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Introduction

In this work, we’ll dive into a very small part of the world of games and
puzzles.

Polyominoes were discovered relatively late; puzzlers were talking about
“fives” and “sixes” in the 1920s. Until 1953, such polyominoes were only
known in the world of puzzlers. The task was to tile an m×n square with a
single given polyomino. Due to Solomon Golomb, a more general definition
of polyominoes has appeared. In 1960 Harary formulated the cell growth
problem as a graph enumeration problem. This work initiated a big branch
of frustrating attempts to compute the number of polyominoes with n cells.
Eden (1961) and Klarner (1967) proved the main asymptotic results, that
have remained in the history of polyominoes forever. As soon as the math-
ematicians understood its hardness, they switched over to tackling similar
problems - and succeeded.

Plain enumeration was characterised by the development of different al-
gorithms for it. Each new algorithm had a better asymptotic behaviour and
was able to push the enumeration border a little further. The “intuitive”
method to generate all polyominoes, called “extension” method, fills each
computer’s memory inevitably fast. Redelmeier (1981) applied the “rooted”
method to get the run-time, proportional to the number of polyominoes; it
uses negligibly few space. The run-time is still exponential in the degree.
A. R. Conway (1994) applied the finite-lattice method associated with a
transfer-matrix algorithm to cut the exponent in one half - and extended
the enumeration up to degree 25. Until now, an optimised parallel solution
of Jensen (2004) holds the record of counting all the polyominoes up to the
degree of 56.

Another branch tried to get exact solutions for special classes of polyomi-
noes. For some special classes generating functions have been discovered.
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Klarner solved the task for the so-called row-convex polyominoes in 1967,
and Dhar for the so-called directed polyominoes around 1982. Furthermore,
enumeration by perimeter and connected problems have been studied.

Still others tried to improve the asymptotic results for polyominoes. We
have to mention Klarner (1967), Klarner and Rivest (1972-73), Rands and
Welsh (1981). Rands and Welsh were able to give a method to compute
better asymptotic results; this method uses available enumeration data. Re-
searchers applied their new enumeration data to make the asymptotic results
more precise.

Polyominoes received attention in statistical physics, especially in the
percolation theory. Nevertheless they are also captivating from a pure com-
binatorial point of view.

Polyedges - or graphs on the square lattice - we studied not as extensively
as polyominoes, although some special cases such as self-avoiding walks, lat-
tice trees and lattice graphs have been studied. Enumeration problem has
only been touched, asymptotic results seem to be widely unknown, generat-
ing function could not be expressed either. Currently (2000-2004), Andrew
Rechnitzer and Tony Guttmann are working on similar problems.

In this paper, we provide a mathematical framework for such graphs,
formulate some problems and try to solve them. We explore the relations
between such graphs and polyominoes and apply the methods from poly-
omino theory to our problem.

At the same time, we investigate a new board game, based on such
graphs, formulate problems connected with this game, solve some of them
and present an implementation of this game.

If a reader encounters a not introduced concept or an unknown symbol,
he is directed to the appendix part B.



Chapter 1

Counting polyforms.

In this chapter, we’ll work with our main object of interest, namely polyedges.
We’ll try to count them, explore their asymptotic behaviour, try to find some
”well-behaved” subclasses of polyedges and look at their relations to some
other “polyforms” such as polyominoes and polyplets.

1.1 Basic definitions.

Let k ∈ N, k ≥ 2 be fixed throughout this section. Consider infinite reg-
ular graphs (V,E), embedded into R

k, i.e. with V ⊂ R
k and E ⊂ P2(V )

(where P2(V ) is the set of all 2-element subsets of V ). The simplest ex-
ample and at the same time our main point of interest is the k-dimensional
square lattice Ck := (Zk, {{a, b} ∈ P2(Z

k) | |a − b| = 1}). Call its isometry
group Lk. We can embed some undirected graphs into Ck. Consider the
set PRk(m) of all possible embeddings of connected graphs with m edges
in the k-dimensional square lattice and call its elements k-dimensional m-
edges. Omitting the restriction on the number of edges gives PRk, the set
of k-dimensional polyedges. Each PRk(m) is infinite, since we can move an
embedding in any direction infinitely often and get another embedding each
time.

We regard two polyedges G and H as equivalent up to translation, if
adding a constant integer vector to G (i.e. adding it to all node labels, chang-
ing the edge set appropriately) gives H. There are only finitely many equiv-
alence classes PSk(m) in each PRk(m), we call them fixed k-dimensional
m-edges. Similarly, we regard G and H as k-dimensionally same, if an op-
eration from Lk transforms G into H. This also gives a finite set PTk(m) of

3



4 CHAPTER 1. COUNTING POLYFORMS.

equivalence classes, we call them free k-dimensional m-edges. The elements
of PSk :=

⋃

m PSk(m) are called fixed k-dimensional polyedges and the ele-
ments of PTk :=

⋃

m PTk(m) are called free k-dimensional polyedges.
Here the representatives of all free planar 1-, 2-, 3-edges and a single planar
6-edge are depicted:

Now we define an important subset of polyedges. Consider the set Rk ⊂ PRk

of all those k-dimensional polyedges, for which the following holds: whenever
two nodes of a polyedge have the distance of a unit on the lattice (for the
standard square lattice, this is equivalent to the fact that the Euclidean
distance is one), they are connected; such polyedges are called polyominoes.
Remark the difference: a k-dimensional n-omino has n nodes (not edges),
their set is denoted by Rk(n). Then make the same construction: define
the equivalence relation “equality up to an additive constant from Z

k ” on
Rk(n) and get the set of equivalence classes Sk(n), the fixed k-dimensional
n-ominoes; then we regard the set Tk(n) of orbits over Rk(n) under the
operation of the isometry group Lk and call them free k-dimensional n-
ominoes. Dropping the restriction on the number of nodes, we simply get
fixed and free k-dimensional polyominoes, respectively, for which we write
Tk and Sk. In the context of polyominoes, the term cell is equivalent to our
term node, i.e. we can think of a cell as of a bordered filled square with the
side length 1, its centre at the corresponding node and its sides parallel to
the axes; if we draw cells for some polyomino, we detect that:

(a) There are finitely many cells;

(b) Each two cells have either exactly one common side, or one common
corner, or don’t overlap;

(c) The union of all cells without their corners is path-connected.

This represents the alternative definition of a (2-dimensional) polyomino.
Here is an example of two 8-ominoes and a 3-omino:
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Free and fixed polyominoes are defined by taking equivalence classes that
arise from the operation of the isometry group of the lattice or of its sub-
group of all translations, respectively.

Notice that polyedges can be also regarded as polyominoes if we change
the underlying lattice from the standard square lattice (viewed as a graph) to
its line graph (i.e. new nodes are former edges and a new edge is present be-
tween two new nodes if the underlying edges of these new nodes are directly
connected). The right picture shows a part of the 2-dimensional square lat-
tice, viewed as a graph with nodes and edges and the left picture shows its
line graph.

However, this line graph of the lattice is no more planar and seems to be
more complex than the underlying lattice.

In the following, we omit the prefix “k-dimensional”, as far as k is clear
from the context 1 .

The following table sums up the new symbols and introduces the corre-
sponding numbers:

concept “as-is” fixed free

k-dimensional m-edges PRk(m) PSk(m) PTk(m)
number of all k-dimensional m-edges psk(m) ptk(m)
k-dimensional polyedges PRk PSk PTk

k-dimensional n-ominoes Rk(n) Sk(n) Tk(n)
number of all k-dimensional n-ominoes sk(n) tk(n)
k-dimensional polyominoes Rk Sk Tk

1Be careful, in present literature the term “polyX” usually refers to the planar, 2-
dimensional version of X.
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1.2 Known results.

At the time this manuscript is being written, the problem of enumerat-
ing 2-dimensional polyominoes, i.e. of giving the number of free (or fixed)
planar polyominoes with n cells, remains unsolved, and generalisations of
theory to arbitrary dimensions were not considered extensively (although
3-dimensional polyominoes have been counted for small number of cells).
One of the strongest theoretical result given by Klarner in [6] proves the
existence of the positive growth constant

co := lim
n→∞

t2(n)
1/n

and thus a non-zero convergence radius of the generating function of 2-
dimensional polyominoes. The practical results improve very fast, Jensen
in [4] enumerated fixed planar polyominoes up to order 56. His estimation
of the real value is co ≈ 4.0625696(5). It is known that 3.927378 ≤ co ≤
4.649551. Here we’ll give a few known series of numbers for planar poly-
ominoes and planar polyedges (see [8], [9], [10] and [11]); the numbers for
fixed n-edges don’t seem to be widely known or published before this work
(although most probably counted), the algorithms were run on this problem
by the author and independently by other groups at the same time:

fixed n-ominoes free n-ominoes fixed n-edges free n-edges

n \ c ≈ 4.0625696(5) ≈ 4.0625696(5) ≈ 5.20 ≈ 5.20

1 1 1 2 1
2 2 1 6 2
3 6 2 22 5
4 19 5 88 16
5 63 12 372 55
6 216 35 1628 222
7 760 108 7312 950
8 2725 369 33466 4265
9 9910 1285 155446 19591
10 36446 4655 730534 91678
11 135268 17073 3466170 434005
12 505861 63600 16576874 2073783

Here c denotes the growth constant. We’ll see in 1.3.1 that the dis-
tinction between fixed and free polyforms doesn’t affect it. An interested
reader is advised to read Golomb’s article on polyominoes (see [2]). The
“polyforms” Yahoo discussion group talks mainly about puzzles and tiling
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problems involving polyforms.

On the other hand, polyedges were studied not so deeply: the only result
is the enumeration of free planar polyedges up to order 17, given in [8], as well
as the widely-assumed claim about the existence of a Klarner’s constant for
planar polyedges; proofs have never been thoroughly formulated. Attention
can also be paid to the paper by Whittington and Soteros (see [16]), where
they study bond animals, dependent on the number of nodes (and not on
the number of edges, as we do here) and achieve similar results. The group
around Tony Guttman is trying to characterise the generating function for
different kinds of animals.

1.3 Counting polyedges

In this section we study polyedges a bit deeper. First we prove the existence
of a Klarner’s constant for polyedges of any dimension. Then we’ll try to
enumerate polyedges as far as possible and use these results to obtain a good
estimation of the Klarner’s constant for polyedges and a lower bound for the
constant.

1.3.1 Theory on polyedges and polyominoes.

Here our aim is to prove the existence of a Klarner’s constant for polyedges.
In order to do that, we generalise and modify the proofs of Eden and Klarner.
In a similar form, we can find this material in any paper which proves
the existence of a growth constant for many polyforms. The new thing is
the distinct treatment of polyedges in arbitrary dimension number and the
treatment of polyedges and polyominoes together in the same context. Also
more precise bounds on that constant for polyedges are given.

Remark and Definition 1.3.1. We define some notation for polyforms.

• We say that a k-dimensional polyedge is in standard position if

(a) all its nodes have nonnegative coordinates and

(b) for each hyperplane Hi := {x ∈ Z
k | xi = 0} there is at least one

node on it.

Polyedges in standard position form the representative system of fixed
polyedges.
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• In order to get free k-dimensional polyedges, we notice that the isome-
try group of a k-dimensional polyedge is at most as big as the isometry
group of a k-dimensional cube. The last one is known to be the wreath
product C2 ≀k Symk of order 2kk!. So we have for all n ∈ N:

1

2kk!
psk(n) ≤ ptk(n) ≤ psk(n) ≤ 2kk! · ptk(n),

and since the same holds for polyominoes:

1

2kk!
sk(n) ≤ tk(n) ≤ sk(n) ≤ 2kk! · tk(n).

We need some lemmas, from general mathematics as well as specific to
the current situation.

Lemma 1.3.2 (due to Fekete). If (an)n∈N is a sequence of (positive) natural

numbers such that (a
1/n
n )n∈N is bounded and ∀n,m ∈ N : anam ≤ an+m,

then lim
n→∞

a
1/n
n exists.

That lemma will give us the finite answer. In order to apply it, we
have to prove those two required conditions. To do that, we present some
definitions and lemmas working in our special situation.

Remark and Definition 1.3.3. (a) Let (G,+) be a semigroup, and let
F ⊂ G ∋ v. Set

v + F := {v + f | f ∈ F}.

(b) If we have a direct product of sets
∏

i∈I

Xi, write πi for the projection

map onto the ith component.

Next we reformulate the concatenation argument (which was used for
planar polyominoes by Klarner and others) in a purely combinatorial way,
that neither has anything to do with any polyforms nor requires any con-
nectedness.

Lemma 1.3.4 (Translation lemma). Let k ∈ N and F,H ⊂ Z
k both nonempty

finite sets. Then

(a) ∃ v ∈ Z
k : |(v + F ) ∩H| = 1.

(b) ∃ z ∈ Z
k : (z + F ) ∩H = ∅ ∧ (∃! a ∈ z + F, b ∈ H : |a− b| = 1)
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Proof. (a) Connect the lexicographically greatest element of F with the
lexicographically smallest element of H.

