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ABSTRACT

Modern wind turbines are monitored by sensors that generate mas-

sive amounts of high frequency time series that are ingested on the

edge and then transferred to the cloud where they are stored and

analyzed. This results in at least four challenges: (1) Limited hard-

ware makes efficient ingestion necessary to keep up; (2) Limited

bandwidth makes data compression necessary; (3) High storage

costs as all data must be stored; and (4) Low data quality due to

lossy compression methods without error bounds. Practitioners

currently use solutions that only solve some of these. In this paper,

we evaluate the Time Series Management System ModelarDB, a

solution that meets all four challenges by efficiently managing time

series across the entire pipeline. We compare it to three commonly

used alternatives and evaluate different aspects of them in a re-

alistic edge-to-cloud scenario with real-life datasets. For lossless

compression, ModelarDB achieves up to 2x better compression and

1.2x better transfer efficiency. For lossy compression, ModelarDB

achieves up to 4.6x better compression and 10x better transfer effi-

ciency, or similar compression with orders of magnitude less error.
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1 INTRODUCTION

To maintain wind turbines and optimize energy production, wind

turbine manufacturers, and owners use data analytics, e.g., OLAP

queries and complex data mining such as forecasting and anomaly

detection as shown in Figure 1. Thus, wind turbines are monitored
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Figure 1: Architecture of RES data management with differ-

ent lossless and lossy compressionmethods used on the edge.

by many high-quality sensors that generate vast amounts of time

series at high frequencies. For example, a wind turbine generating

2500 time series sampled at 100 Hz produces over 321 GiB of data

per day assuming timestamps and values use 8 bytes each [28]. In

our decade-long experience with Renewable Energy Sources (RES)

data, we had access to real-life wind turbine datasets with Sampling

Intervals (SIs) typically ranging from 10ms to 2s. According to our

industry partners, practitioners collect data on the edge and transfer

it to the cloud for analytics. The edge nodes’ hardware is similar to

low-end commodity PCs. They collect data and help manage wind

turbines. They use a ring buffer, so old data is deleted when new

data arrives. Thus, the old data must be transferred to the cloud

for permanent storage. This is done using connections with very

limited bandwidth as they are shared between wind turbines, i.e.,

generally 512 kbit/s to 10 Mbit/s per wind turbine. The data is stored

in the cloud for as long as possible due to business requirements and

there are no established practices for decaying data. A wind turbine

owner told us they would never purchase a wind turbine if all its

data was not available. Thus, practitioners face these challenges:

Challenge 1: Limited Hardware. Ingestion must keep up with

sampling despite limited hardware, e.g., no GPU. Thus, resource

intensive methods like autoencoders are not useable [11, 41, 49, 60].

Challenge 2: Limited Bandwidth. The bandwidth between

edge and cloud can be as low as 512 kbit/s so compression is needed.

Challenge 3: High Storage Cost. Storing high frequency time

series in the cloud is prohibitively expensive, e.g., one year of data

for a wind turbine that generates 321 GiB daily costs ∼18,510$ on
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Amazon S3 [4]. All data must be kept for a wind turbine’s lifetime

(i.e., ∼20ś25 years) due to business requirements such as warranty.

Challenge 4: LowData Quality After Compression. To lower

bandwidth and storage use, lossy compressionwithout error bounds

is often used, but the lack of error bounds can impact analytics [53].

According to our industry partners, practitioners currently use

two solutions that only solve a subset of these as shown in Table 1:

Lossless Compression through Big Data Formats (LLC). The edge

nodes store time series in big data file formats with lossless com-

pression like Apache Parquet or Apache ORC and these files are

transferred to the cloud. This provides fast ingestion and high data

quality, but very low compression factor [38] as shown in Table 1.

Unbounded Lossy Compression through Simple Aggregates (AGG).

Like LLC, but the edge nodes store simple aggregates for a static

time interval, e.g., 10-minute means. This provides fast ingestion

and high compression factor, but low data quality due to the use of

lossy compression without an error bound as shown in Table 1.

Although not used by our industry partners, we include the state-

of-the-art Time Series Management System (TSMS) [29, 30] Apache

IoTDB (IoTDB) [54, 55] as it supports lossless and lossy compres-

sion and data transfer. To optimize data size and quality, the TSMS

ModelarDB (MDB) [31ś34] is developed and evaluated in research

projects with practitioners [1, 53]. MDB uses error-bounded model-

based compression, i.e., usingmodels fromwhich the original values

can be reconstructed within a user-defined pointwise relative error

bound (possibly 0%). MDB’s efficiency comes from two key insights

about RES data. (1) for some time series it is okay to trade a small

amount of error for significantly better compression while for oth-

ers it is not. Thus, MDB supports both lossless and error-bounded

lossy compression. (2) the time series have long subsequences that

can be efficiently represented using simple functions, e.g., polyno-

mials, while others cannot. Thus, MDB implements multiple types

of models and automatically uses the best one for each subsequence.

MDB can be configured to use different query engines and data

stores, e.g., it can be configured to be lightweight on the edge and

scalable in the cloud. On the edge, it efficiently compresses data

points into segments with metadata and models. These segments

are transferred to the cloud, thus significantly reducing the amount

of bandwidth and storage required. Clients can query MDB using

SQL. Thus, MDB provides a complete data management pipeline

across edge and cloud. More details about MDB are in Section 3.

In this paper, we evaluate how MDB performs in the environ-

ment shown in Figure 1 using real-life datasets provided by our

industry partners. We compare it to LLC, AGG, and IoTDB using

the following research questions which are based on our long ex-

perience with RES data and collaboration with industry partners in

the MORE project [1] and with a major wind turbine manufacturer:

Table 1: Challenges solved by each of the evaluated solutions.

