relax the assumptions?

"truth $Y = g^*(X + \eta)$; pre-ANM class $\mathcal{M} = \{g(x + h(\varepsilon)) : g \in \mathcal{G}, h \in \mathcal{H}\}$; \mathcal{G} monotone"?

- Model $Y = g^{\star}(X + \eta) + \xi$ to allow both pre and post-additive noises
- Monotone g^* only around the support boundary.

For conditional distribution estimation, engression is rather general.

In practice, engression uses general models $\{g(x,\varepsilon)\}$.

Finite-sample bounds for quadratic models

Setup:

Quadratic pre-ANM class:

$$\{\beta_0 + \beta_1(x+\eta) + \beta_2(x+\eta)^2 : \beta = (\beta_0, \beta_1, \beta_2) \in \mathcal{B}, \eta \sim P_{\eta} \in \mathcal{P}_{\eta}\},\$$

- \circ Training support $\mathcal{X} = \{x_1, x_2\}$
- Training data: $(x_1, Y_{1,i}), i = 1, ..., n$ and $(x_2, Y_{2,i}), i = 1, ..., n$

Failure of L_2 and quantile regression

 L_2 regression estimators:

$$\mathcal{B}^{\mu} = \underset{\beta}{\operatorname{argmin}} \frac{1}{2n} \sum_{j=1}^{2} \sum_{i=1}^{n} [Y_{j,i} - (\beta_0 + \beta_1 x_j + \beta_2 x_j^2)]^2$$

Quantile regression estimators:

$$\mathcal{B}_{\alpha}^{q} = \underset{\beta}{\operatorname{argmin}} \frac{1}{2n} \sum_{i=1}^{2} \sum_{j=1}^{n} \rho_{\alpha} (Y_{j,i} - (\beta_{0} + \beta_{1}x_{j} + \beta_{2}x_{j}^{2}))$$

Proposition

For all $x \notin \mathcal{X}$, we have

$$\sup_{\beta \in \mathcal{B}^{\mu}} \mathbb{E}[(Y - (\beta_0 + \beta_1 x + \beta_2 x^2))^2] = \infty,$$

$$\sup_{\beta \in \mathcal{B}^{\mu}_{\alpha}} |(q^{\star}_{\alpha}(x) - (\beta_0 + \beta_1 x + \beta_2 x^2))| = \infty.$$

Finite-sample bounds for engression

Theorem

With probability exceeding $1 - \delta$, we have

$$\|\hat{\beta} - \beta^*\| \le \frac{C_1}{(x_2 - x_1)} \left(\frac{\log(2/\delta)}{n}\right)^{\frac{1}{3}}.$$

For any $x \in \mathbb{R}$, it holds with probability exceeding $1 - \delta$ that

$$(\hat{\mu}(x) - \mu^*(x))^2 \le C_2 \max\{1, |x|, x^2\} \left(\frac{\log(2/\delta)}{n}\right)^{\frac{2}{3}}.$$

For any $x \in \mathbb{R}$ and $\alpha \in [0,1]$, it holds with probability exceeding $1-\delta$ that

$$|\hat{q}_{\alpha}(x) - q_{\alpha}^{\star}(x)| \le C_3 \max\{1, |x|, x^2\} |Q_{\alpha}^{\eta^{\star}}| \left(\frac{\log(2/\delta)}{n}\right)^{\frac{1}{3}}.$$

Misspecified pre-ANM

True data generating model is a post-ANM: $Y=\beta_0^\star+\beta_1^\star x+\beta_2^\star x^2+\eta^\star$ With a quadratic pre-ANM class.

