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Abstract. This paper examines two methods of determining whether a pos-

itive integer can correspond to the semiperimeter of a number of Pythagorean

triangles. For all positive integers k, using Bertrand’s Postulate, we can find

semiperimeters corresponding to k or more isoperimetrical triangles, and us-

ing the Prime Number Theorem, we can find exactly k generator pairs which

correspond to a semiperimeter.

1. Introduction

Pythagorean triangles are familiar to any high school geometry student. Many
could come up with the classic example, a triangle with sides of length 3, 4 and
5. They have likely also come into contact with triangles which have the same
perimeter, but different length sides. Less well known are distinct Pythagorean tri-
angles with equal perimeters - and rightly so, since the smallest example of two such
Pythagorean triangles share a perimeter of 1716. In this paper, we find methods of
determining whether or not a given perimeter can correspond to any Pythagorean
triangles, and a way of creating triangles which share their perimeter with an ex-
act number of distinct triangles. The methods are based largely upon the work of
A. A. Krishnaswami and Leon Bernstein, from their articles ”On Isoperimetrical
Pythagorean Triangles”[6] and ”On Primitive Pythagorean Triangles With Equal
Perimeters,”[2] respectively.

2. Generators for a PPT

A Pythagorean triple consists of three positive integers, (a, b, c) where c is the
largest, such that they can represent the sides of a Pythagorean (or right) triangle.
The well-known Pythagorean theorem states that for such triples, a2 + b2 = c2,
where c is the hypotenuse. We call a Pythagorean triple primitive if the three
numbers are pairwise relatively prime, that is, no two share a common factor greater
than 1. To indicate that two integers a and b are relatively prime, we will use the
notation gcd(a, b) = 1.

Theorem 1. If (a, b, c) is a primitive Pythagorean triple then one of a or b is even.

Proof. It is obvious that a and b cannot both be even for the triple to remain
primitive. Assume that both a and b are odd. This means that for some positive
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integers k and j, a = 2k − 1 and b = 2j − 1, and therefore

a2 + b2 = c2

(2k − 1)2 + (2j − 1)2 = c2

4k2 − 4k + 4j2 − 4j − 2 = c2

Because both a and b are odd, c must be even. Let c = 2i. This gives us:

4k2 − 4k + 4j2 − 4j − 2 = 4i2

4k2 − 4k + 4j2 − 4j − 4i2 = 2

Now we can factor 4 out of the left side of this equation, but this means that 4
divides 2, which is a contradiction. Therefore a and b cannot both be odd.

Thus exactly one must be even, and c must be odd. �

A natural place to begin a discussion of Pythagorean triangles is a method of
generating these triples. In Euclid’s Elements Book X, Proposition 29, he provides
a generator formula for Pythagorean triples. The following formula is a differ-
ent wording of the same result, and my proof follows the style of Keith Conrad’s
expository paper, ”Pythagorean Triples.”[4]

Theorem 2. The positive integers a, b, and c (where a is even) form a primitive
Pythagorean triple if and only if there exist relatively prime positive integers s and
t such that t > s > 0, exactly one is even, gcd(s, t) = 1, and

a = 2st, b = t2 − s2, c = t2 + s2.

Proof. Let (a, b, c) where a is even be a primitive Pythagorean triple. We find that

a2 = c2 − b2 = (c+ b)(c− b).

Because both c and b are odd, c+ b and c− b must be even. Using simple algebra,(a
2

)2

=
c+ b

2
· c− b

2

Let us prove that (c+b)/2 and (c−b)/2 are relatively prime. It is a common result in
number theory that if an integer divides two numbers, it must also divide their sum
and difference. Thus if d is a prime divisor of both of these fractions, then it must
divide c and b. By assumption, (a, b, c) is primitive, and so c and b are relatively
prime. Thus d = 1, and so the fractions (c+ b)/2 and (c− b)/2 are relatively prime.
Because by definition c is the hypotenuse, and thus c > b > 0, we can see that both
(c + b)/2 and (c − b)/2 are positive. Because they are relatively prime and their
product is a square, the Fundamental Theorem of Arithmetic indicates that there
exist relatively prime positive integers s and t such that

c+ b

2
= t2,

c− b
2

= s2.
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Because we have proved that the fractions equivalent to s2 and t2 are relatively
prime, it is clear that gcd(s, t) = 1. Algebraically, it follows that b = t2 − s2,
c = t2 + s2, and thus a = 2st.

It still remains to prove that s and t are not of the same parity. If they were
of the same parity, then b and c would both be even, which would contradict the
fact that (a, b, c) is primitive. Finally, since b = t2 − s2 > 0, we can conclude that
t > s > 0.

A proof of the converse is simple. Suppose s and t are positive integers that
satisfy t > s > 0, gcd(s, t) = 1, and exactly one is even. We can see then that the
given formula generates a primitive Pythagorean triple.

a2 + b2 = (2st)2 + (t2 − s2)2

= t4 + 2s2t2 + s4

= t2 + s2

= c2

Thus we have a2 + b2 = c2, but it remains to prove that the triple (a, b, c) is
primitive. Assume that it is not primitive, and thus the elements are not relatively
prime. Then gcd(b, c) = d 6= 1. Any divisor of b and c must also divide their sum
and difference, 2t2 and 2s2. However, because c is odd, d 6= 2. Because s and t are
relatively prime, d must equal 1. This is a contradiction. Therefore, the formulas
in Theorem 2 generate a primitive Pythagorean triple. �

The next theorem provides a second generating formula which will prove more
useful for the purposes of this paper.