(b) We determine z by setting lmax(z + F ) + e1 = lmin(H) (where
e1 = (1, 0, ..., 0) ∈ Z

k), i.e. by moving F until lmax(z+F ) + e1 is on
the same place as lmin(H). Let a ∈ z + F and b ∈ H. Then:

a ≤lex lmax(z + F ) and b ≥lex lmin(H) ⇒

π1(a) ≤ π1(lmax(z + F )) = π1(lmin(H))− 1 ≤ π1(b)− 1. (∗)
Let’s additionally suppose |a−b| = 1. Since a and b are integer vectors,
they differ in at most one component. But they already differ in the
first component, so they are equal in other components. Thus we have
equalities in (∗):

π1(a) = π1(lmax(z + F )) = π1(lmin(H))− 1 = π1(b)− 1.

By the definition of lexicographic order, we get first for i = 2:

πi(a) ≤ πi(lmax(z + F )) = πi(lmin(H)) ≤ πi(b) (∗∗)

From πi(a) = πi(b) we get

πi(a) = πi(lmax(z + F )) = πi(lmin(H)) = πi(b) (∗ ∗ ∗)

If n = 2, we are done; otherwise we conclude inductively that (∗∗) and
(∗ ∗ ∗) hold for i = 3, ..., n. So actually a = lmax(z+F ), b = lmin(H).

We need one more definition.

Definition 1.3.5. If we have two k-dimensional polyedges X = (V,E) and
X ′ = (V ′, E′), so that V ∩ V ′ 6= ∅, let their union be the k-dimensional
polyedge (V ∪ V ′, E ∪ E′).

The following result represents the first requirement of Fekete lemma.

Lemma 1.3.6 (Superadditivity2 of polyedges and -ominoes). Assume k,m, n ∈
N, k ≥ 2. Then

(a) psk(m) · psk(n) ≤ psk(n+m);

2In fact, not the numbers themselves, but their logarithms are superadditive.
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(b) sk(m) · sk(n) ≤ sk(n+m).

Proof. (a) It suffices to construct a one-to-one correspondence

PSk(m)× PSk(n) →֒ PSk(n+m).

Let αk be a map from the previous translation lemma 1.3.4a, i.e. a
map which for two given point sets F,H ⊂ Z

k yields a v ∈ Z
k so that

|(v + F ) ∩H| = 1. Regard the map

αk,n,m : fixed k-dim n-edges × fixed k-dim m-edges → Z
k,

(F,H) 7→ αk,n,m(V (F ), V (H)).

Let X and Y be representative elements from equivalence classes in
PSk(n) and PSk(m), respectively. Let v := αk,n,m(X,Y ). Since
v + V (X) and V (Y ) have exactly one node in common, the union
of the shifted (by v) polyedge X and Y is connected and has n + m
edges. This is the correspondence we were looking for. To see that it is
one-to-one, notice that each (n+m)-edge R in its range has a unique
node, which partitions R in two sub-polyedges: one (lexicographically
smaller) with n and the other (lexicographically greater) withm edges.

(b) Analogously. Consider a map from 1.3.4b, which for finite nonempty
F,H ⊂ Z

k yields a v ∈ Z
k so that (v+F )∩H = ∅ and there is exactly

one pair (a, b) ∈ (v + F ) × H with |a − b| = 1. That means that if
X and Y were polyominoes with vertex sets F and H with n and m
nodes, respectively, then the graph embedding, which consists of X,
shifted by v, of Y , and of the edge {a, b} is connected as a graph and
thus a polyomino itself with n+m nodes. This correspondence in one-
to-one, since each polyomino with m+ n nodes in its range has (seen
as a graph) a unique edge {a, b} which partitions it into two connected
subgraphs with n and m nodes, where the first one is lexicographically
smaller than the second.

Definition 1.3.7. An (n,m)-edge is a polyedge with n nodes and m edges.

The natural question would ask about the relationship between the num-
ber of edges and the number of nodes of a polyedge. We give a trivial result,
the upper bound may still be improved.

Theorem 1.3.8. For a k-dimensional (n,m)-edge holds: n− 1 ≤ m ≤ nk.
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Proof. Since the polyedge (call it X) is a connected graph, we have the first
inequality. The second follows from 2m =

∑

v∈V (X) deg v ≤ ∑

v∈V (X) 2k.

The following theorem represents the basic result on polyominoes and
polyedges. For planar square and hexagonal polyominoes, it is already
known and better bounds for these two planar classes exist. For polyedges,
the result is new, although not astonishing.

Theorem 1.3.9 (Polyforms inequalities). Let k ∈ N, k ≥ 2. Then:

(a) ∀ n ≥ 2 : sk(n) ≤ psk(n− 1);

(b) ∀n ≥ 2,m ≥ 1 : The number of k-dimensional (n,m)-edges is bounded
from above by

(
(2k−1)(n−2)+k

m

)
=
(
(2k−1)n−3k+2

m

)
;

(c) ∀m ≥ 1 :

psk(m) ≤
(
(2k − 1)m− k + 1

m

)

< (2k − 1)

(

(2k − 1)2k−1

(2k − 2)2k−2

)m−1

;

(d) ∀ n ≥ 2 :

sk(n) ≤
(
(2k − 1)n− 3k + 2

n− 1

)

< (2k − 1)

(

(2k − 1)2k−1

(2k − 2)2k−2

)n−2

.

Proof. Before we start proving all inequalities, let’s attach to every dimen-
sion k some fixed 2k-cycle σ ∈ Sym({ei,−ei | i ∈ Nk}), which will determine
the order of directions.

(a) We construct a one-to-one correspondence Sk(n) →֒ PSk(n−1). Given
a k-dimensional n-omino, use the lexicographic order on the node set
to find the smallest node. Then do a breadth-first search starting with
this node. In order to choose the order in which the search takes the
successor nodes of a given node v, regard the direction, from which
v was first discovered, as a standard unity vector ei or −ei for some
i. If v is the very first node, assume this direction to be e1 (there
is no node at position v − e1). Then look for the successors of v in
the directions σ(ei), σ

2(ei), ..., σ
2k−1(ei) and recurse into the actually

present successors, which were not discovered yet, in this order.
The corresponding breath-first-search tree (which consists only of for-
ward edges) has n nodes and thus n− 1 edges, fits in the lattice (as a
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subgraph of a polyomino), so it’s an (n− 1)-edge.
The construction is reversible: given an (n− 1)-edge, which is a tree,
we know it has n nodes. We can place a polyomino cell at each node
and get an n-omino.
Since the constructed tree is spanning, (i.e. contains all nodes) we can-
not have two different polyominoes (which can be represented only by
their labelled node set, the labels are from Z

d) with same node sets.
So the correspondence is one-to-one.

(b) We construct a one-to-one correspondence from the set of fixed k-
dimensional (n,m)-edges to a set of binary strings of a special kind,
which we’ll write as matrices with partially occupied first line. To each
(n,m)-edge X in standard position we assign such a matrix W (X)
from the set

{










a11 ... a1k
a21 ... a2k a2(k+1) ... a2(2k−1)

a31 ... a3k a3(k+1) ... a3(2k−1)
...

...
...

...
...

...
an1 ... ank an(k+1) ... an(2k−1)










| aij ∈ {0, 1}∧
∑

i,j

aij = m}.

First of all we orient the edges of X. Let s ∈ V (X) be the smallest
node respective to the lexicographic order. Consider some edge {w, v}.
We give it the orientation (v, w) if d(s, v) < d(s, w) (where d is the
graph distance map). Remark that the case d(s, v) = d(s, w) cannot
occur. (Imagine the k-dimensional chess board which cells are around
our nodes. Each two neighbour nodes have different colours. Let s be
white, then {t | d(s, t) = 1} is black, then {t | d(s, t) = 2} is white, etc.
If d(s, v) = d(s, w), then v and w have equal colour in contradiction
to the fact that they are joined.)
Start with s and go with BFS (with a working list of nodes at depth
j) through X as follows (almost the same as in part (a)).
Before we start, the working list is empty. At s, regard the directions
e1, ..., ek in this order. If an edge is present in the direction ei, set
a1i := 1, otherwise a1i := 0. In the same order, append the present
neighbours of s to the working list.
Let v 6= s be the lth node we discovered (the front element of the
list is taken). Let w be the node from which v was discovered for the
first time and r := w − v the corresponding direction. Regard the
directions σ(r), σ2(r), σ3(r), ..., σ2k−1(r) in this order. If an outgoing
edge is present in the direction σi(r), set αli = 1, otherwise (i.e. if an
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in-going edge is present or no edge at all in that direction) αli = 0.
Append those present neighbours of v, which are discovered for the
first time, in that order to the working list and pop the front element
v from the list.
The correspondence W is one-to-one, since we can reconstruct the
polyedge from the matrix. In order to do that, we maintain the work-
ing list, which contains coordinates of the nodes that are not yet drawn.
We put the first node to any place on the lattice, appending its neigh-
bours according to a1i (i = 1, ..., k) to the empty list and drawing
them at the same time on the lattice with the corresponding edges.
Then we pop the first element of the list, and draw it’s outgoing edges
according to a2i (i = 1, ..., k). From the neighbour nodes we draw only
those which were not yet drawn and append these “new” nodes at the
end of the work-list. Then we pop the its first element, and repeat the
whole thing... Notice that each time we pop a new node from the top
of the list, we know its coordinates and hence we are able to compute
the coordinates of its neighbours. We proceed until the list is empty.
Remark that the last line of each matrix has only zeros, since the
last node regarded during BFS has no outgoing edges. So we have to
choose m positions of 1 in the first line with k entries together with
the other n− 2 lines with 2k − 1 entries. This gives the upper bound
of
(
(2k−1)(n−2)+k

m

)
=
(
(2k−1)n−3k+2

m

)
.

(c) By theorem 1.3.8, the number of nodes n satisfies n ≤ m + 1. This
allows us to modify the map W from part (b) to be a one-to-one map
from the set PSk(m) to the matrix set Mat((m+1)× (2k− 1),Z/2Z).
Here, each matrix is filled from above exactly the way it was done in
part (b). The matrix rows which were not defined since there were not
enough nodes to describe them during BFS, are filled with zeroes.
The proof of one-to-one property is the same, through reconstruction
of a polyedge X from its representation W (X). This reconstruction
continues until the working list gets empty, the resting lines of W (X)
which were not considered during reconstruction should only contain
zeroes.
We count the upper bound on the number of different matrices W (X)
for a k-dimensional m-edge the same way. For each such matrix holds:

• The last line is always empty, since the deepest node during BFS
has no outgoing edges;

• A1(k+1) = ... = A1(2k−1) = 0;
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• Altogether the “1” occurs m times.

This gives the bound of
(
(2k−1)(m−1)+k

m

)
=
(
(2k−1)m−k+1

m

)
.

For the second inequality, we remark that
(
(2k−1)m−k+1

m

)
<
(
(2k−1)m

m

)

and prove the inequality (in the “lower equal” version) for the last
binomial by induction.
m = 1.

(
2k−1
1

)
= 2k − 1 = (2k − 1) · 1m−1.

m ≥ 2. Assume

∀ 1 ≤ n ≤ m :

(
(2k − 1)m

m

)

≤ (2k − 1)

(

(2k − 1)2k−1

(2k − 2)2k−2

)m−1

.

We are going to prove
(
(2k − 1)(m+ 1)

m+ 1

)

< (2k − 1)

(

(2k − 1)2k−1

(2k − 2)2k−2

)m

.

Proof:
(
(2k−1)(m+1)

m+1

)

(
(2k−1)m

m

) =
((2k − 1)m+ 2k − 1)!m! ((2k − 2)m)!

(m+ 1)! ((2k − 2)m+ 2k − 2)! ((2k − 1)m)!
=

=
((2k − 1)m+ 1) · ... · ((2k − 1)m+ 2k − 1)

(m+ 1)((2k − 2)m+ 1) · ... · ((2k − 2)m+ 2k − 2)
=

=
((2k − 1)m+ 2k − 1)

m+ 1

2k−2∏

i=1

(2k − 1)m+ i

(2k − 2)m+ i
=

= (2k − 1)

2k−2∏

i=1

(2k − 1)(m+ i
2k−1)

(2k − 2)(m+ i
2k−2)

=

= (2k − 1)

(
2k − 1

2k − 2

)2k−2 2k−2∏

i=1

m+ i
2k−1

m+ i
2k−2

. (1.1)

Since for all i > 0,m > 0, k ≥ 2 holds

2k − 1 > 2k − 2 ⇒ i

2k − 1
<

i

2k − 2
⇒

m+
i

2k − 1
< m+

i

2k − 2
⇒

2k−2∏

i=1

m+ i
2k−1

m+ i
2k−2

< 1,

the last term in (1.1) is smaller than

(2k − 1)

(
2k − 1

2k − 2

)2k−2

=
(2k − 1)2k−1

(2k − 2)2k−2
.
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(d) Let’s take a k-dimensional n-omino in standard position for some
n ≥ 2. Regarded as a polyedge by means of the map described in
the proof of (a), it is an (n, n− 1)-edge. Part (b) and the proof from
the part (c) give the bound

(
(2k − 1)(n− 2) + k

n− 1

)

=

(
(2k − 1)n− 3k + 2

n− 1

)

=

=

(
(2k − 1)(n− 1)− k + 1

n− 1

)

<

(
(2k − 1)(n− 1)

n− 1

)

≤

≤ (2k − 1)

(

(2k − 1)2k−1

(2k − 2)2k−2

)n−2

.