Challenge 1 Challenge 2 Challenge 3 Challenge 4

LLC ✓ ✓

AGG ✓ ✓ ✓

IoTDB ✓ ✓ (✓) ✓

MDB ✓ ✓ ✓ ✓

RQ1: How does a high frequency wind turbine dataset compress

with the evaluated solutions? RQ1.1: How does MDB compare against

the lossless solutions in terms of compression factor? RQ1.2: How

does MDB compare against the lossy solutions in terms of compression

factor and data quality? RQ1.3: How does the sampling interval of a

high frequency wind turbine dataset affect MDB?

RQ2: How is the transfer efficiency of the four solutions?

RQ3: How well does MDB preserve the data quality of a high

frequency wind turbine dataset? RQ3.1: What is the compression

error of a high frequency wind turbine dataset when compressed

using MDB? RQ3.2: What is the impact of MDB’s lossy compression

on the result of downstream analytics?

In this paper, we make the following contributions: We realize a

part of the vision in [28] by evaluating four solution for the practical

problem of efficiently managing high frequency wind turbine data

across edge and cloud with a focus on MDB and report key insights.

The rest of the paper is structured as follows. Section 2 contains

preliminaries. Section 3 describes MDB. Section 4 describes the

evaluation setup, i.e., the solutions, evaluation aspects, evaluation

metrics, and hardware used. Section 5 discusses the results and

presents insights. Section 6 is related work and Section 7 concludes.

2 PRELIMINARIES

A time series is a collection of data points 𝑡𝑠 = ⟨(𝑡1, 𝑣1), (𝑡2, 𝑣2), . . . ⟩

sorted in ascending order by time. A data point (𝑡𝑖 , 𝑣𝑖 ) consists of

a timestamp 𝑡𝑖 and a value 𝑣𝑖 ∈ R
𝑛 for a fixed 𝑛. If 𝑛 = 1, the time

series is univariate and if 𝑛 > 1, the time series is multivariate. If

the time elapsed between consecutive data points is constant, the

time series is regular and has the sampling interval 𝑆𝐼 = 𝑡𝑖+1 − 𝑡𝑖 .

A signal is the univariate time series we get when we for each

data point (𝑡𝑖 , 𝑣𝑖 ) in a time series where 𝑣𝑖 = (𝑣𝑖,1, . . . , 𝑣𝑖,𝑛) ∈ R
𝑛

extract (𝑡𝑖 , 𝑣𝑖, 𝑗 ) for a given 𝑗 such that we get ⟨(𝑡1, 𝑣1, 𝑗 ), (𝑡2, 𝑣2, 𝑗 ), . . .⟩.

Time series compression is the process of encoding a bounded

time series 𝑡𝑠 = ⟨(𝑡1, 𝑣1), . . . , (𝑡𝑛, 𝑣𝑛)⟩ into another representation

𝑐 by using a function C such that 𝑐 = C(𝑡𝑠, 𝜖). For decompression,

another function D must exist such that D(C(𝑡𝑠, 𝜖)) gives a time

series 𝑡𝑠′ = ⟨(𝑡1, 𝑣
′
1
), . . . , (𝑡𝑛, 𝑣

′
𝑛)⟩ where the relative pointwise error

𝑒𝑖 ≤ 𝜖 for 𝑒𝑖 =
𝑣𝑖−𝑣

′
𝑖

𝑣𝑖
when 𝑣𝑖 ≠ 0 and 𝑒𝑖 = 0 when 𝑣𝑖 = 𝑣 ′𝑖 = 0. We

call 𝜖 the error bound and when 𝑡𝑠′ = 𝑡𝑠 , the compression is lossless.

3 MODELARDB-BASED SOLUTION

MDB [31, 33, 34] is a TSMS that compresses time series to segments

with metadata and models on the edge, transfers the segments to

the cloud, and executes SQL queries across edge and cloud. MDB

consists of a Java library interfaced with query engines and data

stores. For example, MDB can use the lightweight RDBMS H2 as

its query engine and data store on the edge, and Apache Spark and

Apache Cassandra as its query engine and data store in the cloud.

We use H2 as query engine and data store on the edge, and

Apache Spark as query engine and Apache ORC files written to

a local file system as data store in the cloud. To measure MDB’s

compression, we measure the size of its Apache ORC files in the

cloud. Apache ORC is used instead of Apache Cassandra for a more

direct comparison to LLC and AGG as they also use Apache ORC.

MDB’s architecture has three sets of components as shown in

Figure 2 with suitable query engines and data stores shown in color.
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Figure 2: MDB’s architecture on the edge and in the cloud.

Data Ingestion. These components ingest data points and com-

press dynamically sized subsequences to segments using modified

versions of Poor Man’s Compression-Mean (PMC) [38], Swing Filter

(Swing) [13], and Gorilla’s lossless compression method for floating-

point values [47]. We call methods that fit models to time series

model types. PMC returns a constant function, Swing returns a lin-

ear function, and Gorilla returns XOR’ed values packed into bytes.

These model types are efficient enough to address Challenge 1 (Lim-

ited Hardware). MDB ingests data points one at a time and use the

first model type to fit a model to them until the error bound is

exceeded. Then it switches to the next model type and so on. After

evaluating all model types, the model with the best compression

factor is stored in a segment with metadata. An example that only

uses Swing is shown in Figure 3. Gorilla never exceeds the 𝜖 as it is

lossless. Thus, a user-configurable length bound with a default of

50 is used. Due to its model-based compression and error bound,

MDB addresses Challenge 4 (Low Data Quality After Compression).

error > ε

M M
ts

te

S = (ts,te, ε, M, ...)

MM

Figure 3: MDB’s model-based compression, redrawn [31].

Query Processing. These components execute SQL queries on

locally stored segments, e.g., small queries on recent data on the

edge and large queries on data from many edge nodes in the cloud.

MDB can compute common aggregates directly from segments

instead of from reconstructed data points using UDFs and UDAFs.