Theorem 3. The positive integers a, b, and c (where a is even) form a primitive
Pythagorean triple, taking c to be the hypotenuse, if and only if there exist relatively
prime positive integers u and v such that u < v < 2u, v is odd, and

a = 2uv − 2u2, b = 2uv − v2, c = 2u2 − 2uv + v2.

Proof. Let (a, b, c) be a primitive Pythagorean triple. From Theorem 2, there exist
relatively prime integers s and t such that t > s > 0 and exactly one is even, such
that the formulas in Theorem 2 hold. Let u = t and v = s+ t. Therefore, we have
s = v − u, so that

a = 2u(v − u) = 2uv − 2u2

b = u2 − (v − u)2 = u2 − v2 + 2uv − u2 = 2uv − v2

c = u2 + (v − u)2 = 2u2 − 2uv + v2

Since s < t, it is clear that t < s+ t < 2t, so u < v < 2u, and because t and s are
of opposite parity, v must be odd. Because gcd(s, t) = 1, from the way we chose u
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and v it is clear that gcd(u, v) = 1 as well. Thus we have proven that (u, v) is a
generator pair for (a, b, c) with the specified qualities.

Next, beginning with relatively prime positive integers u and v such that
u < v < 2u and v is odd, we will prove that the formula in Theorem 3 generates a
primitive Pythagorean triple. With some algebraic manipulation, we can see that
these values satisfy the Pythagorean Theorem:

(2uv − 2u2)2 + (2uv − v2)2 = 4u2v2 − 8u3v + 4u4 + 4u2v2 − 4uv3 + v4

= 4u4 − 8u3v + 8u2v2 − 4uv3 + v4

(2u2 − 2uv + v2)2 = 4u4 − 8u3v + 8u2v2 − 4uv3 + v4

Similarly to the proof of Theorem 2, assume that the triple (a, b, c) is not primitive.
Then there exists some positive integer d 6= 1 which divides all three values a, b
and c. Thus d must also divide a+ c = v2 and b+ c = 2u2. However, because u and
v are relatively prime, d must equal 1. This is a contradiction, and so the triple
(a, b, c) must be primitive. This completes the proof. �

We will call such a u and v a generator pair. Each primitive Pythagorean triangle
corresponds to a distinct generator pair. This is because the matrix−2 2 0

0 2 −1
2 −2 1


is invertible, and so ab

c

 =

−2 2 0
0 2 −1
2 −2 1


u2

uv

v2


gives us a one-to-one mapping to (a, b, c). If there were another generator pair
(u′, v′) which satisfied the above equation, so thatab

c

 =

−2 2 0
0 2 −1
2 −2 1


 u′2

u′v′

v′2


then we will have u = u′ and v = v′. Thus this generator pair (u, v) is unique, and
each primitive Pythagorean triangle is generated by precisely one generator pair.

3. A Discussion of Perimeters

We are interested in the perimeters of right triangles which correspond to prim-
itive Pythagorean triples. Using Theorem 3, the perimeter of such a triangle is
equal to

a+ b+ c = 2uv

where u and v are positive, relatively prime integers that satisfy u < v < 2u and
v is odd. Thus an integer must be even for it to possibly be the perimeter of a
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primitive right triangle. We will deal primarily with the semiperimeter, denoted
s, which is defined as half of the perimeter, so s = uv. A positive integer s can
be the semiperimeter of a primitive right triangle if and only if it can be factored
as s = uv, where (u, v) = 1, u < v < 2u and v is odd. We will be interested in
distinct triangles which share a perimeter - such triangles are called isoperimetrical.
Because each generator pair corresponds to a distinct primitive right triangle, if we
have k generator pairs which correspond to a particular s, then we have k distinct
isoperimetrical right triangles with semiperimeter s. It is clear that the conditions
s = uv and u < v < 2u are equivalent to

√
s < v <

√
2s, hence the number

of primitive right triangles with semiperimeter s depends on the number of odd
divisors v of s which are in the interval (

√
s,
√

2s). Thus the following definition
will be important.

Definition 1. Let z be a positive integer. A positive integer n is a unitary divisor
of z if n divides z and the integers n and z/n are relatively prime. If z = xy and y
is an odd unitary divisor of z that satisfies

√
z < y <

√
2z, then we call this product

a P -factorization of z and write z = x×y. Note that the order in which the factors
x and y are written is important.

Counting the number of distinct P -factorizations of s gives the number of primi-
tive right triangles to which s corresponds. The following theorem provides a simple
way to check for P -factorizations.

Theorem 4. Suppose that z > 1 is a positive integer and that z = xy, where x and
y are positive integers. Then z = min{x, y} ×max{x, y} is a P -factorization of z
if and only if gcd(x, y) = 1, max{x, y} is odd, and the ratio x/y is between 1/2 and
2.

