
A Branch-&-Bound Algorithm for Fractional Hypertree
Decomposition

Zongyan He
The Chinese University of Hong Kong

Hong Kong, China
zyhe@se.cuhk.edu.hk

Jeffrey Xu Yu
The Chinese University of Hong Kong

Hong Kong, China
yu@se.cuhk.edu.hk

ABSTRACT
Conjunctive queries (CQs) have been widely used in database sys-
tems in which acyclic CQs can be computed efficiently, whereas
cyclic CQs may not. Here, a CQ is acyclic if its hypergraph rep-
resentation H is acyclic. In order to find a class of CQs that are
“mildly cyclic”, hypertree decompositions (HDs) have been studied.
The quality of such HDs is by the so-called hypertree width. The
class of acyclic queries is the queries whose hypertree width is 1,
and a mildly cyclic CQ can be processed efficiently if its hypertree
width is bounded. There are several HDs, such as tree decomposi-
tion (TD), generalized hypertree decomposition (GHD), fractional
hypertree decomposition (FHD), as well as hypertree decomposi-
tion (HD). The minimum hypertree width by FHD is the smallest
among all, and it is NP-complete to check if the minimum hyper-
tree width by FHD exists for a given hypertree width at most 𝑘 . In
the literature, there is no dynamic programming (DP) algorithm
or branch-&-bound algorithm reported to compute FHD. In this
paper, we show that there is a DP algorithm for FHD, and we give a
branch-&-bound algorithm based on our DP algorithm to compute
FHD with upper/lower bounds. We confirm the effectiveness and
efficiency of our algorithm by testing all 3,648 hypergraphs given in
a benchmark for HDs, and we also confirm our approach in query
evaluation in real database systems.

PVLDB Reference Format:
Zongyan He and Jeffrey Xu Yu. A Branch-&-Bound Algorithm for
Fractional Hypertree Decomposition. PVLDB, 17(13): 4655 - 4667, 2024.
doi:10.14778/3704965.3704973

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/hzy9819/BB4fhd.

1 INTRODUCTION
Conjunctive queries (CQs) are the queries specified by first-order
logic using conjunctions, and have been widely used in database
systems over decades. In CQs, there are acyclic queries and cyclic
queries. A query is acyclic iff its hypergraph representation is
acyclic, that is, the hypergraph has a join-tree representation [7].
The join-tree based definition coincides with 𝛼-acyclic as defined

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 17, No. 13 ISSN 2150-8097.
doi:10.14778/3704965.3704973

in [12]. And an acyclic query can be efficiently processed by Yan-
nakakis’s algorithm [38]. Whether a query is acyclic can be rec-
ognized in linear time as the acyclicity of its hypergraph can be
recognized in linear time [36]. However, a significant proportion
of CQs that have been used in the real world are not acyclic. In
Hyperbench [14], it includes 70 cyclic queries in SPARQL [9] and
354 cyclic queries in WIKIDATA [28]. There is a very large cyclic
query (tpcds64_0) in the TPC-DS benchmark, which contains 633
vertices and 38 hyperedges. Also in [30], it studies cycle queries
and grid queries over more than 50 relations. There have been great
efforts to find a class of CQs that is not acyclic but are “mildly cyclic”
[17] in CQs so that we can process such mildly cyclic queries effi-
ciently. In other words, it is a question of how to find a cyclic query
that cannot be represented by a join-tree, but can be represented by
a tree-like structure. To this goal, hypertree decompositions (HDs)
have been studied to decompose a hypergraph for a given CQ into
a hypertree.

Hypertree decompositions have been widely used as a basic com-
ponent in query processing [24, 26, 27, 35, 37, 39]. In brief, for a
cyclic CQ query 𝑞, HD decomposes its hypergraph into a hypertree,
where a node in the hypertree represents a subset of vertices in
𝑞, called a “bag”, in the hypergraph. Here, a node in the hypertree
represents a subquery of 𝑞. The query processing of such 𝑞 is to
process every node (a subquery) in the hypertree, and then pro-
cess 𝑞 as an acyclic query over the intermediate relations for all
nodes. The quality of HDs depends on the size of the bag, called
a “width”, and the size bound of the join result is |𝐷 |𝑤𝑖𝑑𝑡ℎ where
|𝐷 | is the database size. The key behind HD is to find a hypertree
in which the largest width is as small as possible. Intuitively, with
a smaller width, each subquery represented by a node in the hy-
pertree can be processed more efficiently. There have been several
HDs being studied with a different width measurement method.
Such as tree decomposition (TD), generalized hypertree decom-
position (GHD) [20], fractional hypertree decomposition (FHD)
[23], as well as hypertree decomposition (HD) [20]. The widths are
known as tw(H), ghtw(H), fhtw(H), and htw(H), respectively.
It is proved that fhtw(H) ≤ ghtw(H) ≤ tw(H), where tw(H)
is too loose to be used, and fhtw(H) is the most effective width
to be used which is recognized by the AGM bound [6] and can be
implemented by Worst Case Optimal Join (WCOJ) [31]. However,
finding such width (either fhtw(H) or ghtw(H)) is hard, as it is
NP-complete to check if its width is at most up to a user-given 𝑘 . To
address the NP-completeness, HD is proposed in [20] as one whose
width (e.g., htw(H)) is greater than ghtw(H) but can be checked
in polynomial time.