Segment Storage. These components manage segments in a

local data store and transfer them to another MDB instance using

Apache Arrow Flight. Transferring and storing time series as highly

compressed segments allow MDB to address both Challenge 2 (Lim-

ited Bandwidth) and Challenge 3 (High Storage Costs), respectively.

4 EVALUATION SETUP

4.1 Baseline Solutions

LLC. Time series written to Apache Parquet or Apache ORC with

their default Snappy compression by Apache Arrow v11.0.0 [15].

AGG. Like LLC, but the mean is computed for different fixed

time periods suggested by our industry partners, see Section 4.2.3.

IoTDB. Apache IoTDB v1.3.1 with its recommended configu-

rations for lossless compression [27]. For lossy compression IoTDB

has RLE and TS_2DIFF [25]. Their error is bounded by a pointwise

decimal precision limit. We use TS_2DIFF as it provided ∼2x better

compression than RLE in our experiments. For each dataset, see

Section 4.2.1, we use the precision limits for which IoTDB stores

values without corruption, e.g., with the active power signal from

WTM and precision=7, 377.95465 became -51.54208. For PCD we

use precision=1ś6 and for MTD and WTM we use precision=1ś5.

4.2 Evaluation Aspects

4.2.1 Dataset. Three real-life datasets from our industry partners

are used in the evaluation. See Table 2 for a summary. Power Con-

troller Dataset (PCD) and Multiple Turbines Dataset (MTD) cannot

be shared due to NDAs. Our results forWind Turbine Measurements

(WTM) [45] can be reproduced as it is a subset of MTD.

PCD. Data from a wind park power controller in a wind park for

∼2 years and 4 months. This multivariate time series has SI=150ms,

10 signals, and ∼480M data points. The time between consecutive

data points can deviate slightly from 150ms, so PCD is made regular

through preprocessing as MDB only supports regular series [43].

MTD. Data from wind turbines in several wind parks with a

mean period of recording of 11 months. These multivariate time

series has SI=2s, 10 signals, and ∼258M data points. Four signals are

transformations of other in the dataset. These transformed signals

are removed as their results very closely match their source signals.

WTM. A subset of MTD published as part of [46]. It is 432,000

data points from one wind turbine collected over 10 days.

The datasets mostly contain signals on generated power, wind,

and wind turbine configuration, e.g., nacelle direction. Several sig-

nals have high periodicity, e.g., the wind signals, and some are

correlated with weather forecasts, e.g., generated power. There are

signals generated from other, e.g., cosine or sine of signals with

degrees and cumulative aggregation of generated power over 1m

or 10m intervals. The signals on generated power mostly follow a

bimodal distribution. The wind signals follow a normal distribution.

There are a fewmostly constant signals, e.g., upper and lower power

limits which are used to control the generated power. The datasets

are used for downstream analytics as discussed in Section 5.3.2.

4.2.2 Error Bound. For MDB, we use these error bounds proposed

by our industry partners: 0%, 0.01%, 0.05%, 0.1%, 0.2%, 0.5%, 1%. We

also use 5% and 10% to achieve more complete and deeper insights.

4.2.3 Sampling Interval. To measure the impact of different SIs, we

downsample the datasets using the SIs and number of data points

in Table 3. These SIs were also suggested by our industry partners.

4.2.4 MDB Parameters. MDB can be tuned for wind turbine data

using the length bound and batch size parameters. Length bound

is the maximum length of a Gorilla segment. For high frequent

wind turbine data, data points often have similar values to adjacent

data points. Thus, PMC and Swing often compress them better

than Gorilla. However, short subsequences of data points with

Table 2: Summary of real-life datasets used in the evaluation.

Dataset Length SI Signals Size (ORC) Period

PCD ∼480M 150ms 10 13.3GiB ∼28 months

MTD ∼258M 2s 6 4.2GiB ∼11 months

WTM 432,000 2s 10 10.3MiB 10 days
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Table 3: Sampling intervals for aggregation/downsampling.

Dataset SI No. Data Points to 1

PCD 1.05 2.1 4.95 10.05 (s); 1 10 (min) 7 14 33 67 400 4000

MTD 6 10 30 (s); 1 10 (min) 3 5 15 300 3000

WTM 6 10 30 (s); 1 10 (min) 3 5 15 300 3000

irregular values occur and they compress better with Gorilla. Thus,

a relatively low length bound of 50 is used so MDB uses Gorilla

for these subsequences, but quickly reverts to PMC and Swing.

Batch size is the number of segments written to disk or transferred

together. Due to the low bandwidth, batch size is set to 1000 to

reduce the overhead per segment and amount of data to resend

on failure. In [3], the combination of parameters is evaluated and

length bound 50 gives the best compression factor in 85% of cases

and batch size 1000 gives the best ingestion time in 50% of cases.

4.3 Metrics

To measure the effectiveness of compression methods, we use Com-

pression Factor (CF) which is the ratio between the size 𝑠 of the

original dataset and the size 𝑠′ of the compressed dataset:𝐶𝐹 = 𝑠/𝑠′.

The Transfer Efficiency is given by the number of data points trans-

ferred from the edge node to the cloud node per second. To measure

the quality of reconstructed datasets, we use the Mean Absolute

Percentage Error (MAPE) defined as 𝑀𝐴𝑃𝐸 =
1

𝑛

∑︁𝑛
𝑖=1 𝑒𝑖 where 𝑛 is

the number of data points and 𝑒𝑖 is the error at the 𝑖
th data point.

4.4 Infrastructure

Our test infrastructure has an edge node and a cloud node. The

edge node has 2 CPU Cores and 4 Threads, 4 GiB RAM, and an

HDD. Thus, it is similar to the one in [28]. The cloud node has 16

CPU Cores and 32 Threads, 256 GiB RAM, and 8 SSDs. They both

run Ubuntu 20.04 LTS. The edge node’s network interface is also

limited to 512 kbit/s and 2.5 Mbit/s to simulate the scenario in [28].