Proof. Assume that z = min{x, y} × max{x, y} is a P -factorization of z. Thus
max{x, y} is an odd unitary divisor of z, and gcd(x, y) = 1 from the definition of
a unitary divisor. Because max{x, y} is a unitary divisor of z, the conditions of
Theorem 3 apply, and the ratio x/y comes from the stipulation that u < v < 2u.
When x is the larger of the two, we have 1 < x/y < 2, and when x is the smaller,
we have 1/2 < x/y < 1. Therefore x/y is between 1/2 and 2.

Assume that (x, y) = 1, max(x, y) is odd, and the ratio x/y is between 1/2 and 2,
and let z = min{x, y}×max{x, y}. Because max{x, y} divides z and gcd(x, y) = 1,
max{x, y} is a unitary divisor of z. It is clear that 1/2 < x/y < 2 gives us
min{x, y} < max{x, y} < 2 min{x, y}, which is equivalent to

√
z < max{x, y} <√

2z. Therefore, z = min{x, y}×max{x, y} is a P -factorization of z. This completes
the proof. �

The following theorem will make use of the greatest integer function, also known
as the floor function. Let us define it here.
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Definition 2. For all x ∈ R, bxc is equal to the largest integer less than or equal
to x.

The next theorem concerns integers which can and cannot be semiperimeters of
primitive right triangles.

Theorem 5. The following hold:

a. If p is a prime and r is a positive integer, then s = pr is not the semiperime-
ter of any primitive right triangle.

b. If p is an odd prime, then s = p(p+ 2) is the semiperimeter of exactly one
primitive right triangle.

c. If p > 5 is an odd prime of the form 3k + 2, then s = 6p(p + 2) is the
semiperimeter of exactly two primitive right triangles.

d. Suppose that p is an odd prime and that f is a positive integer. Then
s = 2rpf is the semiperimeter of exactly one primitive right triangle if and
only if r = blog2 p

fc.

Proof. The result in part (a) follows from Theorem 3. Because s must be factoriz-
able into the product of two relatively prime integers, it cannot be the power of a
single prime. If we factor s = uv as u = 1 and v = pr, it is clear that 1 < pr < 2
does not hold for any prime p. Therefore, s = pr does not have any P -factorizations
and cannot correspond to the semiperimeter of any primitive right triangles.

For part (b), note that because p is an odd prime, p > 2, and 1 < (p+ 2)/p < 2.
It is clear that gcd(p, p+ 2) = 1 and p+ 2 is odd. Because p > 2,

2p < 4p+ 4 < p2 + 4p

p2 + 2p <p2 + 4p+ 4< 2p2 + 4p
√
s < p+ 2 <

√
2s

Therefore, s = p × (p + 2) satisfies the requirements of a P -factorization of s. We
hope to prove that it is the only P -factorization of s. If p+ 2 is prime, then there
are simply no other ways to factor s. If p + 2 is composite, let us choose one
factorization, such that p + 2 = ab where 3 ≤ a < b < p and gcd(a, b) = 1. Then
s = abp, and there are 8 unitary divisors of s. By the restriction that u < v < 2u,
we can see that we cannot factor s = u × v where v is either a, b, or p, lest we
have p + 2 < p. We also cannot have either u = 1 or v = 1. Therefore we have
three cases to try. Let u = b and v = pa, so b < pa < 2b. Because a > 2, we
know that 2b < p + 2 and p + 2 < pa. This contradicts b < pa < 2b, and so we
can rule out s = b × pa. Next, choose u = a and v = pb, and thus a < bp < 2a.
However, because a < b, this gives us bp < 2a < 2b, and therefore p < 2. This is a
contradiction. Therefore the only P -factorization of s that works is s = p× (p+ 2),
and so any number of the form p(p+ 2) can correspond to only one primitive right
triangle.
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For part (c), we will prove that the only P -factorizations of s are s = 2p×3(p+2)
and s = 2(p + 2) × 3p. Note that these are unitary divisors because p is an odd
prime of the form 3k+ 2, and so p+ 2 cannot be divisible by 2 or 3. It is also clear
that 2p < 3p + 6 ≤ 4p and 2p + 4 < 3p < 4p + 8, and so by Theorem 4, both are
P -factorizations. If p+ 2 is prime, these are the only factorizations of s.

Suppose p+2 is composite and p+2 = xy, where 5 ≤ x < y < p and gcd(x, y) = 1.
Since s = 2 · 3 ·x · y · p, there are 25 = 32 unitary divisors of s corresponding to this
factorization of p+ 2. Half of these divisors involve two or fewer terms:

1, 2, 3, x, y, p, 6, 2x, 2y, 3x, 3y, xy, 2p, 3p, xp, yp

By Theorem 4, the ratio of factors in a P -factorization must be between 1/2 and
2. It is clear that p/(p+ 2) > 1/2. First note that

xy

6p
=

1
6
p+ 2
p

<
1
3
<

1
2

and therefore by Theorem 4, xy cannot be a factor in a P -factorization of s, because
it violates the restrictions on the ratio of factors.