4655

https://doi.org/10.14778/3704965.3704973
https://github.com/hzy9819/BB4fhd
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3704965.3704973
https://www.acm.org/publications/policies/artifact-review-and-badging-current

The advantages of HDs in selecting a query plan to process are:➊
stronger theoretically guaranteed, ➋ bounded size of the intermedi-
ate results, and ➌ highly parallelizable execution [18]. And HDs are
used in query optimization in database systems. ① EmptyHeaded
[3] and LevelHeaded [2] use FHD as the basis of query optimizer
and code generator for asymptotically stronger runtime guarantees
and bounded intermediate results in query processing. ② Secco [40]
uses FHD in query optimization, and processes an FHD-based plan
in parallel. ③ FBench [32] uses a similar notion of FHD, called d-
tree, in query processing. ④ SparkSQL+ [11] combines FHD and
the worst-case optimal join as a query plan to process. ⑤ In [16], it
uses HD in query optimization, and designs a hybrid optimizer with
theoretical guarantees to process queries in PostgreSQL. ⑥ HDs
are also used as a data structure in join algorithms [24–26, 35, 37]
and graph algorithms [39]. In addition, HDs can also be used in
solving constraint satisfaction problems (CSPs) [5, 10, 41].

In this paper, we study computing the fractional hypertree de-
composition (FHD), which is mainly studied in theory. In the re-
ported studies, a database system either needs to use a brute force
algorithm to find FHD, or requests a user-given FHD to be used for
the given conjunctive query. For instance, a brute force algorithm is
implemented in EmptyHeaded [3], which can only find the optimal
FHD (or the minimum fhtw(H)) within a reasonable time if the
hypergraph representationH for a conjunctive query has 6 vertices
at most. It is important to note that CQs in the real world can have
dozens or hundreds of vertices in their hypergraph representations.
The only existing practical approach to computing FHD is using
an SMT (Satisfiability Modulo Theories) solver [13]. In brief, it is
to check if the minimum fhtw(H) is at most 𝑘 by encoding such
check as an SMT problem, and solve the SMT problem using an
SMT solver. There are several problems. First, it is not to find the
minimum fhtw(H) but to check whether fhtw(H) is less than or
equal to a given width k. As FHD is fractional hypertree decompo-
sition, the minimum fhtw(H) is a real number that is hard to be
bound and found still. Second, an SMT solver is a black-box, and
will give an answer if it can terminate. But, it may not terminate in
a reasonable time (e.g., hours).

Contributions: First, we give an approach that is not based on
checking the existence of fhtw(H) with a user-given real number
𝑘 at most. We show that FHD can be computed using a dynamic
programming (DP) algorithm. Second, we give a branch-&-bound
algorithm with several upper/lower bounds, which makes our DP
algorithm much more efficient. Our branch-&-bound algorithm
is an anytime algorithm that can terminate at any time. That is,
we can give a feasible solution within the time limit, and we can
give a better solution if we have more time. To the best of our
knowledge, there is no DP algorithm and no branch-&-bound al-
gorithm reported for FHD yet. Third, we discuss how to reduce
the cost of computing some fundamental operations used in FHD
computing. Finally, we conduct extensive experimental studies to
test all 3,648 hypergraphs given in Hyperbench [14], and confirm
the effectiveness in query evaluation in real database systems.