And now we finally get to our goal and prove the existence of this growth
constant.

Corollary 1.3.10 (Klarner’s constant). The growth constants for k-dimensional
polyedges and polyominoes exist and the following inequalities hold:

lim
n→∞

sk(n)
1/n = lim

n→∞
tk(n)

1/n ≤ (2k − 1)2k−1

(2k − 2)2k−2
,

lim
m→∞

psk(m)1/m = lim
m→∞

ptk(m)1/m ≤ (2k − 1)2k−1

(2k − 2)2k−2
.

Proof. Polyforms inequalities (1.3.9) tell us, that the sequences (sk(n)
1/n)n

and (psk(m)1/m)m are bounded by (2k−1)2k−1

(2k−2)2k−2 . Apply the superadditivity

lemma (1.3.6) and the Fekete lemma (1.3.2) to get the result. The limits for
the free versions of polyedges and -ominoes exist and are equal to the limits
of the fixed versions because the corresponding counts differ at most by a
constant factor 2kk!.

Remark 1.3.11. The results of Klarner and Rivest from [7] are generalis-
able to higher dimensions leading to smaller upper bounds for polyominoes.
There exists a procedure which allows the human to shrink the upper bound
on the polyominoes. The amount of work even for two dimensions is consid-
ered to be excessive, however. For polyedges, the mentioned generalisation
is unlikely to work. But it’s not excluded that some similar methods may
exist.
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1.3.2 Computational enumeration

Polyomino enumeration served as a kind of benchmark for new enumera-
tion algorithms and new computers. It also served as CPU/memory testing
procedure3.

Remark 1.3.12 (Counting methods for polyedges, overview). We only con-
centrate on the 2-dimensional versions.
In order to determine the growth constant, more terms from any of the series
- fixed or free - are needed, while counting the fixed version takes far less
time. There are several methods of counting.

Extension Generate and store all the m-edges, then, based on them, all
the m + 1 edges, etc... The main problem is that one has to check
whether a m+ 1-edge is not generated twice as a child of different m-
edges. This is only helpful if you really need all these polyedges and
takes O(ps2(m)) space and O(ps22(m)) time in the worst case. The
two in the exponent may be diminished a bit. We could classify fixed
polyedges according to their length and width, first node (leftmost
node in the lowest row), number of horizontal edges, number of nodes
with different degrees (from 1 to 4 in the planar case), etc. This
allows us to compare new polyedges only within the group with the
same parameters, while searching for this group may be realized via a
balanced tree, if the number of invariants increases so that fixed-size
arrays get too big. Counting all 9-edges takes a few days (without
pruning).

Rooted with depth-first-search. This method, sometimes called Redelmeier’s
algorithm (see [3]), was widely used for polyominoes and is extendible
to polyedges as well as to many other “polyforms”. It allows you to do
without any comparisons at all. It is also highly parallelisable also for
polyedges. The single problem is that it’s not “incrementable”, that
means that it’s not possible to count all m-edges first and only after
that all m + 1-edges, each enumeration of m + 1-edges involves the
enumeration of m,m− 1,m− 2, ..., 1-edges. We need time O(ps2(m)).
The space is almost constant: O(m) for the place to store one sin-
gle polyedge (on which we operate) and the same for the stack which
supports recursion. A parallel version also takes space proportional to

3Three of four machines the author used for testing turned out to dislike these CPU-
and memory-intensive processes and finished with a “Bus error” message after a week of
computation, thus upsetting the author terribly.
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the number of processes. Here are the results of single-computer runs
(these results are not systematic, since the computers were also doing
other work in parallel thus affecting speed):

Maximal number of edges Run-time in seconds

10 80 ms.
11 400 ms.
12 2 s.
13 9 s.
14 23 s.
15 2 min.
16 10 min.
17 47 min.
18 3 h 40 min.
19 20 h.
20 2 d. 20 h.
21 13 d. 22 h.

Much better methods (finite-lattice with a matrix-transfer algorithm, see
[4]) exist, which give better results but were not implemented for polyedges
yet.

Remark 1.3.13 (Sketch of the rooted method). We use the simple edge
extension to create an m+ 1-edge from an m-edge. The main purpose is to
avoid redundancy. We do that by assigning numbers to the present edges
and placeholders for them on a grid. The assigned numbers always form a
set {0, .., a} for some a ∈ N0, that means, they have no “holes”. We start
with two single polyedges, which are located at the leftmost position in the
bottom row of every polyedge we generate; we call them “roots”:

0 1
23

0
1

2
3

4

The numbers are present only on existing edges and on those placeholders
for the edges which either can become neighbours or were able to become
neighbours in the past (but didn’t). The biggest number of all present edges
is the delimiter between these two classes. It’s 0 in the first case and 1 in the
second. Then we extend each of these polyedges, using the following rules:

(a) For each number on the grid greater than the biggest number of all
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present edges, extend the present polyedge to a new polyedge by
putting the edge on the placeholder for that number;

(b) For each of these new polyedges, give all the unnumbered placehold-
ers, which are adjacent to the last created edge, the numbers directly
following the numbers on the grid.

(c) Avoid numbering placeholders which are in the bottom row and to the
left of the roots or which are below the roots so that the roots remain
the leftmost edges in the bottom row.

The following forest symbolises this process:

0 1
23

0
1

2
3

4

0 1
23

4
5

6 0
1

2
3

4
5

6

0
1

2
3

4

5
6

7

0
1

2
3

4

5

6
7

0 1
23

4
5

6

0 1
23

4
5

The m-th level of the forest contains all the fixed m-edges exactly once each.
The two trees can be generated (and traversed) either depth- or breadth-first.
The breadth-first version exhausts memory too quickly to be useful, and the
depth-first version can be done on a single grid, avoiding memory costs and
time needed for copying. On the other side, “incremental” enumeration is
impossible during the depth-first version. Of course, parallel “hybrids” of
both versions are implementable.
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Until now, nothing really new has happened. In what follows, we describe
a real - although small - improvement.

Remark 1.3.14 (Optimised implementation of the rooted method). For
the lack of necessary resources, the author implemented the version for a
two-CPU-machine, which gave a speedup factor of 2: each processor enu-
merated one of the two trees of the forest. Further, some improvements
were made, which reduced the runtime by a multiplicative constant, which
we describe now.
The idea is that for counting fixed polyedges, we don’t need to know its real
form at the recursion leaves. Even more, we can organise the data structures
in such a way, that tracking the actual polyedge form becomes superfluous.
All the coordinates of edges with numbers are additionally maintained in a
list (implemented as an array, whose indices are the corresponding numbers),
and the grid only contains boolean variables, telling us whether each edge
has been numbered or not. Two list pointers (array indices) are maintained,
with the first one pointing to the end of the list, i.e. to the element which
has the biggest number and the second one pointing to the element contain-
ing coordinates of the recently occupied edge. The counts of m-edges are
stored in an extra array. Given an m-edge, the algorithm does the following:

(a) Add 1 to the counter for m-edges;

(b) If we have to enumerate only direct children of the currentm-edge (and
not all the descendants), add the difference between the “last-used”
and the “last-occupied” index to the count for m+ 1-edges;

(c) Otherwise

(i) Back up the two indices “last-used” and “last-occupied”;

(ii) Increase the edge count;

(iii) Take the coordinates of the first unoccupied edge and increase
the “last-occupied” index;

(iv) Determine the neighbours of this edge which were not numbered
yet and are legal to be numbered (take this information from the
grid);

(v) Append these neighbours to the end of the list (incrementing the
“last-number” index) and mark their presence on the grid;

(vi) Recurse;
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(vii) Remove the marks of these new neighbours from the grid and
remove them from the list (by restoring the value of the stored
“last-used” index);

(viii) Go over to state (ciii) (with the next unoccupied edge);

(ix) Restore the “last-occupied” index;

(x) Decrease the edge count.

All the optimisations, which depend on the architecture of the machine, were
left over to the compiler (the impact of it’s automated optimisation should
not be underestimated, the speedup achieved more than the factor of two).

Problem 1.3.15. Give tight upper and lower time bounds for counting
ps2(m).

1.3.3 Growth constant estimation for planar polyedges.

In this part we attempt to estimate the growth constant for two-dimensional
polyedges. Our analysis doesn’t prove anything, but only suggests the ap-
proximate value of the constant.

Problem 1.3.16. Find the Klarner’s constant for planar polyedges. Or
give a polynomial-time approximation algorithm for it.

Remark 1.3.17 (Simple estimation of the planar polyedges growth con-
stant). We use the available numerical data for polyedges to estimate the

borders. First, we note that if limn→∞ a
1/n
n exists, then it is equal to

limn→∞
an+1

an
. The last term converges even faster in our case. Substituting

the free and fixed planar polyedges counts pt2(m) and ps2(m) for am gives
the following graphs of am+1/am:
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We have drawn the asymptote more or less arbitrarily at 5.208 (later we’ll
see why we have chosen this value). The graphs resemble the graphs of the
function c− a

b+m where m is the argument and a, b and c are some constants.
Through each three points on the graph we can draw such a curve and read
the value of c. Under the assumption that the asymptotic behaviour of
bm := am+1/am is of the upper form, the value of c will converge to our
growth constant if we shift all three points (through which we draw the
curve) to the right. During estimation, we take bm, bm+1, bm+2 and shift m
to the right as long as numerical data from counting algorithms is available.
To our great relief, the estimation for the next value of bm+3 coincides with
the real value quite well, so we can be quite sure about the usefulness of
the method. We get the following values for c, if we increase m (left - fixed
version, right - free version):
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m fixed bm estimated c free bm estimated c

1 3 5 2 -1
2 3.666667 5.428571 2.5 3.91892
3 4 5.09375 3.2 2.65031
4 4.227273 5.384819 3.4375 4.85375
5 4.376344 5.155838 4.03636 7.40016
6 4.491400 5.244146 4.27928 4.90087
7 4.57686 5.203446 4.48947 5.6
8 4.644893 5.213746 4.59343 4.97499
9 4.6996 5.208979 4.6796 5.20667
10 4.744707 5.210987 4.73401 5.07614
11 4.782476 5.208272 4.77825 5.19637
12 4.814584 5.209203 4.81235 5.15294
13 4.84219 5.208530 4.84131 5.20135
14 4.866186 5.208418 4.86573 5.19084
15 4.887231 5.208265
16 4.905838 5.208198
17 4.922406 5.208094
18 4.937253 5.208043

So we can estimate the growth constant somewhere around 5.20(8). At the
same time, the values of bm remained under this border and this is likely to
continue. Unfortunately, no proof is known that bm is growing for big m or
at least approaching c from below.

Remark 1.3.18 (Another estimation attempt). We could allow a more
general formula for bm, for example, c− a

(b+m)d
, where d ∈ R

+. In order to

determine a, b, c, d, we need four values: bm, bm+1, bm+2 and bm+3. At the
same time, our system of four equations with four unknowns is no longer
exactly solvable and so we have to rely on numerical methods. After having
pre-scanned a 4-dimensional interval around the expected values of a, b, c, d
(we assume that 0.7 < d < 1.3 and so expect a, b, c to be near the values
from the first case), we found some starting points for Newton iteration and
were able to solve the system with the accuracy of order 10−15. Here are
some results for big m:
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m a b c d

11 6.128449055 2.70523696 5.19920904 1.057549038
12 5.381170198 2.34816225 5.20672157 1.010671737
13 5.471303735 2.39617404 5.205796278 1.016587831
14 5.34061428 2.32350665 5.207041898 1.008150116
15 5.432905309 2.3769732 5.206221205 1.014018491
16 5.332355777 2.31658752 5.207054461 1.007733673

We see that d ≈ 1, c ≈ 5.20. At the same time, the solutions don’t seem
to converge fast, this may give a hint that our formula is not perfect yet.
This poses the following question.

Problem 1.3.19. For bm := ps2(m + 1)/ps2(m), c := limm→∞ bm describe
the asymptotic behaviour of bm − c. Is bm − c ∼ a

(b+m)d
for some constants

a, b, d ∈ R
+? If the answer is positive, is d = 1?

1.3.4 Lower bounds for the growth constant for planar polyedges.

In this part we apply theoretical results, that were developed by Rands and
Welsh, in order to establish a lower bound on the polyedge growth constant
for the square lattice. First of all we’ll summarise their results by citing
necessary definitions and theorems, and then apply the theory to our case.
We’ll omit the proofs of those theorems, but if an eager reader insists, he
can read them in the original paper (see [13] and [14]).

Definition 1.3.20. We define reciprocal and pseudo renewal sequences.

(a) Let u := (un)n∈N0
be a sequence of real numbers with u0 = 1. Its

reciprocal sequence is f := (fn)n∈N+ is defined by the relations

un = u0fn + u1fn−1 + . . .+ un−1f1, n ≥ 1.

This uniquely defines the sequence f and one can check that the cor-
responding generating functions U and F are related by the formal
identity

U(x) = U(x)F (x) + 1.