All of the terms preceding xy in the list are clearly smaller, and so the ratio
of each with its complement in s is smaller than xy/6p. Thus none of the terms
preceding xy can be factors in a P -factorization of s either. Since

yp

6x
>
xp

6y
=
x2p

6xy
=
x2

6
p

p+ 2
>
x2

12
≥ 25

12
> 2

neither xp nor yp can be terms in a P -factorization of s.
Therefore the only remaining options are s = 2p×3(p+2) and s = 2(p+2)×3p,

and so there are exactly two P -factorizations of s. Thus for each prime p = 3j + 2,
there are two generator pairs which correspond to the semiperimeter s = 6p(p+ 2).

For part (d), suppose that s = 2rpf is the semiperimeter of a primitive right
triangle. Because v must be odd, the only possible P -factorization of s is u = 2r

and v = pf . This means that

2r < pf < 2r+1

r <log2 p
f< r + 1

Therefore, blog2 p
fc = r.

Now assume that for an odd prime p and a positive integer f , s = 2rpf and
r = blog2 p

fc. Using the same, reversible steps above, this means that 2r < pf <

2r+1, and therefore
√
s < pf <

√
2s. It is clear that pf is odd and thus gcd(2r, pf ) =

1, so pf is an odd unitary divisor of s. Let us show that there are no other odd
unitary divisors of s. Because there are two primes in s, it has 4 unitary divisors:
1, 2r, pf , 2rpf . Only two of these are odd. It is clear that 1 < 2rpf 6< 2 for any
odd prime p. Therefore there is only one P -factorization of s, and so s = 2rpf

corresponds to exactly one primitive right triangle. �
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The following corollary enumerates several results about the number of integers
which can be the semiperimeter of right triangles.

Corollary 1. The following hold:

a. There are an infinite number of positive integers that are not the semiperime-
ter of any primitive right triangle.

b. There are an infinite number of positive integers that are the semiperimeter
of exactly one primitive right triangle.

c. There are an infinite number of positive integers that are the semiperimeter
of exactly two primitive right triangles.

Proof. By Theorem 5 part (a), all positive integers of the form pr where p is an
odd prime and r is any positive integer cannot correspond to the semiperimeter
of any primitive right triangles. Part (b) of Theorem 5 asserts that for any odd
prime p, s = p(p+ 2) corresponds to exactly one primitive right triangle. Because
there are infinitely many primes, parts (a) and (b) are proved. For part (c), we will
prove that there are infinitely many primes of the form p = 3j + 2. Assume there

are a finite number of primes (p1, p2, . . . pn) of the form 3j + 2. Let q =
n∏
i=1

p2
i + 1.

Because each p2
i = 3(3j2i + 4ji + 1) + 1, the expanded product of these squared

primes will be a sum of integers. Each term but the final, 1, is divisible by 3. Thus

we may say that
n∏
i=1

p2
i = 3a+ 1 for some positive integer a, and so q = 3a+ 2. If

q is prime, then we have a prime of the form 3j + 2 which was not on our previous
list, contradicting our assumption that there are a finite number of such primes.
If q is composite, it is not divisible by 3. Because q − 1 is divisible by all primes
of the form 3j + 2, q is not divisible by any of them. Thus it must be a product
of primes of the form 3j + 1. However, we have seen by equations 1 and 2 that
such a product is equivalent to 3a + 1 for some a, which contradicts the fact that
q = 3a + 2. Therefore, there are infinitely many primes of the form 3j + 2. Thus,
by Theorem 5 part (c), there are infinitely many positive integers corresponding to
exactly two primitive right triangles. �

4. Semiperimeters Which Correspond to At Least k ≥ 3 Triangles

We have proved that there are infinitely many integers which correspond to the
semiperimeter of exactly 0, 1, or 2 distinct primitive right triangles. In this section,
we will expand this result to semiperimeters corresponding to at least k primitive
right triangles for any k ≥ 3, k ∈ Z+.

Bertrand’s Postulate states that for a positive integer n, if n ≥ 2 then there
exists at least one prime in the interval (n, 2n). It was first conjectured by Joseph
Bertrand in 1845, then proved by Chebyshev [3] in 1850. A proof based on the 1932
proof by Paul Erdős appears in the appendix. Using Bertrand’s Postulate, we can
prove the following theorem:
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Theorem 6. For each positive integer k ≥ 3, there exists a positive integer s such
that s is the semiperimeter of k or more primitive right triangles.

Proof. Let s be an odd positive integer containing n distinct odd primes. We have
shown that s corresponds to the semiperimeter of primitive right triangles when
there are odd divisors of s in the interval (

√
s,
√

2s). Let b be the highest power
of 2 less than s, so that 2b < s < 2b+1. We will prove that either s or 2is, where
i is a positive integer such that 1 ≤ i ≤ b + 1, corresponds to at least k primitive
right triangles. There are 2n−1 unitary divisors of s greater than

√
s. Each divisor

must lie in one of the b+1 intervals (
√
s,
√

2s), (
√

2s,
√

4s), ... (
√

2bs,
√

2b+1s). Let
ri, where again 1 ≤ i ≤ b + 1, denote the number of odd divisors in the interval
(
√

2i−1s,
√

2is). Because 2b < s < 2b+1, if two divisors of s are in the interval
(
√

2bs,
√

2b+1s), then there are two complements of these divisors in s which are
integer values less than 2. This is impossible, and so no more than one divisor of s
can lie in the interval (

√
2bs,
√

2b+1s), so

r1 + r2 + · · ·+ rb = 2n−1 − 1.