5 FINDINGS AND INSIGHTS

5.1 Compression Effectiveness

In this section, we analyze MDB’s compression and compare it to

LLC, IoTDB, and AGG. Then, we analyze the impact of SI on MDB.

5.1.1 MDB against the lossless solutions. We first compare LLC

and IoTDB to MDB with 𝜖=0%, i.e., lossless compression. Figure 4

shows the compressed sizes. Since Apache ORC compresses better

than Apache Parquet for all datasets like in [31, 33], and they have

similar compression times [17, 31, 33], only Apache ORC is used

below for LLC. The results show that MDB provides 1.5x, 1.4x, and

1.3x better lossless compression than Apache ORC for PCD, MTD,

and WTM, respectively. MDB also provides 1.2x and 1.1x better

compression for PCD and MTD than IoTDB, respectively. Only for

WTM, IoTDB provides 1.4x better compression than MDB.

Discussions with our industry partners revealed that while guar-

anteed data quality is desired, a small pointwise error bound is toler-

able. Thus, we compare MDB’s error-bounded lossy compression to

the lossless solutions. Figures 5a and 5b show MDB’s improvement

in CF over LLC and IoTDB when 𝜖 > 0. MDB’s improvement in CF
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Figure 4: Size of 𝜖=0% solutions.

over LLC is computed as 𝐶𝐹𝑀𝐷𝐵/𝐶𝐹𝐿𝐿𝐶 and similarly for IoTDB

(and thus they differ by a constant
𝐶𝐹𝑀𝐷𝐵/𝐶𝐹𝐿𝐿𝐶

𝐶𝐹𝑀𝐷𝐵/𝐶𝐹𝐼𝑜𝑇𝐷𝐵
=

𝐶𝐹𝐼𝑜𝑇𝐷𝐵

𝐶𝐹𝐿𝐿𝐶
). Note

that Figure 5a uses a log scale for the 𝑦 axis. For PCD, 𝜖=0.01% leads

to more than 2x better compression than LLC. MDB’s improvement

in CF over LLC for PCD grows to 6x, 8.4x, 29.6x, and 48.9x at 𝜖=0.5%,

𝜖=1%, 𝜖=5%, and 𝜖=10%. In Figure 5b, the improvements in CF for

MTD andWTM are much smaller (up to 3.3x for 𝜖=10%). To explain

the significant difference in CF between PCD and MTD, we analyze

MDB’s use of model types for the datasets. The amounts of values

compressed by each model type can be seen in Figures 5c and 5d.

WTM originates from the same source as MTD and has similar re-

sults. Thus, we refer to WTM’s results in the extended version [3],

where we also report the mean and median length of segments. The

results for PCD show that as 𝜖 increases, the use of PMC (Figure 5c)

and the mean length of PMC segments increase, while the median

length decreases. PMC uses 32 bits and Swing uses up to 128 bits for

each segment, while Gorilla uses 1ś32 bits for each value. At higher

error bounds, PMC constructs few long segments with thousands

of values, so the mean length is very long, while most segments

are short (up to 20 values) [3]. This explains why PCD, mostly

represented by PMC, results in significantly higher CF compared

to the other datasets. Measures of dispersion for the datasets also

show that there is less variability in PCD values compared to the

other datasets and this leads to higher use of PMC for PCD since

the values are close to each other.

Gorilla and Swing are more heavily used for MTD and WTM

at higher error bounds, which also explains the smaller impact of

𝜖 on those datasets as segments with those model types require

significantly more bits and have shorter mean length than PMC.

Figures 5c and 5d also show that even for 𝜖=0%, PMC is significantly

used for representing PCD (16.2% of the values) and MTD (26.2% of

the values), while lossless Gorilla represents the rest. Using a tiny

error bound of 0.01% significantly increases the use of model types

for lossy compression which explains the significant increase in CF

between compressing with 𝜖=0% and 𝜖=0.01%.

To conclude, we answer RQ1.1 as follows. For lossless compres-

sion, MDB outperforms both LLC and IoTDB. The results showed

that for PCD, allowing a tiny 𝜖 such as 0.01% can significantly improve

the compression, while at higher error bounds such as 5%, MDB

is 29.6x better than LLC. We saw that the dataset with the lowest

SI (i.e., PCD) is compressed significantly better by MDB than the

other datasets. For PCD, MDB mostly used PMC which had much

longer segments than the other model types. For MTD, Swing is

more used than PMC for higher error bounds showing that different

datasets and error bounds result in different model distributions.

This shows the effectiveness of MDB’s multi-model compression

as it automatically optimizes for each error bound and dataset.
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Figure 5: (a-b) Improvement inMDB’s CF over LLC and IoTDB

for error bounds above 0%. (c-d) Distribution of values com-

pressed by MDB’s model types for PCD and MTD.

0.
0

0.
00
01

0.
00
05
0.
00
1
0.
00
2
0.
00
5
0.
01
0.
05 0.

1

Error Bound

10
0

10
1

10
2

10
3

10
4

C
o
m
p
re
ss
io
n
F
a
ct
o
r

MDB

AGG=1.05s (7x)

AGG=2.1s (14x)

AGG=4.95s (33x)

AGG=10.05s (67x)

AGG=1m (400x)

AGG=10m (4000x)

(a) PCD

0.
0

0.
00
01

0.
00
05
0.
00
1
0.
00
2
0.
00
5
0.
01
0.
05 0.

1

Error Bound

10
0

10
1

10
2

10
3

MDB

AGG=6s (3x)

AGG=10s (5x)

AGG=30s (15x)

AGG=1m (30x)

AGG=10m (300x)

(b) MTD

0.
0

0.
00
01

0.
00
05
0.
00
1
0.
00
2
0.
00
5
0.
01
0.
05 0.

1 6 5 4 3 2 1
0

10
20
30
40
50
60
70
80

C
o
m
p
re
ss
io
n
F
a
ct
o
r

(c) PCD

0.
0

0.
00
01

0.
00
05
0.
00
1
0.
00
2
0.
00
5
0.
01
0.
05 0.