(b) A sequence a := (an)n∈N0
with a0 = 1 is called a pseudo renewal

sequence4 if its reciprocal sequence g satisfies

gn ≥ 0, 1 ≤ n < ∞, and

∃K < ∞ : ∀ n : an < Kn.
4The reader should not be confused by the long name: renewal sequences exist also,

but they are not introduced here, since unnecessary.
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(c) For a pseudo renewal sequence a with the reciprocal sequence g define
polynomials pn for n ≥ 1 by

pn(x) = xn − (g1x
n−1 + g2x

n−2 + . . .+ gn−1x+ gn).

One can show an analogue of our superadditivity lemma (am+n ≥ aman
for m,n ≥ 1) for pseudo renewal sequences, which implies the existence of

the growth constant a = limn→∞ a
1/n
n for every pseudo renewal sequence a.

The following theorem is essential to formulating an algorithm which estab-
lishes a lower bound.

Theorem 1.3.21. For a pseudo renewal sequence a with the growth con-
stant a, the reciprocal sequence g and the corresponding polynomials (pn)n
holds:

(a) Each pn has a unique non-negative zero αn;

(b) ∀ n ≥ 1 : αn ≤ αn+1;

(c) p′n(x) > 0 for x ≥ αn;

(d) limn→∞ αn exists and is equal to a.

That theorem will be used to give a lower bound for a by determining
αn for the largest possible n. The next claim proves that the new result can

give a better lower bound than a
1/n
n ≤ a.

Proposition 1.3.22. Suppose that a is a pseudo renewal sequence and

(a
1/n
n )n converges monotonically to a. Then for each value of n,

a1/nn ≤ αn ≤ a.

The proof in [13] uses the monotonicity in a special way: if we want to
establish the inequality for some fixed n, then instead of the monotonicity

requirement for the whole sequence, we could require only a
1/n
n ≥ a

1/k
k for

0 < k < n.
The next proposition will help making lower bounds a bit more tight.

Proposition 1.3.23. Suppose that a = (an)n∈N0
is a pseudo renewal se-

quence with the reciprocal sequence g, the values αn are defined as above
and that the sequence g′ satisfies 0 ≤ g′n ≤ gn for n ≥ 1. If βN is a positive
zero of

xN − g′1x
N−1 − g′2x

N−2 − ...− g′N ,

then βN ≤ αN .
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We use this theorem by estimating those αN from below, for computing
which we don’t have enough numerical data.

Now we apply these theoretical results to our problem the same way
it has been applied by Rands and Welsh to polyominoes. Let’s fix the
dimension number k ≥ 2. The following proposition was formulated in [13]
for polyominoes with almost the same proof.

Proposition 1.3.24. The sequence (psk(m))m∈N0
with psk(0) := 1 is a

pseudo renewal sequence.

Proof. Following Rands and Welsh, we say that a polyedge A ∈ PSk(m)
is constructible, if it can be split into two polyedges B ∈ PSk(r) and
C ∈ PSk(m− r) for some 0 < r < m by using the one-to-one map (call it Z
here)

Z : PSk(r)× PSk(m− r) →֒ PSk(m)

from 1.3.4, which connects the lexicographically greatest element of the node
set of B with the lexicographically smallest element of the node set of C. If
such splitting is impossible we call this polyedge inconstructible. Let

∆k(m) := {A ∈ PSk(m) | A is inconstructible } and

δk(m) := |∆k(m)|.
Each polyedgeA ∈ PSk(m) is either inconstructible or we can split it (maybe
in more than one way) into B ∈ PSk(r) and C ∈ PSk(m − r) for some
0 < r < m. In the latter case, we choose the split possibility with the
smallest r. Then B is inconstructible and A ∈ Z(∆k(r) × PSk(m − r)).
Thus

PSk(m) = ∆k(m)∪̇
(

m−1⋃

r=1

Z(∆k(r)× PSk(m− r))

)

.

By definition of Z and r, the union on the right hand side is disjoint. Since
Z is one-to-one, we have

psk(m) = δk(m) +
m−1∑

r=1

δk(r)psk(m− r), m ≥ 1. (∗)

So the inconstructible polyedge numbers form the reciprocal sequence for
(psk(m))m. Since δk(m) ≥ 0 and from inequalities in 1.3.9 follows that

psk(m) ≤
(
(2k−1)2k−1

(2k−2)2k−2

)m
, we have proven that (psk(m))m with psk(0) = 1

is a pseudo renewal sequence by definition.
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Now we set k = 2 and can determine iteratively δ2(m) from (∗) and
from the direct enumeration results of planar polyedges until M := 21. We
use the theorem 1.3.21 and determine the unique non-negative zeros αm

of the corresponding polynomials pm. These zeros are lower bounds for
the polyedge growth constant. Hereby we get a little better bound if we
remark that δ2(m + 1) ≥ δ2(m) and use the proposition 1.3.23, where the
numbers δ2(m) for m ≥ M are set to δ2(M). It turns out that extending
the sequence of inconstructible polyedge numbers this way doesn’t give much
improvement. Let’s view the results:

m δ2(m) αm

1 2 2
2 2 2.73205
3 6 3.20701
4 20 3.51508
5 76 3.73736
6 304 3.9042
7 1280 4.03544
8 5538 4.14125
9 24550 4.22863
10 110766 4.30207
11 507050 4.36473
12 2348546 4.41886
13 10985660 4.46614
14 51815378 4.5078
15 246144560 4.54482

m δ2(m) αm

16 1176536280 4.57793
17 5654171948 4.60774
18 27302650348 4.63473
19 132398319130 4.65929
20 644477607218 4.68174
21 3147863722202 4.70234
22 the same (extended) 4.7064
23 ... 4.70725
24 ... 4.70743
25 ... 4.70747
26 ... 4.70748
27 ... 4.70748
28 ... 4.70748
29 ... 4.70748
... ... ≈ 4.70748

We should mention, that all the values printed here are rounded and that
p′m(αm) gets very high with growing m, so that even a small rounding of
the argument x ≈ αm produces value pm(x) which is far away from zero.
We can summarise now:

Theorem 1.3.25 (Bounds on the planar polyedge growth constant).

4.70747 < lim
m→∞

ps2(m) ≤ 27/4

Now we have a procedure for improving the lower bound, which de-
pends on knowing polyedge counts, which can be reached (nowadays) only
through a super-polynomial-time enumeration algorithm. Note that these
lower bounds converge to our limit, guaranteed by the theorem 1.3.21. For
the upper bound, we don’t see anything similar at the moment.
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Problem 1.3.26. Give a procedure for improving an upper bound for the
number of planar m-edges.

1.4 Related polyforms

If the main problems concerning polyedges (e.g. generating function, asymp-
totic behaviour) are hard to solve exactly, we could try to explore similar
“polyforms”, hoping to get more exact results, or hoping to find out whether
there is a relationship between polyedges and the other “polyforms”.

1.4.1 Trees with candles

Here we introduce a new type of planar polyedges, for which we are able to
find exact formulas and establish asymptotic properties relatively easy.

Definition 1.4.1 (Chopped Tree With Candles). A chopped tree with can-
dles5 is a two-dimensional m-edge with the following properties:

• It contains a vertical line segment (of any length between 0 and m),
which we call “trunk”; the trunk is to the left of all other edges.

• It contains horizontal line segments, which we call “branches”, which
lie to the right of the vertical segment. Their leftmost point is on the
trunk.

• Each branch is allowed to have “candles”, which are vertical edges of
length 1, whose lower node is on a branch.

A fixed chopped tree with candles is an equivalence class under the group
of translations. However, we are going to speak only about fixed chopped
trees, so we omit the prefix “fixed”.

Example 1.4.2. Here is an example of a chopped tree with candles. We
can view it either as a polyedge (left picture), or as a tree with candles on
each branch (middle picture) or as a histogram (right picture):

5A more precise name would be “one-sided histogram”, but “imagination is more im-
portant than knowledge”(A. Einstein).
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Before we count the “chopped trees with candles”, we need to list some
known facts for preparation.

Definition and Proposition 1.4.3 (Pell Numbers).

(a) An n-th Pell number pn is defined by

p0 = 1, p1 = 2,

pn = 2pn−1 + pn−2, n ≥ 2 (1.2)

The sequence starts with 1, 2, 5, 12, 29, 70, ...

(b) For all n ∈ N0 we have:

pn =
∑

0≤l,d,k
l+2k+d=n

(l + d+ k)!

d!k!l!
=

∑

0≤l,d,k
l+2k+d=n

(
n− k

d, k, l

)

,

where the last notation uses multinomial coefficients.

(c) For all n ∈ N0 holds:

pn =
(1 +

√
2)n+1 − (1−

√
2)n+1

2
√
2

.

(d) The generating function is
∑

n≥0 pnx
n = 1

1−2x−x2 .

(e) limn→∞ p
1/n
n = 1 +

√
2.

For an extensive summary on Pell numbers, we direct the reader to the
Encyclopedia of Integer Sequences (see [12]).

Proof. Since all this is known, we only sketch the ideas behind the proof.
For the proof of part (b) from the recursive definition, see a paper by
Tewodros Amdeberhan (available at [1]), where he exploits a software pack-
age and achieves the result very fast.
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In fact, the whole thing can also be proven as follows: we assume the defini-
tion through multinomial coefficients, devise a closed form of the generating
function

∑

d,k

(
n−k

d,k,n−2k−d

)
ydzk (which is quite big) and get the closed form

for pn from (c) by setting y = z = 1. The latter can be checked to satisfy the
recursive formula very quickly. We can multiply the recursive equation (1.2)
by xn and sum on n, thus getting an equation for the generating function of
the sequence (pn)n. Solving it gives 1/(1− 2x− x2). This rational function
has two singularities −1±

√
2, so the convergence radius of the power series

is
√
2−1 (the smallest absolute value), and Cauchy-Hadamard formula gives

us limn→∞(pn)
1/n = 1/(

√
2− 1) =

√
2 + 1.

We need another standard combinatorial lemma. We speak of numbered
(distinguishable) objects x1, x2, ... if we count the pairs (xi, xj) and (xj , xi)
as two different pairs for all i, j. If we count them as one, we speak about
unnumbered (indistinguishable) objects.

Lemma 1.4.4. The number of ways to distribute b unnumbered balls into
c numbered boxes is

(
b+c−1

b

)
.

Proof. See any good book on combinatorics (e.g. [15], page 42). In short:
Any such distribution can be written in form of xx|x||xxx|||x, where x de-
notes a ball and | separates different boxes. Vice versa, each finite string
from the alphabet {x, |} can be interpreted as a distribution. The symbol x
occurs b times, the symbol | occurs c− 1 times.

Now to our main result.

Theorem 1.4.5. The number of chopped trees “without candles”, that have
m edges overall, is 2m. The number of chopped trees with candles, that have
m edges overall, is pm.

Proof. We give two different proofs.

(a) If a chopped tree has d edges in its trunk, it has d+1 positions where
branches can be attached to. If the branches have s edges, they can be
distributed in

(
s+(d+1)−1

s

)
=
(
s+d
s

)
ways onto these positions according

to the previous lemma. For each such distribution, we can place k
candles in

(
s
k

)
ways, since each branch edge can support at most one

candle independently on other branch edges. So the whole number of
chopped trees that have m edges is

∑

0≤s,d,k
s+d+k=m

(
s+ d

s

)(
s

k

)

=
∑

0≤d
0≤k≤s

s+d+k=m

(s+ d)!s!

s!d!k!(s− k)!

l=s−k
=

∑

0≤l,d,k
l+2k+d=m

(l + k + d)!

d!k!l!
.
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Choosing only summands with k = 0 leads to
∑

d

(
m
d

)
= 2m, which

completes the proof.

(b) We check immediately that there are two trees with candles with one
edge, 5 trees with candles with two edges, 2 trees without candles
with one edge and 4 trees without candles with 2 edges. In order to
prove the recurrence relations, we note that each tree with candles
with overall m + 2 edges is formed either by putting an edge on the
top of a tree with m+ 1 edges, or by lengthening the topmost branch
of a tree with m + 1 edges, or by lengthening the topmost branch of
a tree with m edges and putting a candle on its end.6 This process
generates all trees with or without candles in a unique way. It leads
to the recurrence relation cm+2 = 2cm+1 for trees without candles (if
cm denotes their number) and to pm+2 = 2pm+1 + pm for trees with
candles.

The growth constant for chopped trees with candles is 1+
√
2, so a very

small part of polyedges has this special form. We could ask ourselves, what
happens if we don’t chop the left side of the tree, whether we get a bigger
growth constant. This leads to the following definition.

Definition 1.4.6 (Tree with Candles). A (fixed) tree with candles is a two-
dimensional m-edge with the following properties:

• It contains a line segment of any length from 0 to m on the vertical
axis, call it the “trunk”; its lowest node is at the origin.

• It contains horizontal line segments; each of them intersects the trunk.
The parts to the left and to the right of the trunk are called “branches”.

• Each branch is allowed to have “candles”, which are vertical edges of
length 1, whose lower node is on a branch.

We define qm as the number of all (fixed) trees with candles that have
overall m edges. By convention, q0 = 1. The sequence starts as follows:
1, 3, 10, 31, 96, 296, 912, ...