Let the greatest ri be denoted rt. It must satisfy rt >
2n−1 − 1

b
.

Listing the primes in increasing order, let the nth odd prime be denoted pn.
Because Bertrand’s Postulate guarantees the existence of a prime in the interval
(n, 2n), we can see that

3 · 5 · 7 · · · pn < 3 · (3 · 2) · (3 · 22) · · · (3 · 2n−1)

= 3n · 2
n(n−1)

2

< (22)n · 2
n(n−1)

2

= 2
n(n+3)

2

Suppose that s = 3 · 5 · 7 · · · pn. Then, using b as defined above, 2b < s < 2
n(n+3)

2 ,

and therefore b <
n(n+ 3)

2
. Then, taking rt as defined earlier as the greatest ri,

rt >
2n−1 − 1

b
>

2(2n−1 − 1)
n(n+ 3)

>
2n−1

n2 + 3n
.

By choosing a sufficiently large value for n, we can make this larger than any
positive integer. Therefore, we can guarantee that there are at least k odd divisors
of s in one of the intervals (

√
2is,
√

2i+1s) for 1 ≤ i ≤ b. Thus there exists some
i within these parameters such that either s or 2is is a positive integer which
corresponds to at least k isoperimetrical right triangles. �

This shows us that for any k ∈ Z+, we can choose a large enough integer s
- that is, an s comprised of sufficiently many primes - that we can guarantee it
corresponds to the semiperimeter of at least k isoperimetrical right triangles. By
virtue of this ”large enough” s, there must also be infinitely many larger integers
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s which also correspond to the semiperimeter of at least k distinct primitive right
triangles.

5. Semiperimeters Which Correspond to Exactly k Triangles

Now that we can guarantee that for all k ∈ Z+, there exist infinitely many
positive integers which correspond to the semiperimeter of at least k distinct right
triangles, a natural question is whether it is possible to find integers corresponding
to exactly k right triangles. Leon Bernstein’s article [2] describes a way of generating
such numbers. The following proof is based on the method he lays out, but expands
upon the details.

We define the prime counting function π(x), as equal to the number of primes less
than or equal to x for any real number x. For example, π(14) = 6 and π(14.17) = 6.

By invoking the much stronger Prime Number Theorem, a generalization of
Bertrand’s Postulate, we can strengthen our results. The Prime Number Theorem
states that

lim
x→∞

π(x)
x

lnx

= 1.

It was proved in 1896 by J. Hadamard [5] and C. de la Vallée Poussin [7] (inde-
pendently), but the proofs are quite beyond the scope of this paper. As it is quite
often used, we will define the function in the denominator as `(x) = x/ lnx.

Theorem 7. For each r > 1, lim
x→∞

(`(rx)− `(x)) =∞

Proof. Given an r > 1 and a number x, the Mean Value Theorem guarantees the
existence of a point c ∈ (x, rx) such that

`′(c) =
`(rx)− `(x)
rx− x

Note `′(x) = (ln(x)−1)/(lnx)2. This function’s derivative is `′′(x) = (2−lnx)/(x ln3 x),
which has a critical point at x = e2. On the interval [e2,∞), `′(x) is decreasing,
and so we can say that `′(c) > `′(rx), assuming x > e2. Note that

`′(x) =
ln(x)− 1
(lnx)2

>
lnx− 1

2 lnx
(lnx)2

=
1

2 lnx
.

Therefore, we can see that

`(rx)− `(x) = `′(c)(rx− x)

> `′(rx)(r − 1)x

>
(r − 1)x
2 ln(rx)
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Let us take the limit of this final inequality.

lim
x→∞

(r − 1)
x

2 ln(rx)
=

r − 1
2

lim
x→∞

x

ln rx

=
r − 1

2
lim
x→∞

1
1
x

=∞

Note that we have used L’Hôpital’s Rule here, because the limit was an indetermi-
nate form. Because `(rx)−`(x) > ((r−1)x)/(2 ln(rx)), if the limit as x approaches
infinity of the right side of the inequality is ∞, the limit of the left must also be
∞. �

Theorem 8. For all k ∈ Z+ and for each r > 1, there exists a positive integer
N(r, k) such that for each x ≥ N(r, k) there exist k prime numbers between x and
rx.

Proof. To prove this theorem, we examine lim
x→∞

π(rx)− π(x)
`(rx)− `(x)

. First, note the fol-

lowing:

lim
x→∞

`(rx)
`(x)

= lim
x→∞

rx

ln rx
x

lnx

= r lim
x→∞

lnx
ln r + lnx

= r

If lim
x→∞

π(rx)− π(x)
`(rx)− `(x)

is equal to 1, we will be able to approximate π(rx)− π(x)

by the function `(rx)− `(x).

lim
x→∞

π(rx)− π(x)
`(rx)− `(x)

= lim
x→∞

π(rx)
`(rx)

· `(rx)
`(x)

− π(x)
`(x)

`(rx)
`(x)

− 1

By the Prime Number Theorem, we know that lim
x→∞

π(x)/`(x) = 1. Thus using
this result and our previous limit, we can see that

lim
x→∞

π(rx)− π(x)
`(rx)− `(x)

=
r − 1
r − 1

= 1.