1 6 5 4 3 2 1
0

2

4

6

8

10

12
MDB (𝜖)

IoTDB (Precision)

(d) MTD

Figure 6: (a-b) MDB (bars) and AGG (lines) CFs for PCD and

MTD. x-axis (i.e., error bound) is only used for MDB. AGG

is independent of the error bound. (c-d) MDB and IoTDB’s

lossy compression’s CFs for PCD and MTD.

5.1.2 MDB compared to lossy solutions. Figures 6a and 6b compare

the CFs of MDB and AGG for PCD and MTD. The CFs for MDB are

shown as bars for different values of 𝜖 . As AGG’s error is indepen-

dent of 𝜖 , the CFs for AGG are shown as horizontal lines. Figure 6a

shows that MDB with 𝜖=1% compresses better than aggregating

by 7 values (i.e., 7x aggregation) for PCD. MDB at 𝜖=5% and 𝜖=10%

provides comparable CFs to 33x and 67x aggregation, respectively.

Compression of MTD (Figure 6b) and WTM [3] with MDB at 𝜖=10%

provides comparable CFs to 3x aggregation. Figures 6c-6d show

that IoTDB with precision=6 provides comparable compression to

MDB at 𝜖=0% (i.e., lossless compression) for both PCD and MTD.

For PCD, IoTDB with precision=1 achieves a CF that is in between

what MDB achieves for 𝜖=1% and 𝜖=5%. For MTD, we can see that

IoTDB with precision=2 achieves CF=8 that is comparable to MDB

at 𝜖=10%, while with precision=1 it compresses 1.5x better.
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Figure 7: CFs and resulting errors for MDB and AGG on PCD.

In Figure 7, we compare MDB and AGG’s MAPE and maximum

pointwise error (MPE) for PCD. MAPE for AGG is 3ś8 orders of

magnitude higher than for MDB, while the MPE is 9ś17 orders of

magnitude higher. As an example, the MPE of AGG with SI=10.05s

is equal to ∼two hundred trillion, while MDB with 𝜖=10% provides

the same CF and guarantees that the MPE is no more than 10%.

We also compressed the datasets with MDB with 𝜖 > 10% to

match AGG’s CF with very high SIs. The results show that MDB

with 𝜖>10% introduces a much smaller error than AGG with the

same CF for MTD [3]. Also for MTD and WTM AGG leads to

extremely high errors [3]. In addition to very high error, AGG

generates undefined errors when 𝑣𝑖 = 0 due to division by zero.

We excluded these values when computing errors. In contrast, to

maintain the pointwise 𝜖 , MDB stores 𝑣𝑖 = 0 without any error.

IoTDB’s lossy compression provides low MAPEs. Values close

to zero are trivially represented by 0. This results in a MPE of 1

for all datasets and precision limits, which is 10x higher than MDB

at 𝜖=10%. IoTDB’s lossy compression can in some cases result in

very large query errors due to rounding of decimal points, see

Section 5.3.3. For PCD, IoTDB’s MAPEs with precisions 1 and 6

match MDB’s MAPEs at 𝜖=10% and 𝜖=1%, respectively. However,

we saw that MDB with 𝜖=10% and 𝜖=1% provides 3x and 4.6x better

compression than IoTDB’s lossy compression with precision 1 and 6,

respectively. For MTD, IoTDB’s MAPE at precision=5 matches MDB

at 𝜖=0.01% and with precision=1 IoTDB provides similar MAPE to

MDB at 𝜖=5%. IoTDB’s MAPE results for WTM are similar to MTD.

We answer RQ1.2 as follows. MDB provides comparable CF to

AGG, however, in contrast to MDB, AGG does not provide any data

quality guarantees leading to significant reduction in the quality of

compressed values. Unlike MDB’s pointwise relative error-bound,

AGG removes informative outliers and fluctuations in a dataset that

are often critical to certain analytical tasks [31, 33]. Compared to

IoTDB’s lossy compression, MDB provides higher CF and similar

data quality. Compared to AGG, MDB achieves as good a com-

pression factor as AGG, but with errors that are many orders of

magnitude smaller, making MDB the far better solution.

5.1.3 Impact of SI on MDB. To evaluate the impact of SI on MDB,

we downsample the datasets as described in Section 4.2.3 and com-

press them in MDB using different 𝜖 values. We also compress the

downsampled datasets with LLC for comparison. Figure 8 shows

how the CFs change for PCD and MTD as we increase SI. As SI

increases, MDB’s CFs decrease for both datasets showing a nega-

tive correlation between MDB’s CF and the SI. As PMC and Swing
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exploit constant and linear patterns, high frequency datasets and

higher 𝜖 , where the difference between two consecutive values

tends to be smaller, create more opportunities for storing many

values in one segment. For PCD (Figure 8a) with 𝜖=0%, the impact

of the SI on CF is less significant compared to 𝜖=10% where the CF

decreases from 79.1 to 7.8 and 2.3 when the SI is increased from

150ms to 1m and 10m, respectively. The CF for PCD, which has

the lowest SI (150ms), is affected most as we increase both 𝜖 and SI.

Analyzing all three datasets’ measures of dispersion revealed that

increasing SI increases variability among the values which makes

MDB’s compression less effective. However, we can see that MDB

at all error bounds compresses better than LLC for all SIs with the

only exception being the extreme case of MDB at 𝜖=0% for MTD

with SI=10m, where the data volumes are small. As an example,

for PCD with SI=10m MDB at 𝜖=0% still compresses 1.19x better

than LLC. The results also show that the SI of a dataset almost has

no impact on the LLC’s CF. For MTD with SI=10m, MDB at 𝜖=0%

provides slightly lower compression than LLC due to the very small

size of the dataset where there is an overhead from MDB’s segment

metadata. The results for WTM [3] are similar to those for MTD.