Proposition

With probability exceeding $1 - \delta$, we have

$$\max\left\{|\hat{\beta}_0 - (\beta_0^{\star} - \beta_2^{\star} x_1 x_2)|, |\hat{\beta}_1 - (\beta_1^{\star} + \beta_2^{\star} (x_1 + x_2))|, |\hat{\beta}_2|\right\} \lesssim \left(\frac{\log(2/\delta)}{n}\right)^{\frac{1}{3}}.$$

Defaults to a linear extrapolation ✓

Consistency for general pre-ANMs

General pre-ANM class:

$$\{g(x+h(\varepsilon)):g\in\mathcal{G},h\in\mathcal{H}\}$$

Training support $\mathcal{X} = [x_{\min}, x_{\max}]$ True model $g^*(x + h^*(\varepsilon))$

Theorem (S. and Meinshausen, '23)

Under suitable conditions, we have for all $\tilde{x}\in \tilde{\mathcal{X}}:=\{x+h^\star(\varepsilon):x\in\mathcal{X},\varepsilon\in[0,1]\}$ and $\varepsilon\in[0,1]$

$$\hat{g}(\tilde{x}) \stackrel{p}{\to} g^{\star}(\tilde{x})$$
 and $\hat{h}(\varepsilon) \stackrel{p}{\to} h^{\star}(\varepsilon)$ as $n \to \infty$.

Simulation settings

Table:
$$Y = g^*(X + \eta)$$
, $x_{\text{max}} = 2$, $\eta_{\text{max}} \approx 2$

Name	$g^{\star}(\cdot)$	X	η
softplus square	$g^*(x) = \log(1 + e^x)$ $g^*(x) = (x_+)^2/2$	$\begin{array}{c} Unif[-2,2] \\ Unif[0,2] \end{array}$	\ ' '
cubic	$g^{\star}(x) = x^3/3$		$\mathcal{N}(0, 1.1^2)$
log	$g^{\star}(x) = \begin{cases} \frac{x-2}{3} + \log(3) & x \le 2\\ \log(x) & x > 2 \end{cases}$	Unif[0,2]	$\mathcal{N}(0,1)$

Conditional median estimation

Numerical example

NN quantile regression. Top to bottom: 10,100 and 1000 hidden dimension. Left to right: 2,3,5,10 and 20 layers.

Engression. Top to bottom: 10,100 and 1000 hidden dimension. Left to right: 2,3,5,10 and 20 layers.

Large-scale real-data experiments for univariate prediction

590 data configurations:

- Real data sets from various application domains
- Pairwise prediction for all variables
- Split the training and test data at the 0.3-0.7 quantiles of the predictor

18 hyperparameter settings of neural network architectures and optimization

In total: 590*18=10'620 models for each method

Figure: Out-of-support losses (in log-scale) of engression and regression for various data configurations, averaging over all hyperparameter settings.

The ratio (in log-scale) between out-of-support and in-support L_2 losses of engression and regression for all hyperparameter settings.

- Engression has comparable out-of-support and insupport performance.
- Regression degrades drastically out-of-support.
- Engression is much more robust to the choice of hyperparameters than NN regression.

Multivariate prediction

Prediction intervals

Proposition (S. and Meinshausen, '23)

For $\alpha \in [0,1]$, it holds for all $x \leq x_{\max} + \eta_{\max} - Q_{\alpha}(\eta)$ that $\tilde{q}_{\alpha}(x) = q_{\alpha}^{\star}(x)$, i.e.,

$$\mathbb{P}\left(Y \le \tilde{q}_{1-\alpha}(X) \mid X = x\right) = 1 - \alpha.$$

 \Rightarrow prediction intervals with conditional coverage guarantee outside the support (in population).

Xinwei Shen Engression July 14, 2024

Summary of Part II

Engression for extrapolation

- o Inferential target: conditional mean or quantile function beyond the training support
- Recipe: distributional learning + pre-additive noise models

Outlook

- For statisticians, engression provides a flexible tool for statistical inference problems that involve distribution estimation.
- For applied researchers, engression can be an interesting addition to the current data analysis toolkit: comprehensive quantification of the full distribution; different behavior when it comes to data outside the training support

Outlook

- Robustness (invariance) against distribution shifts:
 Henzi, S., Law, and Bühlmann. Invariant Probabilistic Prediction. arXiv:2309.10083
- Dimensionality reduction (unsupervised):
 S. and Meinshausen. Distributional Principal Autoencoders. arXiv:2404.13649
- Distributional causal effect estimation: coming soon