Now it is clear that Theorem 8 follows from Theorem 7. Because
lim
x→∞

(`(rx)− `(x)) = ∞, it follows that lim
x→∞

π(rx) − π(x) = ∞ as well. Thus

by the definition of the limit, for any k ∈ Z+ and for each r > 1, there exists
N(r, k) > 0 such that π(rx) − π(x) > k for all x ≥ N(r, k). Equivalently, there
exist k primes in the interval (x, rx). �

This is a generalization of Bertrand’s Postulate, which states that N(2, 1) = 2 -
that is, there is one prime in the interval (x, 2x) for all x ≥ 2.



12 LINDSEY WITCOSKY ADVISOR: DR. RUSS GORDON

The following method for choosing an s which corresponds to exactly k primes
comes from Bernstein’s article. He provides a way to build s such that there are
exactly k possible generator pairs, which he explicitly describes.

Theorem 9. For each positive integer k ≥ 3, there exists a positive integer Mk

with the following property: for each n ≥ Mk there exist primes p1, p2, . . . , pk and
q such that

n < p1 < p2 < · · · < pk <
4
3
n,

1
p2
1

k∏
i=1

pi < q <
2
p2
k

k∏
i=1

pi.

Proof. From Theorem 8, if we choose r = 4
3 and x = n, then we are ensured that for

some N(4/3, k), there exist k primes in the interval (n, 4
3n) for all n ≥ N(4/3, k).

Similarly, to guarantee the existence of q, we can newly apply Theorem 8 for new
n and r values. Because we have already chosen our k primes, we let x =

p2p3 · · · pk
p1

.

By Theorem 8, for every real number r > 1, there is a corresponding integer N(r, k)
such that for every x ≥ N(r, k), there exists a prime in the interval (x, rx), or in
our case, (

p2p3 · · · pk
p1

, r
p2p3 · · · pk

p1

)
.

If we can show that r(p2p3 · · · pk)/p1 < 2(p1p2 · · · pk−1)/pk, then we see that our

interval
(
p2p3 · · · pk

p1
, r
p2p3 · · · pk

p1

)
is a subinterval of the desired interval, and so

there exists a prime q such that

p2p3 · · · pk
p1

< q < 2
p1p2 · · · pk−1

pk
.

Choose an appropriate r such that 1 < r < 4/3 - we will use r =
√

3/2. We
will assume our desired conclusion to be true and then follow reversible steps to
something we can prove to be true, thus proving that (x, rx) for the x and r values
we have specified is a subinterval of the desired interval.√

4
3
p2p3 · · · pk

p1
< 2

p1p2 · · · pk−1

pk

p2
k <

√
3
2
p2
1 < 2p2

1

We can confirm this to be true by our initial choice of the primes. From pk <
4
3n

and n < p1, we have p2
k <

16
9 n

2 < 16
9 p

2
1 < 2p2

1, and so the inequality holds. Because
each step is reversible, we have proven that there exists a prime q such that for
1 < r < 4/3

p2p3 · · · pk
p1

< q < 2
p1p2 · · · pk−1

pk
,

as desired. �
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Theorem 10. Let p1 < p2 < · · · < pk be k consecutive odd primes, such that

pk <
4
3p1. Let A =

k∏
i=1

pi and let ut =
A

pt
for t ∈ Z+, 1 ≤ t ≤ k. Assume there

exists a prime q such that

p2p3 . . . pk
p1

< q < 2
p1p2 . . . pk−1

pk
.

If vt = qpt, then the pairs (ut, vt) are generators of k primitive right triangles with
equal semiperimeters s = qA. Moreover, any (u, v) which generates a primitive
right triangle with semiperimeter s = qA is of the form (ut, vt).

Proof. We know that such a q exists by Theorem 9. Note that by the definitions
of ut and vt, ut < vt < 2ut for all positive integers 1 ≤ t ≤ k. We can also
see that gcd(ut, vt) = 1 is true because q is a prime larger than all of the primes
p1, p2, . . . pk. It is also clear that vt is odd, so each (ut, vt) satisfy the conditions
on generators as defined Theorem 3. Because the semiperimeter corresponding to
(ut, vt) is utvt = qA, which does not depend on t, the k primitive Pythagorean
triangles generated by (ut, vt) have equal semiperimeters.

To prove that these are in fact the only generator pairs for s = qA, let s =
p1p2 · · · pkq = u × v be a P -factorization of s. Assume that q divides u. If u = q,
then

v

u
=
v

q
<
p1p2 · · · pk
p2p3 · · · pk

p1

< p2
1.

However, we know that 1
2 <

v
u < 2, and so this cannot be true. Because u < v, it

is clear that u must not contain all of the k primes if it also contains q. However,
if it contains m primes, where 1 ≤ m < k, then v contains at least 1 but not k of
the primes. This means that

uv = p1p2 · · · pkq

>
(p1p2 · · · pk)2

p2
1

= p2
2p

2
3 · · · p2

k

≥ v2

u > v

which is a contradiction, and so q cannot divide u. Therefore it must divide v.
We can see that if u contains none of the primes pi, v will be much too large to

satisfy u < v < 2u. If u contains all of the primes, then

v = q < 2
p1p2 · · · pk−1

pk
< p1p2 · · · pk = u,

which cannot be true. So u can neither contain all nor none of the primes. The
question is, how many of the pi divide u? Assume that u contains m > 1 such
primes, where m is a positive integer such that 1 < m < k. Let xi denote some pi,
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not necessarily in order. Then u = x1x2 · · ·xm and v = (xm+1xm+2 · · ·xk)q.