We answer RQ1.3 as follows. MDB provides the best CF for data-

sets with short SI such as PCD. For datasets with higher SI where the

variability between the values is high, MDB’s compression becomes

less effective and the impact of 𝜖 decreases when the SI is high.

5.2 Transfer Efficiency

We now evaluate how many values can be transferred from edge to

cloud by the solutions when the bandwidth is limited to 512 kbit/s

(Challenge 2). The challenge is exacerbated for high frequent data

and thus we use PCD.We do the experiment with 2 days of data. For

AGG, we use SI=1.05s (i.e., 7x aggregation) that has the lowest com-

pression error. For LLC and AGG, we implemented a Java program

that ingests data points into Apache ORC format. The transfer to

the cloud is done by scp. For IoTDB, we created a Java program that

ingests the data using the recommended native API on the edge.

The data is transferred to the cloud using IoTDB’s Pipe feature with

an iotdb-thrift-async-connector which is recommended for

high transfer performance [26]. For all four solutions, we thus both

ingest and transfer data. For LLC and AGG, the time for ingestion is

negligible. MDB needs more time, but as shown in Figure 9a, MDB

ingests from 1.4 to 3 million values/second with higher speeds for

higher error bounds where the segments get longer. This is much

faster than what can be transferred over the network.
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Figure 8: Impact of SI on MDB’s CF for PCD and MTD.
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Figure 9: Values ingested and transferred per second for PCD.

Figure 9b shows the number of values handled per second when

the ingested data is also transferred from edge to cloud. With LLC

around 19,000 values are transferred per second. For 𝜖=0%, MDB

transfers 1.2x faster than LLC. IoTDB with lossless compression

transfers 1.05x more values than MDB with 𝜖=0%. This is because

IoTDB can ingest and transfer in parallel while MDB cannot do

this yet. When 𝜖>0%, MDB transfers more values per second and

this is correlated with the increase in CF shown in Section 5.1.

AGG transfers 1.06x more values per second than MDB with 𝜖=1%.

AGG, however, produces unbounded errors that are many orders of

magnitude higher than MDB and thus fails in terms of Challenge 4.

With 𝜖=5% MDB transfers 38x, 6x, and 3x more values than LLC,

AGG, and IoTDB with precision=1, respectively, and with 𝜖=10%

MDB transfers 1.2e+6 values per second, i.e., 10x and 5x more

than AGG and IoTDB with precision=1, respectively (not shown in

Figure 9(b)). With an increase in bandwidth from 512 kbit/s to 2.5

Mbit/s we saw similar, but ∼ 5x higher throughput.

We answer RQ2 as follows. LLC, can transfer around 19,000

values per second with 512 kbit/s bandwidth while MDB at 𝜖=0%

can transfer 1.2x more values than LLC. In addition,MDB can transfer

even more values through the use of error-bounded lossy compression.

As an example, MDB with 𝜖=1% can transfer 6x more values than

LLC with 512 kbit/s bandwidth. MDBwith 𝜖=1%matches the transfer

efficiency of AGG and has up to ∼12 orders of magnitude better data

quality. Compared to IoTDB’s lossless compression,MDBwith 𝜖=0%

has a slightly lower transfer rate, but a higher CF and is thus as

good as a state-of-the-art solution for lossless compression. For lossy

compression, MDB with 𝜖=5% transfers 5x more and compresses 1.8x

better than IoTDB with precision=1. The overhead of ingestion is

insignificant compared to the transfer time.

5.3 Data Quality

In this section, we measure the compression error of MDB using

MAPE. We also measure the amount of values represented with no

error by MDB. Finally, we analyze the impact of lossy compression

on the quality of downstream analytics for the different solutions.

5.3.1 Compression Error. Figures 10a-10b show the distribution of

MAPE for all signals of PCD and MTD, while the results for WTM

are provided in [3]. Whiskers of box plots represent the minimum

and maximum values. Whiskers that span all the way down to the 𝑥

axis represent zero. PCD in comparison to the other datasets shows
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Figure 10: (a-b) MAPE of PCD and MTD for different 𝜖. (c)

Amount of values compressed with zero error for all datasets.

a higher MAPE. This is related to the higher use of PMC and Swing

to compress PCD for all 𝜖 . In addition, lower MAPE for MTD and

WTM is due to the significantly higher use of Gorilla even when

we allow for some error. At 𝜖=0.01% the maximum MAPE for PCD

is 0.47x of 𝜖 , while for MTD and WTM the maximum MAPEs are

0.15x and 0.11x of 𝜖 , respectively. PCD’s lowest MAPE is 0 for all 𝜖

meaning that a particular signal (PowerLowerLimit) is represented

losslessly for all 𝜖 . Also certain periods when park operation is

halted and no power is produced lead to the generation of constant

values for most signals. This shows the effectiveness of MDB with

constant signals. As we increase 𝜖 , there is a decrease of PCD’s

MAPE in relation to 𝜖 . At 𝜖=0.1%, PCD’s highest MAPE is 0.42x of 𝜖 ,

while at 𝜖=1% and 10%, it decreases to 0.37x and 0.29x, respectively.

Contrary to PCD, the difference between 𝜖 and compression error

gradually decreases for MTD (Figure 10b) andWTM. As an example,

the highest MAPE for MTD increases from 0.27x of 𝜖 at 𝜖=0.1% to

0.34x of 𝜖 at 𝜖=10%. The results for WTM are very similar. The

increase in the compression error for MTD and WTM is due to the

longer median segment length for all model types [3], while the

decrease in the compression error for PCD happens because it is

mostly represented by short PMC segments, which gives a good

chance for approximating values with smaller error.

We also implemented a tool to determine the amount of values

losslessly compressed by MDB [2]. Figure 10c shows that with

𝜖=0.01%, MDB represents 71.9%ś95.0% of the values losslessly, while

17.1%ś34.3% of the values are compressed losslessly with 𝜖=10%.