2 PRELIMINARIES
A hypergraph is defined as H = (V, E), whereV is a set of ver-
tices and E is a set of hyperedges, where a hyperedge 𝑒 ∈ E is

a subset of V . Two vertices, 𝑢 and 𝑣 in V are adjacent, if there
exists a hyperedge 𝑒 ∈ E that contains both 𝑢 and 𝑣 . Two adjacent
vertices are neighbors to each other. The neighborhood of a vertex
𝑣 inV , denoted by 𝑁H (𝑣), is all the vertices adjacent to 𝑣 such that
𝑁H (𝑣) = {𝑢 ∈ V|𝑢 ≠ 𝑣 ∧ ∃𝑒 ∈ E s.t. {𝑢, 𝑣} ⊆ 𝑒}, and the closed
neighborhood of a vertex 𝑣 is 𝑁H [𝑣] = 𝑁H (𝑣) ∪ {𝑣}. The degree
of a vertex 𝑣 in a hypergraphH is the number of hyperedges that
contain 𝑣 . A simple hypergraph is a hypergraph without loops and
repeated edges, where a loop is a hyperedge with a single vertex
and repeated edges are the hyperedges that contain the same set
of vertices. A path between two vertices, 𝑢 and 𝑣 in a hypergraph
H = (V, E) is a sequence of vertices, 𝑢 = 𝑣1, 𝑣2, · · · , 𝑣𝑘 = 𝑣 such
that every consecutive vertices, 𝑣𝑖 , 𝑣𝑖+1, for 1 ≤ 𝑖 ≤ 𝑘 − 1, appear in
a hyperedge in E. Given a subset𝑊 (⊆ V) in a hypergraphH , a
subsetV′ (⊆ V) is called a [𝑊]-component ifV′ ⊆ V \𝑊 is a
maximal connected nonempty set, where every pair of vertices, 𝑢
and 𝑣 , inV′ are connected via paths that do not pass any vertices in
𝑊 . In this regard,𝑊 is called a separator that separatesH into sev-
eral [𝑊]-components. Given a subsetV′ (⊆ V) in a hypergraph
H = (V, E), an edge cover of V′ is a subset of E′ (⊆ E) such
that for every 𝑣 ∈ V′, there is a hyperedge 𝑒 ∈ E′ that contains
𝑣 . Such an edge cover of V′ can be defined using a 𝜆 function,
which assigns a hyperedge 1 if it is used to cover𝑉 ′, 0 otherwise, as
𝜆 : E → {0, 1}. It is obvious that, for every 𝑣 ∈ V′, the sum of the
weight of the edges 𝑒 ∈ E that contains 𝑣 , denoted as𝑤 (𝑣), should
be greater than or equal to 1.

𝑤 (𝑣) =
∑︂

𝑒∈E∧𝑣∈𝑒
𝜆(𝑒) ≥ 1 (1)

Let the weight of 𝜆, denoted as weight(𝜆), be the sum of weights
as follows.

weight(𝜆) =
∑︂
𝑒∈E

𝜆(𝑒) (2)

The minimum edge cover ofV′ is the edge cover that has a min-
imum weight, denoted as 𝐸𝐶 (V′), and the minimum edge cover
weight is the weight of the minimum edge cover, denoted as 𝜌 (V′).

𝐸𝐶 (V′) = argmin
𝜆

weight(𝜆) (3)

𝜌 (V′) = min
𝜆

weight(𝜆) (4)

By combining the Eq. (1)-(4), we have the minimum edge cover of
V′ regarding E as follows.

𝜌 (V′, E) = min
𝜆

∑︂
𝑒∈E

𝜆(𝑒) s.t. 𝑤 (𝑣) ≥ 1, for each 𝑣 ∈ V′ (5)

The definition of fractional edge cover (FEC) can be defined in a
similar manner using a weight function, 𝛾 : E → [0, 1], which
gives a hyperedge a fractional weight between 0 and 1 if it is used
to cover, 0 otherwise. In the following, we use 𝜌∗ (V′, E) for FEC
by replacing 𝜆 with 𝛾 in Eq. (5).

𝜌∗ (V′, E) = min
𝛾

∑︂
𝑒∈E

𝛾 (𝑒) s.t. 𝑤 (𝑣) ≥ 1, for each 𝑣 ∈ V′ (6)

Example 2.1: The hypergraphH = (V, E) in Fig. 1 represents a
conjunctive query over 4 relations, 𝑅1 (𝐴, 𝐵, 𝐷, 𝐸) ∧𝑅2 (𝐶, 𝐷, 𝐸, 𝐹) ∧
𝑅3 (𝐴,𝐶,𝐻) ∧ 𝑅4 (𝐹,𝐺). Here,V = {𝐴, 𝐵,𝐶, 𝐷, 𝐸, 𝐹,𝐺, 𝐻 } and E =