Example and Remark 1.4.7. All chopped trees with candles are also
trees with candles. Here are some nontrivial trees with candles, where the
origin (the root) is marked with a big dot:

6A trivial idea thanks to Mitch Harris.
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The problem is that some fixed m-edges correspond to more than one fixed
tree with candles having m edges. But if we append a single vertical edge
to the origin from below, then we will get a one-to-one correspondence

trees with candles with m edges overall →֒ ps2(m+ 1).

Here the upper examples become unique fixed polyedges:

We could as well let this additional edge go into the definition, but for the
sake of simplicity during calculations we renounced to do that.

To our great astonishment we see now that there exists an exact formula
for the number of trees with candles with m edges.

Theorem 1.4.8. The number of trees with candles with m edges is

qm :=
∑

0≤s,d,k
s+d+k=m

(
s+ 2d+ 1

s

)(
s

k

)

.

Proof. If such a tree has d edges in its trunk, it has 2d + 2 positions to
attach branches. If the branches have s edges, they can be distributed in
(
s+(2d+2)−1

s

)
ways onto these positions according to the lemma 1.4.4, since

the edges are indistinguishable and the positions are distinguishable. For
each such distribution, we can place k candles onto s edges we used for
branches in

(
s
k

)
ways, since each branch edge can carry at most one candle

independently on other branches. For each triple of numbers (s, d, k) we get
(
s+2d+1

s

)(
s
k

)
possibilities.
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This result is not very easy to deal with. So our next task would be to
find a generating function for this term, a recursive formula and a closed
form for qm - if any of the kind exists. We show our solutions for all three
problems. We start with two simple lemmas. 7

Lemma 1.4.9. For all n ∈ N0 :

∑

k≥0

(
n− k

k

)

zk =
(1 +

√
1 + 4z)n+1 − (1−

√
1 + 4z)n+1

2n+1
√
1 + 4z

.

Proof. 8 We use the normal convention that
(
a
b

)
6= 0 iff 0 ≤ b ≤ a.

∑

n≥0

∑

k≥0

(
n− k

k

)

zkxn =
∑

k≥0

zk
∑

n≥0

(
n− k

k

)

xn
n−k=l
=

∑

k≥0

zk
∑

l≥0

(
l

k

)

xk+l =

=
∑

l≥0

xl
∑

k≥0

(
l

k

)

(zx)k =
∑

l≥0

xl(1 + zx)l =
∑

l≥0

(x+ zx2)l =
1

1− x− zx2
=

=
−1

z

(

x− −1 +
√
1 + 4z

2z

)(

x− −1−
√
1 + 4z

2z

) =

=
−1

z








z/
√
1 + 4z

(

x− −1 +
√
1 + 4z

2z

) − z/
√
1 + 4z

x− −1−
√
1 + 4z

2z








=

=
1√

1 + 4z







1

−1 +
√
1 + 4z

2z
− x

− 1

−1−
√
1 + 4z

2z
− x







.

7One could use a software package, for example Maple, to prove lemmas, but the
correctness proof for Maple is still missing.

8Thanks to Rob Johnson for showing a trick to shorten the proof.
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Since 1
a−x = 1

a(1−x

a
)
=
∑

n≥0 a
−n−1xn for a 6= 0, we have

1√
1 + 4z

∑

n≥0

((
2z

−1 +
√
1 + 4z

)n+1

−
(

2z

−1−
√
1 + 4z

)n+1
)

xn =

=
∑

n≥0

(2z)n+1
((

−1−
√
1 + 4z

)n+1 −
(
−1 +

√
1 + 4z

)n+1
)

√
1 + 4z

((
−1 +

√
1 + 4z

) (
−1−

√
1 + 4z

))n+1 xn =

=
∑

n≥0

(2z)n+1(−1)n+1
((

1 +
√
1 + 4z

)n+1 −
(
1−

√
1 + 4z

)n+1
)

√
1 + 4z (1− (1 + 4z))n+1 xn =

=
∑

n≥0

(
1 +

√
1 + 4z

)n+1 −
(
1−

√
1 + 4z

)n+1

2n+1
√
1 + 4z

xn.

Another lemma gives us the generating function of our sequence (qm)m.

Lemma 1.4.10.

∑

m≥0

∑

0≤s,d,k
s+d+k=m

(
s+ 2d+ 1

s

)(
s

k

)

xm =
1

x4 + 2x3 − x2 − 3x+ 1
.

Proof.

∑

m≥0

∑

0≤s,d,k
s+d+k=m

(
s+ 2d+ 1

s

)(
s

k

)

xm =
∑

s≥0

xs
∑

m≥0

∑

0≤d,k
d+k=m−s

(
s+ 2d+ 1

s

)(
s

k

)

xm−s.

Substituting l = m − s and noticing that the inner sum is zero for m < s
gives

∑

s≥0

xs
∑

l≥0

∑

0≤d,k
d+k=l

(
s+ 2d+ 1

s

)(
s

k

)

xl =

=
∑

s≥0




∑

d≥0

(
s+ 2d+ 1

s

)

xd








∑

k≥0

(
s

k

)

xk



xs =

=
∑

s≥0

(1 + x)s
∑

d≥0

(
s+ d+ d+ 1

s

)

xd+s d+s=n
=

∑

s≥0

∑

n≥s

(1 + x)s
(
2n+ 1− s

s

)

xn =

=
∑

n≥0

xn
∑

s≥0

(
2n+ 1− s

s

)

(1 + x)s.
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We know that the generating function from the previous lemma 1.4.9 is a
polynomial, so substitution of 1 + x for z in it is well-defined. That lemma
gives us:

∑

n≥0

xn
(
1 +

√
5 + 4x

)2n+2 −
(
1−

√
5 + 4x

)2n+2

22n+2
√
5 + 4x

=

=
1√

5 + 4x

∑

n≥0

xn

[((
1 +

√
5 + 4x

2

)2
)n+1

−
((

1−
√
5 + 4x

2

)2
)n+1]

=

=
1√

5 + 4x

∑

n≥0

[(
6 + 4x+ 2

√
5 + 4x

4

)(
6 + 4x+ 2

√
5 + 4x

4
x

)n

−

−
(
6 + 4x− 2

√
5 + 4x

4

)(
6 + 4x− 2

√
5 + 4x

4
x

)n
]

=

=
1√

5 + 4x









3 + 2x+
√
5 + 4x

2

(

1− 2x2 + 3x+ x
√
5 + 4x

2

)− 3 + 2x−
√
5 + 4x

2

(

1− 2x2 + 3x− x
√
5 + 4x

2

)









=

=
1√

5 + 4x

(
3 + 2x+

√
5 + 4x

2− 2x2 − 3x− x
√
5 + 4x

− 3 + 2x−
√
5 + 4x

2− 2x2 − 3x+ x
√
5 + 4x

)

We use that a+b
c−d − a−b

c+d = 2(bc+ad)
c2−d2

and get

2
(√

5 + 4x(2− 2x2 − 3x) + (3 + 2x)x
√
5 + 4x

)

√
5 + 4x(4 + 4x4 + 9x2 − 8x2 − 12x+ 12x3 − 5x2 − 4x3)

=

=
2(2− 2x2 − 3x+ 3x+ 2x2)

4x4 + 8x3 − 4x2 − 12x+ 4
=

1

x4 + 2x3 − x2 − 3x+ 1
.

Now we could try to determine whether there is any recursive definition
of the numbers qm. And it turns out that a fourth-order linear recursive
formula exists indeed. Before we formulate it, we introduce the notation
∑

k akx
k for the formal sum from k = −∞ till k = +∞. If we write

∑

m qmxm but qm is only defined for non-negative m, we assume qm = 0
for all negative m.
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Proposition 1.4.11. Assume that for the generating function of a sequence
(al)l∈N0

and a polynomial p(x) =
∑n

j=0 pjx
j holds:

∑

i

aix
i =

1

p
.

Then p0 6= 0, the recurrence relations

a0 =
1

p0
,

al =
1

p0

n∑

j=1

(−pj)al−j for l 6= 0

hold and the recursion is linear of degree deg p.

Proof. Multiplying the given equation by the polynomial in the denominator
gives

∑

l





n∑

j=0

pjal−j



xl = 1,

so a0p0 = 1 and for l 6= 0 the equation implies
∑n

j=0 pjal−j = 0.

This simple proposition allows us to read the recurrence for the number
of trees with candles having m edges right from the generating function and
we get

Corollary 1.4.12. ∀m ≥ 1 : qm = 3qm−1 + qm−2 − 2qm−3 − qm−4

(with q−1 = q−2 = q−3 = 0).

Now we derive an explicit formula for the number of trees with candles
that have m edges. Before that, we need to mention a well-known result as
a lemma.9

Lemma 1.4.13. Let K be a field, p ∈ K[x], n ∈ N
+, p =

∏n
i=1(x− ri) with

pairwise different ri ∈ K for i = 1, . . . , n.

(a) Then

1

p
=

n∑

i=1

ai
x− ri

,

where

ai =
∏

1≤j≤n
j 6=i

1

ri − rj
.

9Thanks to Robert Israel for driving my attention towards it.
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(b) If ∀ i ∈ {1, ..., n} : ri 6= 0 , then the m-th coefficient of the formal
power series 1/p is

−
n∑

i=0

ai

rm+1
i

.

Proof.

n∑

i=1

ai

x− ri
=

n∑

i=1






∏

1≤j≤n
j 6=i

1

ri − rj











∏

1≤j≤n
j 6=i

(x− rj)






(x− ri)
∏

1≤j≤n
j 6=i

(x− rj)
=

=

n∑

i=1

∏

1≤j≤n
j 6=i

x− rj

ri − rj

n∏

j=1

(x− rj)

︸ ︷︷ ︸

p

.

The numerator is a polynomial of degree at most n − 1 and on n positions
rk ∈ {r1, . . . , rn} it takes the value







∑

1≤i≤n
i 6=k

∏

1≤j≤n
j 6=i

rk − rj

ri − rj







+
∏

1≤j≤n
j 6=k

rk − rj

rk − rj

︸ ︷︷ ︸

1

=

= 1 +
∑

1≤i≤n
i 6=k







∏

1≤j≤n
k 6=j 6=i

rk − rj

ri − rj







(

rk − rk

ri − rk

)

︸ ︷︷ ︸

0

= 1.

So the numerator is a constant polynomial and the first part is proven.
The second part follows from the first part and from

n∑

i=1

ai
x− ri

=
n∑

i=1

−ai
∑

m≥0

r−m−1
i xm.
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The proof of the following proposition establishes an explicit formula for
the number of candle trees with m edges.

Corollary 1.4.14. (a)

qm = −
n∑

i=0

1

rm+1
i

∏

1≤j≤n
j 6=i

(ri − rj)
,

where r1 = 1, r2 = a
6 + 2

a − 1, r3 = − a
12 − 1

a − 1 + i
√
3
(
a
6 − 2

a

)
,

r4 = − a
12 − 1

a − 1− i
√
3
(
a
6 − 2

a

)
with a = (108 + 12

√
69)1/3.

(b) The growth constant of candle trees is 1
|r2|

= 6a
a2−6a+12

≈ 3.0795956....

Proof. One can verify that the ri are the zeros of p = x4+2x3−x2−3x+1 and
apply the previous lemma to get the exact formula. In order to compute the
growth constant, we remark that our generating function 1/p should have
a singularity on the border of the convergence ball. The smallest absolute
zero of p is |r2| ≈ 0.3247...

We have answered all the posed questions concerning trees with candles.
What is still to be done is the “bijection” proof of the recurrence relation
for qm. For the chopped trees with candles, it was not hard. For the trees
with candles in general, the author doesn’t see how to do it at the moment.

1.4.2 Connections among polyominoes, polyedges, polyplets.

We could ask ourselves also about the relationships to other more natural
“polyforms” than candle trees. We concentrate only on the two-dimensional
case in this section. Let’s first define these other polyforms.

Definition 1.4.15. A polyplet is a finite set of 2-dimensional square cells
so that:

(a) Each cell has side length 1, its centre has integer coordinates, its sides
are parallel to the axes;

(b) If two cells overlap, then their intersection is either one point or one
common side;

(c) The union of all cells is path-connected.

Example 1.4.16. Here is an example of a polyplet:
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Remark 1.4.17 (Klarner’s constant for polyplets and other polyforms). We
could redo the proofs from the previous chapters for polyplets. Since each
polyplet cell has 8 neighbours (and not 4, as a polyomino), the number of

fixed n-plets can be bounded by
(
7n
n

)
≤ 7

(
77

66

)n−1
, so the Klarner’s constant

for polyplets exists too and is lower than 77/66. It is already known, that
for polyominoes on any lattice with bounded degree k the growth constant
exists and is lower than (k−1)k−1/(k−2)k−2, so there is nothing really new.

Remark 1.4.18 (Relations between polyedges and polyplets). The inter-
esting thing about polyplets is that there are at least as many fixed n-plets
as the half number of the fixed n-edges! We can see it by constructing a
special map10

fn : PS2(n) → fixed n-plets.

If X is a polyedge, construct a square around each stick of this polyedge
so that this stick is its diagonal. The “overlapping” and “connectedness”
properties are satisfied. In order to get the right side length as well as the
right centres, we scale the polyplet (or the underlying lattice) by the factor
1/
√
2 and rotate it by π/4 and shift it a bit.