We answer RQ3.1 as follows. With our datasets MDB preserves

the data quality even better than the guaranteed pointwise 𝜖 . The

model types have different impacts on the data quality. Higher use of

Swing results in higher MAPE than PMC, while Gorilla compresses

losslessly. Thus, PCD has a lower MAPE at higher error bounds

than the other datasets. However, among all datasets and error

bounds, the MAPE is less than half of the 𝜖 . Thus, MDB preserves

data quality much better than the 𝜖 , which allows for compressing

with higher error bounds to maximize the compression effectiveness.

5.3.2 Downstream Analytics. MDB provides efficient integration

with the data science libraries like NumPy and pandas. Data scien-

tists can query both the edge nodes and cloud nodes for scalable

analytics using the Apache Arrow Flight interface. The data is re-

turned in Apache Arrow format which can easily be converted to

NumPy arrays and pandas dataframes. Through Apache Spark SQL,

MDB provides full expressive power for advanced OLAP queries

such as rollup, cube by, window functions and grouping sets. MDB

efficiently computes simple aggregates and aggregates in the time

dimension directly on compressed segments [33]. In [53], MDB is

used as a part of the MORE (Management of Real-time Energy data)

platform [1]. The study uses the MTD for evaluation and MDB is

used for providing lossily compressed data for Incremental Machine

Learning (IML) models to detect so-called yawmisalignment in real-

time. Similarly, in [46], MDB’s implementation of PMC and Swing

along with the dataset WTM are used for time series forecasting.

5.3.3 Downstream Analytics Accuracy. We evaluate the impact of

lossy compression on MIN, AVG and STDEV aggregations for each

signal in each dataset. Results for COUNT, MAX and SUM aggrega-

tions are available in the extended version [3]. We do the aggrega-

tions for each signal and compute the Relative Query Error (RQE) as

| (𝑄 −𝑄 ′)/𝑄 | where 𝑄 is the query result from the original dataset

and𝑄 ′ is the query result from the decompressed dataset. If𝑄 =𝑄 ′,

then RQE is 0. We ignore cases when 𝑄 = 0 ≠ 𝑄 ′ to avoid division

by zero. For MIN we use the predicate signal > 0 (and refer to

it as MIN*) as MDB and IoTDB represent 0 losslessly. Results for

MIN without a predicate are given in [3]. Table 4 shows the median

and max RQEs for MIN*, AVG and STDEV over all signals for each

dataset. Due to space constraints, we only show results for MDB,

IoTDB and AGG that are comparable by CF. The remaining results

are available in [3]. COUNT is exact in MDB and thus its RQEs for

AVG and SUM are identical, while for AGG, COUNT and SUM can

be computed using the SI. IoTDB’s results for SUM are also very

low. All solutions have low RQEs for MAX [3] as all results are

higher than 0 and outliers tend to appear consecutively.

With MDB, all queries generate lower RQE than the 𝜖 and the

median RQE is much smaller than the 𝜖 . Similarly, IoTDB provides

low RQEs for AVG and STDEV, while for MIN*, its encoding format

(i.e., TS_2DIFF) represents small values as 0 due to rounding to

the configured precision. This results in very large RQEs. As an

example, for PCD with precision=1, IoTDB’s lowest possible value

for MIN* is 0.1, while querying the original dataset returns small

values like 3.5e-15. This results in very large RQEs such as 2.8e+13.

MDB’s pointwise 𝜖 provides finer control over the error for lossy

compression. AGG suffers from a similar issue as IoTDB with MIN*.

For example, with SI=4.95s for PCD it has 1e+10 RQE, while for

AVG and STD, it produces accurate results similar to IoTDB and

MDB. Table 4 also shows the CFs of each method and we can see

that for PCD, the dataset with the highest frequency, MDB hits the

sweet spot between compression and query accuracy by providing

the best overall quality for OLAP queries and better compression

than IoTDB’s lossy compression. For MTD, MDB provides the best

overall query accuracy and comparable compression to IoTDB. AGG

can be used for achieving a very high CF, however, it also results in
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Table 4: Relative query errors (in %) of OLAP queries on PCD (left) and MTD (right).

Query SELECT MIN (signal) WHERE signal > 0 SELECT AVG (signal) SELECT STDEV (signal)

Median ( error ) Max ( error ) Median ( error ) Max ( error ) Median ( error ) Max ( error )

MDB
𝜖

0.01
CF=14

0.05
CF=47

0.01
CF=14

0.05
CF=47

0.01
CF=14

0.05
CF=47

0.01
CF=14

0.05
CF=47

0.01
CF=14

0.05
CF=47

0.01
CF=14

0.05
CF=47

Error 4e-9 4e-9 2e-8 2e-8 3e-4 0.005 0.0008 0.007 8e-5 3e-4 4e-4 0.001

IoTDB
prec.

2
CF=13

1
CF=26

2
CF=13

1
CF=26

2
CF=13

1
CF=26

2
CF=13

1
CF=26

2
CF=13

1
CF=26

2
CF=13

1
CF=26

Error 2.8e+12 2.8e+13 1.7e+36 1.7e+37 0.005 0.008 0.017 0.02 0.002 0.005 0.011 0.12

AGG
SI

1.05s
CF=10.5

4.95s
CF=50

1.05s
CF=10.5

4.95s
CF=50

1.05s
CF=10.5

4.95s
CF=50

1.05s
CF=10.5

4.95s
CF=50

1.05s
CF=10.5

4.95s
CF=50

1.05s
CF=10.5

4.95s
CF=50

Error 1.6 14 8.2e+10 1e+10 3e-6 5e-6 3e-4 6e-4 5e-6 1e-5 0.03 0.1

Query SELECT MIN (signal) WHERE signal > 0 SELECT AVG (signal) SELECT STDEV (signal)

Median ( error ) Max ( error ) Median ( error ) Max ( error ) Median ( error ) Max ( error )

MDB
𝜖

0.05
CF=5.5

0.1
CF=7.5

0.05
CF=5.5

0.1
CF=7.5

0.05
CF=5.5

0.1
CF=7.5

0.05
CF=5.5

0.1
CF=7.5

0.05
CF=5.5

0.1
CF=7.5

0.05
CF=5.5

0.1
CF=7.5

Error 3e-8 3e-8 0.002 0.02 6e-4 0.003 0.004 0.01 7e-4 0.004 0.007 0.03

IoTDB
prec.