{𝑒1, 𝑒2, 𝑒3, 𝑒4} for 𝑒1 = {𝐴, 𝐵, 𝐷, 𝐸}, 𝑒2 = {𝐶, 𝐷, 𝐸, 𝐹 }, 𝑒3 = {𝐴,𝐶,𝐻 },

4656

𝐴
𝐵

𝐶
𝐷

𝐸

𝐹

𝐺𝐻

𝑒1

𝑒2
𝑒3

𝑒4

Figure 1: A hypergraph for a conjunctive query

and 𝑒4 = {𝐹,𝐺}. Let𝑊 = {𝐴,𝐶, 𝐷} be a separator. The hypergraph
H is separated into two [𝑊]-components, {𝐻 } and {𝐵, 𝐸, 𝐹,𝐺}.

Example 2.2: Consider V′ = {𝐴,𝐶, 𝐷, 𝐸} for the hypergraph H
in Example 2.1. An edge cover of V′ is 𝐸𝐶 (V′) = {𝑒1, 𝑒2}, with
weight(𝜆) = 2, for 𝜆(𝑒1) = 𝜆(𝑒2) = 1. 𝐸𝐶 (V′) is the minimum edge
cover of V′. The minimum fractional edge cover is 𝐹𝐸𝐶 (V′) =
{𝑒1, 𝑒2, 𝑒3} with weight(𝛾) = 3

2 for 𝛾 (𝑒1) = 𝛾 (𝑒2) = 𝛾 (𝑒3) = 1
2 .

A primal graph of a hypergraphH = (V, E) is a graph denoted
as𝐺 (H) = (V, 𝐸𝐺), whereV is the set of vertices inH , and 𝐸𝐺 is
a set of edges, (𝑢, 𝑣), if𝑢 and 𝑣 appear in a hyperedge in E. Here, the
primal graph𝐺 (H) is a simple graph that represents the adjacency
of verticesV in the corresponding hypergraphH = (V, E).

There are several ways to decompose a hypergraph. A tree de-
composition (TD) of a hypergraph H = (V, E) is a pair (𝑇, 𝜒).
Here, 𝑇 = (𝑉𝑇 , 𝐸𝑇) is a tree, and 𝜒 is a function that maps each
node 𝑡𝑖 in 𝑇 to a subset of vertices inV such as 𝜒 (𝑡𝑖) ⊆ V . Note
that 𝜒 (𝑡𝑖) is called the bag at a node 𝑡𝑖 . The conditions for TD to
be held are as follows. ❶ Each vertex 𝑣 ∈ V is covered such that
there is a node 𝑡𝑖 in 𝑇 for 𝑣 ∈ 𝜒 (𝑡𝑖). ❷ Each hyperedge 𝑒 ∈ E is
covered such that there is a node 𝑡𝑖 in 𝑇 for 𝑒 ⊆ 𝜒 (𝑡𝑖). ❸ The bags
that contain the same vertex 𝑣 ∈ V are connected in𝑇 such that for
any three nodes, 𝑡𝑖 , 𝑡 𝑗 , and 𝑡𝑘 , in 𝑇 , we have 𝜒 (𝑡 𝑗) ⊆ 𝜒 (𝑡𝑖) ∩ 𝜒 (𝑡𝑘)
if 𝑡 𝑗 is on the path between 𝑡𝑖 and 𝑡𝑘 in 𝑇 .

The width of tree decomposition (𝑇, 𝜒) is max𝑡𝑖 ∈𝑇 |𝜒 (𝑡𝑖) | − 1,
and the treewidth of a hypergraphH , denoted as tw(H), is defined
as the minimum width of all tree decompositions ofH . A general-
ized hypertree decomposition (GHD) of a hypergraphH = (V, E)
is a triple (𝑇, 𝜒, 𝜆) [20]. Here, (𝑇, 𝜒) is a tree decomposition ofH ,
and 𝜆 is a function that assigns each node 𝑡𝑖 ∈ 𝑇 an edge cover
𝜆(𝑡𝑖) to cover 𝜒 (𝑡𝑖). The width of a generalized hypertree decom-
position (𝑇, 𝜒, 𝜆) is max𝑡𝑖 ∈𝑇 {weight(𝜆(𝑡𝑖))}, and the generalized
hypertree width of a hypergraph H , denoted as ghtw(𝐻), is the
minimum width of a GHD of H . A fractional hypertree decom-
position (FHD) of a hypergraph H = (V, E) is a triple (𝑇, 𝜒,𝛾)
[23]. Here, (𝑇, 𝜒) is a tree decomposition ofH , and 𝛾 is a function
that assigns each node 𝑡𝑖 ∈ 𝑇 a fractional edge cover 𝛾 (𝑡𝑖) to cover
𝜒 (𝑡𝑖). The width of a fractional hypertree decomposition (𝑇, 𝜒,𝛾)
is max𝑡𝑖 ∈𝑇 {weight(𝛾 (𝑡𝑖))}, and the fractional hypertree width of
a hypergraphH , denoted as fhtw(H), is the minimum width of a
FHD ofH .