In order to see that each fibre has at most two elements, notice that each
polyplet-cell has only two diagonals, and choosing a diagonal in a single
cell automatically determines the diagonals of its neighbours. So there are
at most two different polyedges which can be constructed from a single
polyplet.
This proves that asymptotically, there are no less polyplets than polyedges,
i.e. the Klarner’s constant for polyedges is a lower bound for the Klarner’s
constant for polyplets.

Remark 1.4.19 (Relations between polyominoes and polyedges). We try
to explore the relations between polyominoes and polyedges in order to get
more information about the Klarner’s constant for polyominoes.

(a) All planar polyominoes are certainly polyplets. More than that, if
we take any diagonal of some cell of a (2-dimensional) n-omino, and,
starting from it, draw the diagonals of the adjacent cells that touch
the former diagonal at the ends, we get an n-edge. So, polyominoes
are in the range of the maps fn. Let An := f−1

n ( fixed n-ominoes ). If

10I’m indebted to Günter Stretenbrück for this simple construction.
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we take a fixed n-omino P , then |f−1
n (P )| ≤ 2, since there are at most

two ways to construct a polyedge from it, since each square has two
diagonals. Assume that some polyomino P has only one corresponding
polyedge, i.e. f−1

n (P ) = {E} (it can’t be the empty set anyway) for
some polyedge E. Let e be the leftmost node in the bottom row of
E. We can determine the previous position of e if we imagine the line
which is tilt by π/4 to the left (i.e. which goes in the SE-NW-direction)
and let the line approach P from south-west until it touches P . Among
the touching points, the one which lies further to north-west, is the
point, which is mapped to e. On the other hand, there should also
exist another (translationally equivalent) version E′ of E which we can
get by taking the perpendicular diagonals, here the furthest vertex in
the north-west direction is e′. Both e and e′ belong to the same cell
(otherwise, e.g. if e′ were further left, it would be an end-point of a
diagonal of a cell, whose second diagonal would touch the line).

n−omino

e

e’

Since both E and E′ are translationally equivalent and thus e′ lies
on e in the standard position, we know that the leftmost node in the
bottom row of both E and E′ has both vertical and horizontal edges.
So, the drawn n-omino looks in fact like this:

n−ominoe’
e

This contradicts to the way the NW-SE-line was drawn.
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We have proven that each fixed n-omino has exactly two corresponding
fixed n-edges.

(b) Nevertheless not all polyedges have corresponding polyominoes. Even
if we allow each cell of the polyomino to have 6 neighbours (instead of
4), for example, if we allow them to have neighbours in the north-west
and south-east directions, there would still exist polyedges without the
corresponding counterpart, as here:

(c) In order to achieve some results about the Klarner’s constant for poly-
ominoes, we could work with the sets An, which were defined above,
and use the equation |An| = 2s2(n). At the same time, the n-edges
from An are not classifiable exactly enough through some local topo-
logical properties, for example the second polyedge is in A11 and the
first is not in A10:

But a very big class, contained in An, which is much better classifiable
through local properties, is

Bn := {p ∈ PS2(n) | p contains no “– –” }.

This means that in any member of Bn, there exists no node of degree
two, whose two adjacent edges are both horizontal or both vertical.
Let’s count its members:
n 1 2 3 4 5

|Bn| 2 4 12 38 120
We see that although the growth constant c for the sets Bn is lower
than that for polyominoes (and for the sets An), Bn has seemingly
more members, so for smaller n we get a better lower bound for c. We
have to take into account that we get bigger numbers for the same n.
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1.4.3 A relaxed problem.

We could ask what will happen if we relax some properties of the polyedges
and count the resulting objects.

Definition 1.4.20. A quasi-polyedge is an embedding of a simple undirected
graph into the 2-dimensional square lattice (remark that connectedness is
no more required here). A free quasi-polyedge is an equivalence class of
quasi-polyedges under the isometry group of an n× n square.

Now we could reflect on the number of quasi-polyedges with m edges
which fit into a n× n box:
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... ...

Clearly, since this box has n edges on each side, it has (n + 1)n horizontal
edges and thus 2(n2 + n) edges overall. So the number of quasi-m-edges

in an n× n-box is
(
2(n2+n)

m

)
. What happens if we count free quasi-m-edges

fitting into the n×n bounding box, is answered by the special case of Polya’s
counting theorem. We are going to introduce it.

Theorem 1.4.21 (Special case of Polya’s Theorem). Let G be a group of
permutations of a finite set D, let R be the set of l colours and C(D,R) be
the set of different colourings of elements of D using colours from R.
Then the number of equivalence classes in C(D,R) induced by the operation
of G is given by

1

|G|
∑

p∈G

lcyc(p)

where cyc(p) is the number of cycles of the permutation p in it’s unique
standard representation.
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For the proof see books on enumerative combinatorics (e.g. [15], pages
281–318).

In principle, this theorem suffices to count all quasi-polyedges by letting
D be the set of all labelled nodes within the n × n-box, and R be the set
{present, absent} with l = 2. Then G contains following permutations of
the set of nodes in the n× n-box in the standard position:

• identity

• rotations π/2,−π/2

• flip over centre

• flip over the main diagonal and flip over the second diagonal

• flip upside-down and flip left-right

In order to count the m-quasi-edges separately from, say, (m + 1)-quasi-
edges, we have to proceed more generally than we proceed while computing
the total number of all quasi-edges that fit into the n× n square.

Definition 1.4.22. Let G be a group of permutations. For π ∈ G, let ci(π)
be the number of cycles of length i in the standard representation of π and
let k := max{i ∈ N | ∃π ∈ G : ci(π) 6= 0} be the length of the longest cycle
of all permutations in G. Then the cycle index PG ∈ N0[x1, ..., xk] is defined
as

PG(x1, x2, ..., xk) =
1

|G|
∑

π∈G

x
c1(π)
1 x

c2(π)
2 · · ·xck(π)k .

Computing the cycle index of groups (embedded into some permutation
groups) is a hard task in general. Fortunately, our case can be done by hand.
Theorem 1.4.21 can be restated as follows

Corollary 1.4.23. Suppose that G is a group of permutations of a finite set
D and that C(D,R) is the set of colourings of elements of D using colours
in R, a set of l elements. Then the number of inequivalent colourings in
C(D,R) is given by PG(l, l, ..., l).

This corollary gives us the direct answer to the number of all quasi-edges
which fit into the n×n box, by using the cycle index. At the same time, the
theorems introduced so far are not enough for count quasi-polyedges with
different edge counts separately. To do this, we need to invest a little more
work.
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Remark and Definition 1.4.24. Let D be a finite set, G a group of
permutations on D, let R be the set of l colours. Distinguish the colours
by assigning a weight w(r) to each colour r. The weight of a colouring of
D is then defined as the product of weights of the colours assigned to the
elements of D. The inventory of a set of colourings is the sum of all weights
of colourings from this set.
The good thing about colourings is that if they are equivalent (under the
operation of some group of permutationsG), then they have the same weight.
So we can speak about the weight of the whole equivalence class (defined as
the weight of the representatives), let’s call it the weight of a pattern; and
we can speak about pattern inventory, defined as the sum of weights of the
patterns in the set.

Given a pattern inventory as a polynomial in colour weights r1, ..., rl,
we can read the coefficients of monomials rq11 · · · rqll . They would give the
number of patterns with q1 colours r1, ..., ql colours rl. That means that
the task is to compute such polynomials, which is done by the following
theorem.

Theorem 1.4.25 (Polya’s Theorem). Suppose that G is a group of permu-
tations on a finite set D and C(D,R) is the collection of all colourings of D
using colours from R. If w is a weight assignment on R, then the pattern
inventory of colourings in C(D,R) is given by

PG(
∑

r∈R

w(r),
∑

r∈R

w2(r), ...,
∑

r∈R

wk(r)).

Now let’s go over to our initial problem. First we compute the cycle
index.

Theorem 1.4.26. The cycle index of the n× n-box symmetry group, em-
bedded into Sym2(n2+n), is

1

8

(

x
2(n2+n)
1 + 3xn

2+n
2 + 2x

(n2+n)/2
4 + 2

{

xn1x
n2+n/2
2 , if n is even

xn
2+n

2 , if n is odd

)

.

Proof. Since each of the permutations in the group (which were listed above)
has the order 1,2 or 4, we have k = 4 variables. We’ll examine how much
each permutation contributes to the index.

(a) Identity. All cycles have length 1. Contribution x
2(n2+n)
1 .
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(b) Rotation π/2. Each edge returns to its place after exactly four rota-

tions. No edge gets to its place earlier. Contribution x
(n2+n)/2
4 .

(c) Rotation −π/2. The same.

(d) Flip over the centre (the same as rotate by π). Each edge has order

two. Contribution xn
2+n

2 .

(e) Flip over the main diagonal. Each edge has order 2. Contribution

xn
2+n

2 .

(f) Flip over the second diagonal. The same applies.

(g) Flip left-right.
If n is odd, then there are n+1 edges which remain invariant: they in-
tersect the symmetry line. All the other edges (there are 2n2+2n−n−1

= 2n2+n−1) have the order two and the contribution is xn+1
1 x

n2+(n−1)/2
2 .

If n is even, then there are n edges on the symmetry line which are
mapped to themselves, other 2n2 + n edges have the order two. Con-

tribution xn1x
n2+n/2
2 .

(h) Flip upside-down. The same holds.

Let’s sum it up:

|G|PG(x1, x2, x3, x4) =

= x
2(n2+n)
1 + 3xn

2+n
2 + 2x

(n2+n)/2
4 + 2

{

xn1x
n2+n/2
2 , if n is even

xn+1
1 x

n2+(n−1)/2
2 , if n is odd

Corollary 1.4.27. The number of free quasi-polyedges in an n× n-box is

1

8

(

4n
2+n + 3 · 2n2+n + 2 · 2(n2+n)/2 + 2

{

2n
2+3n/2, if n is even

2n
2+(3n+1)/2, if n is odd

)

.

Proof. Follows from 1.4.23 and 1.4.26 with number of colours l = 2.

We observe that the contribution of permutations other than identity
is asymptotically meaningless, the asymptotic behaviour is dominated by
22(n

2+n). That means that asymptotic results of “free” quasi-polyedges and
“normal” quasi-polyedges are equal.
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Corollary 1.4.28. The number of free quasi-m-edges in an n× n-box is

1

8

((
2(n2 + n)

m

)

+ 3

{

0, if m odd
(
n2+n
m/2

)
, if m even

})

+
1

4

{

0, if m 6= 0 mod 4
((n2+n)/2

m/4

)
, if m = 0 mod 4

}

+
1

4







∑

0≤t≤n
m−t even

(
n
t

)(n2+n/2
(m−t)/2

)
, if n even

∑

0≤t≤n+1
m−t even

(
n+1
t

)(n2+(n−1)/2
(m−t)/2

)
, if n odd







(with the convention that
(
x
y

)
= 0 for y < 0 or y > x).

Proof. We assign two weights: a for present edges and b for absent edges.
Then we compute the cycle count from Polya’s theorem as a polynomial in
standard form and read the coefficient of amb2(n

2+n)−m.
The polynomial is

1

8

(

(a+ b)2(n
2+n) + 3(a2 + b2)n

2+n + 2(a4 + b4)(n
2+n)/2

)

+

+
1

4

{

(a+ b)n(a2 + b2)n
2+n/2, if n is even

(a+ b)n+1(a2 + b2)n
2+(n−1)/2, if n is odd

.

The coefficients in front of amb2(n
2+n)−m sum up to our result.
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Chapter 2

Game ”Digit” and connected

problems

In this chapter we’ll talk about the game “Digit”. We present different mod-
els, talk about the representation of the game in computer’s memory, explore
the complexity of our game. Furthermore, we discuss an implementation of
a 2-player version.

2.1 Rules

There are several possible variants and definitions of the game. Some of
them proved to be interesting, while the others turned out to be dull.

Definition 2.1.1. • Let’s consider the following game between p play-
ers who share a common board, which is our 2-dimensional infinite
plane lattice (almost the same goes for k-dimensional case). Before
the game starts, each player possesses a hand of c cards, c is some
constant natural number. Each card has a single 2-dimensional m-
edge drawn on it. On the board we also have a single m-edge, which
we imagine composed of matches. All the polyedges present on the
cards and on the board are drawn from the set of all m-edges ran-
domly (suppose that m is big enough so that the set contains at least
c different polyedges).
The players play in turn. To do that, we assume that for each player
a unique next player is known. (We can imagine the players sitting
on the circle line, so that the next player is the one in the clockwise-
order). Each move is done the following way: the player who is on

47



48 CHAPTER 2. GAME ”DIGIT” AND CONNECTED PROBLEMS

turn takes a match from the board and puts in onto another place so
that the resulting graph on the board is still a valid m-edge, i.e. con-
nected. Then the player throws out those of his cards which coincide
with the resulting figure on the board. If he has no more cards, he
wins. Then the other players (in the given order) throw out their cards
which coincide with the polyedge on the board. The first player who
gets rid of all of his cards, wins.