3
CF=6

2
CF=8

3
CF=6

2
CF=8

3
CF=6

2
CF=8

3
CF=6

2
CF=8

3
CF=6

2
CF=8

3
CF=6

2
CF=8

Error 45 268 1.9e+6 1.9e+7 2e-6 5e-6 0.002 0.003 5e-7 5.6e-6 0.002 0.004

AGG
SI

6s
CF=8

10s
CF=13

6s
CF=8

10s
CF=13

6s
CF=8

10s
CF=13

6s
CF=8

10s
CF=13

6s
CF=8

10s
CF=13

6s
CF=8

10s
CF=13

Error 0.6 3 656382 673499 9e-5 2e-4 0.008 0.02 8e-4 0.002 0.04 0.05

unbounded errors for both data quality and OLAP query accuracy.

IoTDB provides better CF for a dataset with higher SI and its lossy

compression’s query accuracy highly depends on the configured

precision limit and the range of values in the dataset.

The impact of error-bounded lossy compression methods includ-

ing PMC and Swing on the accuracy of state-of-the-art time series

forecasting models is studied in [46]. The study uses MDB’s PMC

and Swing implementation and finds that error-bounded lossy com-

pression can be performed with an 𝜖 up to 30% for PMC and 25%

for Swing before significantly reducing the accuracy of forecasting

models. [53] shows that the IML models trained with MDB’s loss-

ily compressed data using 2% ≤ 𝜖 ≤ 10% provide 1.05x and 1.26x

better f1-scores than the models trained with 400x (i.e., 1min) and

4000x (i.e., 10min) AGG data, respectively. 10min AGG data is an

industry-standard method of data preprocessing for yaw misalign-

ment detection [19]. Compressing with 𝜖=2%, the lowest 𝜖 used

in the study, provides the same f1-score as 2x AGG. 𝜖=10% pro-

vides similar compression to 400x AGG. Both studies mention that

sometimes lossy compression even improves the models’ accuracy.

We answer RQ3.2 as follows. MDB’s error-bounded lossy com-

pression produces much lower RQE than the 𝜖 for all our datasets and

queries. All solutions perform well for AVG and STDEV aggregate

queries. For MIN*, MDB’s error-bounded lossy compression pro-

duces significantly better results than IoTDB and AGG. MDB can

efficiently be integrated into scalable data science infrastructures as

manifested in [53]. Studies [46, 53] show that error-bounded lossily

compressed data can effectively be used for time series forecasting

and yaw missalignment detection in real-life scenarios.

6 RELATED WORK

Many time series compression methods have been proposed, this

survey [11] splits them into five categories: Dictionary-based, Func-

tional Approximation, Autoencoders, Sequential methods, and Others.

Dictionary-based methods like [37, 39, 42, 48] build dictionaries

of subsequences and represent time series using them. Achieving

high dictionary search speed and low size are the main challenges.

Functional Approximation methods like [12, 21, 22, 35, 58] split

time series into segments and approximate each segment using a

function of time. They can be used for online compression as they

do not have a training phase and are also computationally efficient.

Autoencoders like [20, 41, 49, 59, 60] are related neural networks

with an Encoder and a Decoder. They cannot do online compression

on the edge as they are resource intensive [11] and require a GPU.

Sequential methods like [6, 9, 40, 47, 50, 51] apply several simple

compression methods sequentially. They can be used online as they

do not have a training phase and are also computationally efficient.

Others like [14, 24] are methods that do not fit into a category.

An evaluation [23] of model-based compression methods [5, 7,

8, 13, 16, 36, 38] for sensor data found that APCA [36] and SF [13]

provided the best compression factor for time series with little noise,

while APCA [36] and GAMPS [16] were good for noisy time series.

They also found that a dynamic segment size is very important to

achieve a high compression factor and low compression error. An

evaluation [57] of lossless time series compression methods [6, 10,

18, 47, 52, 56] in IoTDB [54, 55], found that TS_2DIFF [56] achieves

higher compression factors for datasets with high delta mean, while

Gorilla [47] achieves higher compression factors for datasets with

small delta mean and value variance along with lower compression

and decompression time than TS_2DIFF.

While these studies evaluate lossy and lossless compression

methods, they do not combine them or use big real-life datasets.

7 CONCLUSION

We show that ModelarDB (MDB) addresses all four challenges of

managing high frequency wind turbine data across edge and cloud:

Limited Hardware, Limited Bandwidth, High Storage Costs, and Low

Data Quality After Compression. Compared to solutions used in in-

dustry and with real-life high frequent wind turbine datasets, MDB

has a higher compression factor and transfer efficiency than LLC

and matches AGG’s compression factor and transfer efficiency but

adds orders of magnitude less error. Compared to IoTDB, MDB has

a higher compression factor but slightly worse transfer efficiency

with losless compression. However, with lossy compression, MDB

has a higher compression factor and transfer efficiency than IoTDB

for the very high frequency dataset. We found that MDB’s focus on

compression factor instead of compression speed is beneficial due

to the limited bandwidth from the edge to the cloud, and that MDB

provides a good compromise between compression factor and data

quality since the models generally have much less error than the

error bound. Thus, MDB is excellent at managing high frequency

wind turbine data across the edge and cloud.

In future work, we will design new model types and improve the

model fitting strategy by exploiting properties of the time series.

Both will be added to a full reimplementation of ModelarDB [44].
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