(xm+1xm+2 · · ·xk)q = v < 2u

(xm+1xm+2 · · ·xk)
p1p2 · · · pk

p2
1

< 2u = 2(x1x2 · · ·xm)

(x1x2 · · ·xm)(xm+1xm+2 · · ·xk)2

p2
1

< 2(x1x2 · · ·xm)

(x1x2 · · ·xm)2

p1
2

< 2

This cannot be true, because even if (x1x2 · · ·xm) was as small as it could possibly
be, that is, the first m primes, then

(x1x2 · · ·xm)2

p1
2

= (p2p3 · · · pm)2.

For m > 1, this is always an integer greater than 2, because each pi is an odd
prime. Thus u must contain exactly one prime pi, since it neither contain more
than 1 nor 0, and so all generator pairs corresponding to a triangle of semiperimeter
s = p1p2 · · · pkq must be of the form (ut, vt) as described in Theorem 10

Because all generators are of the form (ut, vt) and there are k primitive Pythagorean
triangles of semiperimeter s which are generated by these pairs, there are infin-
itely many perimeters which correspond to exactly k primitive Pythagorean trian-
gles. �

Theorem 11. Any (u, v) which generates a primitive right triangle with semiperime-
ter s = qA is of the form (ut, vt).

Proof. �

6. Appendix 1: A Proof of Bertrand’s Postulate

Bertrand’s Postulate states that if n ≥ 2 is an integer, there is always at least
one prime in the interval (n, 2n). The following proof is similar to that of Paul
Erdős.[1] In order to prove this statement, several lemmas will be necessary.

Lemma 1. For each x ≥ 1, x ∈ R+, π(x) ≤ 1
2 (x+ 1).

Proof. We will prove this result for x ∈ Z+. The result easily generalizes to all
positive real numbers, because for any x which is not an integer, π(x) = π(bxc).
Take x to be even. Every alternate integer in the interval [1, x] is even, and there
are x integers in the interval. Because 2 is the only even prime and 1 is not prime,
we can swap the two, and include 1 in our count of “even” - that is, composite -
integers in the interval, and count 2 as a possible prime. Thus there are 1

2x integers
which, by virtue of being even or 1, cannot be prime. On the other hand, if x is odd,
π(x) ≤ π(x− 1) + 1, where x− 1 is even. Thus π(x) ≤ 1

2 (x− 1) + 1 = 1
2 (x+ 1). �
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Lemma 2. For any real number x ≥ 1, we have

b2xc − 2bxc =

0, if 0 ≤ x− bxc < 1
2 ;

1, if 1
2 ≤ x− bxc < 1.

Proof. Let us first consider the case when 0 ≤ x− bxc < 1
2 .

bxc ≤ x < bxc+
1
2

2bxc ≤2x< 2bxc+ 1

Therefore 2bxc = b2xc, and so b2xc − 2bxc = 0.
Similarly,

1
2
≤ x− bxc < 1

2bxc+ 1 ≤ 2x < 2bxc+ 2

Therefore b2xc − 2bxc = 1, and thus we have proven the lemma. �

Lemma 3. The function g defined by g(x) = x−
1
2 ln(x) is decreasing on the interval

[e2,∞).

Proof. Note that g′(x) = x−
3
2

(
1− ln(x)

2

)
. The function g has a critical point at

x = e2, and on the interval (e2,∞), g′ is negative. Thus, g is decreasing on the
interval [e2,∞). �

Lemma 4. For any integer n > 1, we have
4n

2n
<

(
2n
n

)
.

Proof. Using the Binomial Theorem,

4n = (1 + 1)2n =
2n∑
k=0

(
2n
k

)
.

The first and last terms of this sum are the smallest, with each equal to 1. We can
sum these and, the resulting term will still be the smallest, because 2 <

(
2n
1

)
for all

n > 1. Thus we now have a sum of 2n terms, in which the largest term is
(
2n
n

)
, so

replacing every term with the largest gives:

4n < (2n)
(

2n
n

)
.

Therefore
4n

2n
<

(
2n
n

)
, as desired. �

Lemma 5. For each real number x ≥ 2, the inequality
∏

1<p≤x
p < 4x holds.

Proof. We will prove this result for x ≥ 2, x ∈ Z+. The result extends easily to all
real numbers, because π(x) = π(bxc). This will be a proof by strong induction. For
our base case, let x = 2. Then

∏
1<p≤2

p = 2 < 42. Assume that for a positive integer
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m,
∏

1<p≤x
p < 4x for all x < 2m. Then let us examine x ∈ R such that x = 2m, the

even case. Because x is even, it is not prime, and∏
1<p≤2m

p =
∏

1<p≤2m−1

p < 42m−1 < 42m

by our induction hypothesis. If x = 2m + 1, the odd case, then by the Binomial
Theorem, we can simplify by noting that all of the terms in the binomial expansion
are positive, so choosing the two largest terms gives something smaller than the
entire sum. Thus we have the following inequality:

4m =
1
2

(1 + 1)2m+1 =
1
2

2m+1∑
k=0

(
2m+ 1
k

)
>

1
2

((
2m+ 1
m

)
+
(

2m+ 1
m+ 1

))
=

(
2m+ 1
m

)
Because 2m + 1 is odd, the mth and the (m + 1)th terms are the same, by the
symmetric nature of Pascal’s Triangle.