• There are different questions which the former definition leaves open.
The answers to these questions represent possible variations of the
game.
If the players see each other’s cards, we call the game variant open. If
they don’t, we call it closed.
Repetitions of the game state may be treated differently. A game state
includes the position on the board and may or may not include the
cards of all players. Repetitions may either be allowed or prohibited
or the first player who moves into a repeated state loses or, as in chess,
after a state has been repeated a predetermined number of times, the
game is considered a draw. Passes may either be allowed or prohibited
or after two consecutive passes the game ends, after which the players
with the least number of cards win and all the others lose.
The coincidence of cards on the hand with the card on the board may
either be checked the “fixed” way, that means each polyedge is drawn,
say, in standard position, and we can tell where its upper, lower, left
and right side is. Or it can be “free”, that means that we can rotate and
flip two polyedges (in our mind) to determine whether they coincide in
any “rotated” or “flipped” way. Or it can be done “isomorphic”, that
means that two polyedges are equal if they are isomorphic as graphs.
We don’t treat the isomorphic case and concentrate ourselves only on
the first two cases.
Furthermore, the card on the board and the cards on the hands may
either be all different at the beginning or they are allowed to coincide
(at least partially).

2.2 Complexity results.

Now we’ll try to identify some problems connected with this game. Assume
that all the polyedges we talk about are planar.

Definition and Remark 2.2.1. (a) For a natural number m, define a
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fixed (free) transition graph for m-edges TT (m) (TS(m)) as an undi-
rected labelled graph with the label set of all fixed (or free, dependent
on the game variant) m-edges. Two vertices are connected by an edge
in this graph, if the underlying polyedges coincide up to a single edge,
i.e. if we can get one polyedge from the other by removing an edge
from one place and putting it onto another place.

(b) The complexity of our game can be measured in terms of this graph. As
follows from the previous chapter, the number of nodes grows asymp-
totically as ≈ 5.20m, i.e. it’s not possible to store the transition graph
even for relatively small m “as is”, e.g. as an incidence matrix or as an
adjacency list. The number of edges cannot be determined trivially.

Lemma 2.2.2 (Upper bound on the number of transitions). For the fixed
transition graph TT (m), each fixed (n,m)-edge is connected to at most 2mn
other fixed polyedges in the transition graph. So each m-edge is connected
to at most 2(m+ 1)m other polyedges.

Proof. First of all we count the number of free positions in a polyedge, where
we can put an additional edge.
For n = 1 we have 4 free positions, for n = 2 we have 6, and for n = 3 we
have 8 different free positions in a polyedge.
If we add a node to a polyedge, we have to connect it to the polyedge by an
edge. By placing an edge onto one of free positions, we reduce their number
by one, the edge itself carries at most three new. So adding a node increases
the number of the free positions up to maximally two.
Since we can also change the number of edges without adding nodes (which
doesn’t increase the number of free positions), we state, that the number of
free positions of an (n,m)-edge is at most 2n+2. If we have an (n,m)-edge
and remove an edge, we have two cases. In the first one, the number of
nodes is decreased, then we have at most 2(n − 1) + 2 = 2n free positions
to put the edge to, minus the one place where the edge has been before,
thus giving an upper border of 2n− 1 choices. In the second one, no node is
removed, so we have exactly two places of the new polyedge where the edge
cannot be put into, thus giving us at most 2n+ 2− 2 = 2n choices.
So the total number of possibilities to move any edge in an (n,m)-edge is
≤ 2mn. Theorem (1.3.8) gives 2m(m+ 1).

It’s harder to obtain a tight lower bound, since removing an edge might
destroy connectedness, thus diminishing the number of possible places, where
the edge can be placed to. Nevertheless the previous lemma gives us:
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Corollary 2.2.3. Storing the transition graph form-edges takesO(m3·pt2(m))
place, if we store edge and node lists “as is”, assuming that storing a label
(polyedge) takes O(m) place.

Remark 2.2.4. Here we count the total number of edges in the transition
graphs (repeating the node counts we already know) for free and fixed kinds:

m free, nodes free, edges fixed, nodes fixed, edges

1 1 0 2 1
2 2 1 6 14
3 5 8 22 142
4 16 71 88 934
5 55 529 372 5552
6 222 3424 1628 31906
7 950 20628 7312 180928
8 4265 119872 33466 1017830
9 19591 680189 155446 not counted

Now we simplify the game and consider the following problem: If a single
player moves and all the others don’t disturb him (e.g. always pass instead of
moving), what is the minimal number of steps he needs to win the game? To
see that this is non-trivial, we reformulate the problem as a graph problem.

Definition and Remark 2.2.5. We introduce a functional and a decision
variant.

(a) Suppose that G = (V,E) is a simple connected undirected graph,
s ∈ V and W ⊂ V . Find a path p in G of minimal length, so that p
starts in s and goes through each node from W at least once.

(b) MIN-SUBSET-STARTING-PATH1 = {〈V,E,W, v, k〉 | G = (V,E) is
a connected undirected graph, W ⊂ V , k ∈ N, v ∈ V , there exists a
path in G which starts in v and goes at least once through at least all
nodes in W ⊂ V , so that its length ≤ k}.

In both definitions the minimal path is also allowed to go through the nodes
in V \W .
We can “translate” these decision problems into the game language, if we

1The task of finding new names for NP-hard problems is getting hard itself: the author
tried several naming variants and was greatly astonished to notice that they were all
already used to describe other graph problems. Neither guarantee nor warranty is provided
that the chosen name is otherwise unused.
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think of (V,E) as of a transition graph, W contains cards from a hand of the
player who moves, v is the polyedge on the board. Since our transition graph
is a very special structure and |W | is in practice relatively small compared to
|V |, our special problem could actually be easier than the general problem,
but intuitively speaking, even a polynomial-time algorithm operating on the
whole graph wouldn’t help much, since the length of our input, namely the
size of the transition graph, is already exponential in m. Of course, since the
whole graph cannot be stored in general, an implementation has to generate
it locally on need.

Theorem 2.2.6. The decision problem MIN-SUBSET-STARTING-PATH
is NP-complete.

Proof. First we notice that the language is in NP, since we can construct
the prover which accepts a path as a proof and checks, whether it’s in the
graph, whether it touches all the nodes in the given subset and starts with
the given node and computes its length - and all this in polynomial time.
In order to prove NP-hardness, we construct a polynomial reduction from the
decision problem UNDIR-HAMCYCLE. The last one is a problem whether
an undirected graph possesses a Hamiltonian cycle. By convention, the
trivial graph on a single node is considered to posses a Hamiltonian cycle,
but the connected graph on two nodes is not. We assume that some fixed
alphabet Σ with at least two symbols and a reasonable encoding function
are given. We give a polynomial-time reduction f : Σ∗ → Σ∗ with ∀x ∈ Σ∗ :

x ∈ UNDIR-HAMCYCLE ⇔ f(x) ∈ MIN-SUBSET-STARTING-PATH.

Let x ∈ Σ∗ be an input word. If x is not a valid encoding of an undirected
graphG = (V,E), then some fixed word y 6∈ MIN-SUBSET-STARTING-PATH
is returned. Otherwise construct another graph G′ = (V ′, E′) from G as fol-
lows:

(a) If |V | = 1, return some fixed word w ∈ MIN-SUBSET-STARTING-PATH.
If G is a connected graph on two nodes, return y. Otherwise:

(b) Choose a single node u ∈ V and duplicate it with its edges and call
the new node u′;

(c) Insert two new nodes v, v′ and two new edges {u, v}, {u′, v′};

(d) Return 〈V ′, E′, V ′, v, |V |+ 2〉.
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This transformation is polynomial-time.

Let x ∈ Σ∗. We show
x ∈ UNDIR-HAMCYCLE ⇔ f(x) ∈ MIN-SUBSET-STARTING-PATH.

“⇒”. Let x = 〈G〉, G = (V,E) is an undirected graph with a Hamil-
tonian cycle h. If there is only one node, then f(x) is in MIN-SUBSET-
STARTING-PATH per construction. Otherwise G is connected (via h), h is
a cycle with at least three edges and h passes through u. In the transformed
graph, there exists a path from u to u′ of length |V |. So in the transformed
graph there exists a path from v to v′ of length |V |+ 2.

“⇐”. Let x ∈ Σ∗, f(x) ∈ MIN-SUBSET-STARTING-PATH. If x = w,
then we already have x ∈UNDIR-HAMCYCLE, otherwise x = 〈G〉 for some
graph G = (V,E) with at least two nodes, f(x) = 〈V ′, E′, V ′, v, |V | + 2〉
for V ′, E′, v as in algorithm. Let h′ be a path which starts in v and goes
at least once through all nodes in V ′. Then h′ goes also through v′. Since
deg v′ = 1, the path ends in v′. The only nodes connected to v and v′ are
u and u′, respectively: h′ = (v, u, ..., u′, v′). Throwing out the first and the
last node we get a shorter path h = (u, ..., u′), which touches neither v nor v′

(because deg v = deg v′ = 1). It has length ≤ |V | and goes through |V |+ 1
nodes, so it is simple (i.e. without cycles). Let u′′ be the neighbour of u′

on this path. So G has a path from u to u′′ which goes through each node
of G exactly once. Since {u, u′′} ∈ E, we can append u also to the end of
the path: (u, ..., u′′, u). This is our Hamiltonian cycle. It’s longer that two,
since otherwise G would be a connected graph on two nodes which could
not lead to f(x) by construction.

At the same time there exists a non-trivial algorithm for solving this
problem. It requires exponential time, so it can be applied only to small
graphs.

Algorithm 2.2.7 (Solve functional MIN-SUBSET-STARTING-PATH). We
present a procedure2 which works for small W and V . (All variable names
have the same meaning as in 2.2.5a.) W.l.o.g. let the starting point s be in
W .

For each v ∈ V, k ∈ N we maintain the set

2I’m indebted to Raimund Seidel for this algorithm.
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X(v, k) = {(U, l) ∈ W × N | ∃ path p of length ≤ k : p ∩ W = U
and p = (s, ..., l, v)}.

Here we denote by p ∩W the set of all nodes from W which lie on p.
We construct these sets inductively as follows:
k = 1: ∀ v ∈ V :

X(v, 1) =







{({s}, s)}, if v is a neighbour of s and v 6∈ W ;

{({s, v}, s)}, if v is a neighbour of s and v ∈ W ;

∅, if v is not a neighbour of s.

k > 1: ∀ v ∈ V :

X(v, k+1) =

{

{(U ∪ {v}, v′) | {v, v′} ∈ E and ∃ l ∈ V : (U, l) ∈ X(v′, k)}, v ∈ W

{(U, v′) | {v, v′} ∈ E and ∃ l ∈ V : (U, l) ∈ X(v′, k)}, v 6∈ W

We work until we get (W, l) ∈ X(s, k) for some k ∈ N, l ∈ V . Then there
exists a path which starts in s and takes k steps until all W is touched.
We can reconstruct the path by going via the second component l to that
node and checking X(l, k−1), proceeding recursively until we reach X(s′, 1)
where s′ is some neighbour of s.
Space used: O(V · 2|W |) + O(place to store the graph);
Time used: O(k · |E| · 2|W |).

2.3 Implementation.

Here we discuss problems which are necessary to be solved in order to cre-
ate a playable version of the game. At last we talk about coding and user
interface.

The author implemented two versions of the game:

(a) An arbitrary number of computers that play randomly against an ar-
bitrary number of human players.

(b) Computer against computer or computer against a human.

Both variants are “open-cards”, repetitions are allowed, each variant can be
run either with the “fixed” or with the “free” way of comparing polyedges.
As soon as the polyedge on the board is changed, the players are allowed
to throw out their cards, starting with the player who made the move. As
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soon as some player has no more cards, all the others don’t come to turn.
The first variant served as a test platform for the interface and is interesting
only from this point of view. The second variant tested the algorithm.

2.3.1 Key problems and algorithms.

The implemented algorithm is an alpha-beta search with fixed depth, at
which a heuristic function is called. It turns out, that it’s quite difficult to
find a good one. One possible attempt is the “shortest-distance-heuristic”,
which has its roots in approximation algorithms for the travelling-salesman
problem. In a simple TSP heuristic algorithm, the town with the shortest
distance from the current location is targeted. It’s the simplest way for the
salesman to determine, which way he goes next.

In our situation, the polyedge on the board is the starting town and the
other towns are the polyedges on the hand. The distance is measured in
the minimal number of edge moves which have to be undertaken in order to
transfer one polyedge into another. It corresponds with the graph distance
between two polyedges in the transition graph. So the problem is how to
determine this distance, or at least how to find an approximation algorithm
for it. We assume that both polyedges have the same edge count.

Algorithm 2.3.1 (Computing approximation from below on the distance
of two polyedges). Let P1, P2 be two input polyedges (“stiff”, i.e. with a de-
termined location of the lattice), not necessarily in standard position. Put
one on top of the other. Then some edges of P1 may coincide with some
edges of P2 and some edges of P1 may stay alone and some edges of P2 may
stay alone. Subtract the number of coinciding edges from the total edge
count to get the number of all edges that don’t coincide and divide by two.