Because every prime in the interval (m + 1, 2m + 1] appears in the numerator
and not the denominator of

(
2m+1
m

)
, each one divides

(
2m+1
m

)
, so we have∏

m+1<p≤2m+1

p ≤
(

2m+ 1
m

)
.

We have already proved that this product is less than 4m, so when x = 2m+ 1,

∏
1<p≤2m+1

p =

 ∏
1<p≤m+1

p

 ∏
m+1<p≤2m+1

p


≤

 ∏
1<p≤m+1

p

 4m

≤ 4m+1 · 4m = 42m+1

by our induction hypothesis. This proves the lemma. �

Lemma 6. Let µp denote the greatest positive integer such that pµp |
(
2n
n

)
. For any

prime p, pµp ≤ 2n.

Proof. The exponent of p in n! is
∞∑
i=1

⌊
n

pi

⌋
. This comes from counting the multiples

of p in the interval [1, n], then counting the multiples of p2 in the same interval,
and so forth. Thus

µp =
∞∑
i=1

⌊
2n
pi

⌋
− 2

∞∑
i=1

⌊
n

pi

⌋
=
∞∑
i=1

(⌊
2n
pi

⌋
− 2

⌊
n

pi

⌋)
.
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By Lemma 2, the terms of this final sum are either 0 or 1 depending on the size
of x. All of the terms where i > logp(2n) are 0, so we are left with µp ≤ logp(2n),
and therefore pµp ≤ plogp(2n) = 2n. �

Lemma 7. For p >
√

2n,

µp =
⌊

2n
p

⌋
− 2

⌊
n

p

⌋
.

Proof. Using the sum from the proof of Lemma 6, because p2 > 2n, the first term

is the only nonzero term. For i = 1, we have
⌊

2n
p

⌋
− 2

⌊
n

p

⌋
. �

Theorem 12. Bertrand’s Postulate: For n ∈ Z+, n > 1, there exists at least one
prime in the interval (n, 2n).

Proof. This will be a proof by contradiction. For 2 ≤ n ≤ 127, see Table 1 in the
appendix to observe that for each, there is a prime in (n, 2n). Assume that n ≥ 128
is a positive integer for which there are no primes in the interval (n, 2n). Before we
begin, note the following important calculations:

We can use simple algebra to show that
√

2n <
2n
3

for n > 5.

For
∏

2n/3<p≤n
pµp , we have p >

√
2n, so Lemma 7 applies. Therefore

µp =
⌊

2n
p

⌋
− 2

⌊
n

p

⌋
.

Rearranging the inequality n ≥ p gives
n

p
≥ 1 and

2n
3
< p gives

2n
p
< 3. Thus,

µp =
⌊

2n
p

⌋
− 2

⌊
n

p

⌋
≤ 2− 2 = 0,

and
∏

2n/3<p≤n
pµp = 1. By our hypothesis,

∏
n<p≤2n

pµp = 1.

For p >
√

2n, from Lemma 7,

∏
√

2n<p≤2n/3

pµp =
∏

√
2n<p≤2n/3

p <
∏

1<p≤2n/3

p.
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Then

4n

2n
<

(
2n
n

)
(Lemma 4)

=
( ∏

1<p≤
√

2n

pµp

)( ∏
√

2n<p≤2n/3

pµp

)( ∏
2n/3<p≤n

pµp

)( ∏
n<p≤2n

pµp

)
<
( ∏

1<p≤
√

2n

pµp

)( ∏
√

2n<p≤2n/3

pµp

)
· 1 · 1 (above)

≤
( ∏

1<p≤
√

2n

2n
)( ∏
√

2n<p≤2n/3

pµp

)
(Lemma 6)

< (2n)
1
2 (1+

√
2n)
( ∏
√

2n<p≤2n/3

p
)

(Lemmas 1 and 7, see above)

< (2n)
1
2 (1+

√
2n)4

2
3n (Lemma 5)

Now, with a bit of algebra, we see

4n

2n
< (2n)

1
2 (1+

√
2n)4

2
3n

4
n
3 < (2n)

1
2 (3+

√
2n) < (2n)

2
3

√
2n

2
2
3n < (2n)

2
3

√
2n

2n < (2n)
√

2n

n <
√

2n(log2 2n)√
n

2
< 1 + log2 n

This statement is true for n = 127 but fails when n = 128, and for larger values of
n it fails as well, as

√
n increases faster that log2 n. Because this is only true for

n < 27, this is a contradiction. There must be a prime in the interval (n, 2n). �

7. Table 1: Primes in (x, 2x) for values of x between 2 and 127

p 2p prime in (p,2p)

2 4 3
5 10 7
7 14 13
13 26 23
23 46 43
43 86 83
83 166 163
163 326 307
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