The intention is that if we take an edge e1 from P1 and an edge e2 from
P2 so that neither e1 nor e2 have partners from the other polyedge, as P1

and P2 are laid on each other, then we can make them partners by moving,
for instance, e1 in P1 to the place where e2 is placed in another polyedge.
Each move brings an edge onto “its place”, thus making P1 and P2 more
“similar”, so this algorithm computes a lower bound on the distance.

The extension from these “stiff” polyedges to polyedges modulo transla-
tion (fixed polyedges) is not problematic - shift one polyedge along another
in both directions and each time determine the number of coinciding edges.
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As soon as the maximum of coinciding edges is reached, we subtract it from
the total edge count and divide by two. If we want to handle free polyedges,
we have to compare all the eight images of the first polyedge with the second
in a “translation-invariant” way.

The major problem is that only a lower bound on the distance is com-
puted, although it may coincide (and coincides in most cases) with the actual
distance. Here is an example where the distance is three and the algorithm
computes two:

Nevertheless, this approximation turns out to work quite well.

Definition and Remark 2.3.2. We define the nearest hand distance as
the minimal number of consecutive moves a single player has to make in
order to get rid of a card from his hand. In other words, it is dist(b,H) :=
min{dist(b, c)|c ∈ H} where b is the polyedge on the board and dist(b, c)
denotes the graph distance between the polyedges b and c in the transition
graph and H is the set of cards in the hand.

The implementation of the heuristic function is given below. The situa-
tion is before our own move; better positions get higher values. Zero means
neutral.

Algorithm 2.3.3 (Heuristic function). Let M be the hand of “our” player,
H be the hand of the opponent.

if H is empty then

return −∞ (the opponent has just moved and cleared first his hand)
else

if M is empty then

return +∞ (the opponent has just moved and cleared our hand)
else

return dist(b,H)− dist(b,M) (both hands are not empty)
end if

end if

The intuition tells us, that during a game with allowed repetitions, a
player can always prevent the state where the opponent gets rid of all his
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cards; in order to do this, he just has to undo each move of the opponent. In
fact, the described algorithm actually does that: if we run two instances of
this algorithm against each other, either one of them wins in the first moves
or they both run forever, undoing each other’s moves. So this version of a
game turns out to be quite dull. At the same, it’s quite hard to find a good
heuristic for the version with prohibited repetitions of game states (maybe,
except for the game state we have at the start, since it is not a result of a
move, but of a random card distribution).
In principle, the same heuristic could do the job, where the distance between
cards is the distance between the underlying polyedges in the transition
graph, but it gets harder to compute now. In order to see that, remark,
that each move changes the transition graph, removing nodes from it which
could lie on a shortest path between two other nodes. So making too many
moves could make some distances longer or disconnect the transition graph
at all.

2.3.2 Concrete coding issues.

During programming, the author decided to leave the user interface as sim-
ple a possible, and to concentrate on the inner problems and computer player
algorithms. The game was implemented under Unix, using the GNU C++ 3
compiler. It can be run under each console and doesn’t require any X window
system. So the user interface needs getting used to. The program source can
be downloaded from the homepage of the Computational Geometry chair of
the Saarland university: http://www-tcs.cs.uni-sb.de/alexmalk/soft2.tar.gz

Remark 2.3.4 (Polyedge representation on the screen and addressing in-
dividual edges). Each card has a polyedge drawn on it. In order to move
different edges on the polyedge on the board from one place onto another,
we address them by coordinates. (The coordinate system here is only for
the user’s commodity, it has nothing to do with the coordinate system of
the underlying lattice.) To the left we see an example of a polyedge, drawn
in its coordinate system by the program, and to the right we see the same
“finely-drawn” polyedge.

http://www-tcs.cs.uni-sb.de/alexmalk/soft2.tar.gz
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Single edges are addressed through their coordinates. The edge on the
top of the polyedge from the example has coordinates (1, 1), the second edge,
counting from above, has coordinates (2, 2), the leftmost edge in the bottom
row has coordinates (2, 6). The move ”1,1-5,3” , which moves the edge on
(1, 1) to the position (5, 3), gives the following result:

0 2 4 6

1 3 5

0

2 _|_ _

4 _|_ _

6 | |

Remark 2.3.5 (Starting games). In order to start the game itself, we use
the program comp man. Here is how to use it:

comp_man [{H|C} {H|C} <edges> <cards>]

where

H means human, C means computer, they play in the given order.

At least one computer should be involved.

<edges> is the number of edges of each figure,

<cards> is the number of cards each player possesses.

By default the human starts and plays against the computer.

So in order to start the game with a single computer against a single human,
where a computer starts and where each side possesses 2 cards à 3 edges,
we type:

comp_man C H 3 2

The cards of both sides well be displayed and you’ll be asked to type in a
move. Then you see what changed on the “play-field” through your move,
the computer does its own move, you’ll be asked to give in your move again,
etc. Repetitions of game states mean that the best move for a computer is to
go back to the previous position, so (since there is no draw in this versions)
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the only possibility you have is to terminate the program or play forever.

Another program you can try is

try_game [<random_players> <human_players> <edges> <cards>]

where

<random players> is the number of random players involved,

<human_players> is the number of human players involved,

<edges> is the number of edges of each figure,

<cards> is the number of cards each player possesses.

For instance, “try game 1 1 5 2” gives you a chance to simulate a game
against a drunken person, where each has two cards à 5 edges. Started
without arguments, “try game” lets a single drunken player play against
itself with three cards à three edges. Thus you can simulate a random
walk through the transition graph, which continues until a random subset
of nodes has been passed through.



Summary and Discussion

In this work, we explored the borders of the very captivating world of ani-
mals.

We looked at such species as site animals (also known as polyominoes)
and paid a special attention to bond animals (polyedges). We were able to
observe and prove that the second behaves almost in the same way as the
first, at least on the (k-dimensional) surface. They both grow asymptotically
constantly, although at different rates, we were even able to estimate their
growth rate and give provable upper and lower bounds on it. We counted
bond animals by high-tech methods (and it turned out that they are so far
from extinction, that it’s not possible to count all of them with size 100
edges by current methods).

We tried to observe subspecies of bond animals in hope to find out more
about them. We found candle trees and were happy to count them with
relatively simple methods.

We also looked at some other animals (polyplets) in attempt to find some
relationships among polyplets, site animals and bond animals and succeeded.

Next we have relaxed the bond animals by allowing them to be uncon-
nected and tried to determine their number in restricted regions (n × n
square).

At last we played with bond animals by involving them into the so-called
“Digit game”. The game turned out to be too hard for a human or even a
computer to be solved (NP-completeness result), but nevertheless we pro-
grammed a computer to play with such animals against another human or
against another computer.
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Still there exist problems to be solved.

Nothing is known about the generating function of free or fixed polyedges.
It’s not known how to compute their number in polynomial time. Approx-
imation algorithms were not found either. The same holds for the growth
constant. Even its first digit is not provably known. A polynomial-time
approximation algorithm is unknown either. Even a super-polynomial-time
approximation from above is missing. Sub-dominant asymptotic behaviour
is uncertain. General framework uniting different polyforms is still absent
(possibly, it cannot be created meaningfully at all). What happens if we
allow “parallel” edges? How about hexagonal and triangular lattices? The
list may be extended.

If we speak about the game “Digit”, there is little to be done by the
future generations. Changing the underlying lattice has not been covered.
Determining exact graph distance on transition graphs or on their subgraphs
is nontrivial. Graphic user interface could make the game more attractive.
There exists a variety of unsolved problems in this area, too.



Appendix A

Series listing.

• Fixed planar polyominoes, see [11]. This result however, was taken
from Iwan Jensen’s page
http://www.ms.unimelb.edu.au/ iwan/animals/series/square.site.ser
1 1
2 2
3 6
4 19
5 63
6 216
7 760
8 2725
9 9910
10 36446
11 135268
12 505861
13 1903890
14 7204874
15 27394666
16 104592937
17 400795844
18 1540820542
19 5940738676
20 22964779660
21 88983512783
22 345532572678
23 1344372335524
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24 5239988770268
25 20457802016011
26 79992676367108
27 313224032098244
28 1228088671826973
29 4820975409710116
30 18946775782611174
31 74541651404935148
32 293560133910477776
33 1157186142148293638
34 4565553929115769162
35 18027932215016128134
36 71242712815411950635
37 281746550485032531911
38 1115021869572604692100
39 4415695134978868448596
40 17498111172838312982542
41 69381900728932743048483
42 275265412856343074274146
43 1092687308874612006972082
44 4339784013643393384603906
45 17244800728846724289191074
46 68557762666345165410168738
47 272680844424943840614538634
48 1085035285182087705685323738
49 4319331509344565487555270660
50 17201460881287871798942420736
51 68530413174845561618160604928
52 273126660016519143293320026256
53 1088933685559350300820095990030
54 4342997469623933155942753899000
55 17326987021737904384935434351490
56 69150714562532896936574425480218

• Free planar polyominoes, see [10]:

1, 1, 2, 5, 12, 35, 108, 369, 1285, 4655, 17073, 63600,
238591, 901971, 3426576, 13079255, 50107909, 192622052, 742624232,
2870671950, 11123060678, 43191857688, 168047007728, 654999700403,
2557227044764, 9999088822075, 39153010938487, 153511100594603



63

• Free planar polyedges, see [8]:
1, 2, 5, 16, 55, 222, 950, 4265, 19591, 91678, 434005, 2073783, 9979772,
48315186, 235088794, 1148891118, 5636168859

• Fixed planar polyedges. The starting terms were counted by the au-
thor first via the simple extension method, then it was abandoned for
the sake of the rooted method. Brendan Owen’s program (used to
count other kinds of polyforms) was used to compare the results until
m = 16, it also gives a good support for the results till m = 19 (un-
fortunately, at the time this paper is being written, his program has
integer overflow at m=16, so the results coincide only modulo 232).
The author managed to reduce the counting time up to a factor of
5, but nevertheless 21 needed two weeks on a 2.4 MHz Intel Linux
machine to complete:
1 2
2 6
3 22
4 88
5 372
6 1628
7 7312
8 33466
9 155446
10 730534
11 3466170
12 16576874
13 79810756
14 386458826
15 1880580352
16 9190830700
17 45088727820
18 221945045488
19 1095798917674
20 5424898610958
21 26922433371778
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Appendix B

Notation and abbreviations.

• ∃! ... means “there exists exactly one ...”

• ∧ means “and”, ∨ means “or”

• Natural numbers and its subsets: N+ = N = {1, 2, 3, ...} 6∋ 0,
0 ∈ N0 = N ∪ {0}, Nk = {1, ..., k} = [1, k] ∩ N for k ≥ 1

• If X is a set, P(X) denotes the power set of X and Pi(X) denotes the
set of all subsets of X with i elements.

• For a set X let idX be the identity map. For a map f : X → X, define
inductively the powers of f through f0(x) := x, f i+1(x) := f(f i(x))

• A (labelled) graph is a pair (V,E) with vertex set V (which is by
default finite, if nothing else mentioned) and edge set E. If the
graph is undirected, then E ⊂ P2(V ); if the graph is directed, then
E ⊂ V × V \ {(v, v) | v ∈ V }. We write d(v, w) for the graph dis-
tance between two nodes (length of the shortest path from v to w).
A path is a tuple (v0, ..., vk) ∈ V 1+k for k ≥ 1 so that {vi, vi+1} ∈ E
for 0 ≤ i < k. A simple path contains only pairwise different nodes.
A cycle is a path (v0, ..., vk, v0) with k ≥ 2 so that v0, ..., vk are pair-
wise different. A graph is called regular if the degree of each node is
constant. The abbreviations BFS and DFS refer to the breadth- and
depth-first-searches.

• Let’s call G(X) the set of all undirected graphs on the node set X. A
map

F : G(X) → G(Zk)
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is called an embedding map if there exists a one-to-one map

HF : X → Z
k,

so that F ((X,E)) = (HF (X), {(HF (v), HF (w)) | {v, w} ∈ E}).
An embedding of a graph G into Z

k is F (G) for some embedding map
F .

• Let (X,<) be an ordered set, k ∈ N. The lexicographic order on the
set Xk is given by:

(x1, ..., xn) <lex (y1, ..., yn) iff

∃ i ∈ Nk : ∀ j < i : yj = xj ∧ xi < yi

The lexicographic largest and the lexicographic smallest elements of a
finite nonempty set A ⊂ Xk are denoted by lmax(A) and lmin(A).

• For k ∈ N and a ring R with 1 define the standard unit vectors ei of
Rk as ei = (0, ..., 0, 1, 0, ..., 0) where the 1 stands on the ith position.

• Symk is the permutation group of Nk, Sym(X) is the permutation
group of the set X.

• Mat(m × n,X) is the set of all matrices with m rows and n columns
over the set X.

• During formulation of decision problems, we denote the encodings of
graphs, paths, lists, Turing machines et cetera via the triangle brackets
“〈” and “〉”, though it doesn’t matter what alphabet Σ and what en-
coding exactly we use. We should have |Σ| ≥ 2 and an encoding should
preserve the asymptotic lengths of the encoded objects. Example: 〈G〉
is an encoding of the graph G.

• w.l.o.g. is an abbreviation for “without loss of generality”
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