Example 2.3: We illustrate two hypertree decompositions 𝑇1 and
𝑇2 for the hypergraphH in Fig. 1. All the tree decompositions share
the same pair of (𝑇, 𝜒) following the 3 conditions given for tree
decomposition (TD). For simplicity, we use 𝜒𝑖 for 𝜒 (𝑡𝑖) where 𝑡𝑖 is a

𝜒1={𝐴,𝐶,𝐷,𝐸}
𝜆1={𝑒1,𝑒2},𝛾1={ 12 𝑒1,

1
2 𝑒2,

1
2 𝑒3}

𝑄𝜒1 :𝜋𝐴,𝐶,𝐷,𝐸 (𝑒1⊲⊳𝑒2⊲⊳𝑒3)

𝜒2={𝐶,𝐷,𝐸,𝐹 }
𝜆2=𝛾2={𝑒2}
𝑄𝜒2 :𝑒2

𝜒5={𝐹,𝐺 }
𝜆5=𝛾5={𝑒4}
𝑄𝜒5 :𝑒4

𝜒3={𝐴,𝐵,𝐷,𝐸}
𝜆3=𝛾3={𝑒1}
𝑄𝜒3 :𝑒1

𝜒4={𝐴,𝐶,𝐻 }
𝜆4=𝛾4={𝑒3}
𝑄𝜒4 :𝑒3

(a)𝑇1

𝜒1={𝐴,𝐶,𝐹 ,𝐺,𝐻 }
𝜆1=𝛾1={𝑒3,𝑒4}
𝑄𝜒1 :𝑒3⊲⊳𝑒4

𝜒4={𝐴,𝐵,𝐶,𝐷,𝐸,𝐹 }
𝜆2=𝛾2={𝑒1,𝑒2}
𝑄𝜒2 :𝑒1⊲⊳𝑒2

(b)𝑇2

Figure 2: Two Hypertree Decompositions forH in Fig. 1

node in𝑇 . For GHD (FHD), we use 𝜆𝑖 (𝛾𝑖) to represent its edge cover
(fractional edge cover) for its bag 𝜒𝑖 together with its weight assign-
ment by 𝜆(·) (𝛾 (·)). We use 𝑄𝜒𝑖 to represent the join query within
the bag 𝜒𝑖 . Consider the node 𝑡1 in𝑇1 with 𝜒1 = 𝜒 (𝑡1) = {𝐴,𝐶, 𝐷, 𝐸},
we have 𝜆1 = {𝑒1, 𝑒2} with 𝜆(𝑒1) = 𝜆(𝑒2) = 1, and we have
𝛾1 = { 12𝑒1,

1
2𝑒2,

1
2𝑒3} 𝛾 (𝑒1) = 𝛾 (𝑒2) = 𝛾 (𝑒3) = 1

2 . For 𝑇1, the
width of TD, GHD and FHD are tw(𝑇1) = 3, ghtw(𝑇1) = 2 and
fhtw(𝑇1) = 3

2 , respectively. For 𝑇2, the widths are tw(𝑇2) = 6,
ghtw(𝑇2) = fhtw(𝑇2) = 2. Regarding fhtw(·), by𝑇1 it is to join a tri-
angle of 𝑒1, 𝑒2, and 𝑒3, and possibly result in a smaller intermediate
result; by𝑇2 it is to join 𝑒1 and 𝑒2 and join 𝑒3 and 𝑒4 separately, which
possibly result in larger intermediate results. When finally evaluat-
ing all nodes as an acyclic query, the complexity is 𝑂 (𝐼𝑁 +𝑂𝑈𝑇)
following Yannakakis’s algorithm [38], where 𝐼𝑁 = |𝐷 |

3
2 for𝑇1 and

𝐼𝑁 = |𝐷 |2 for 𝑇2, for |𝐷 | to be the database size.

Problem Statement: It is known that the inequality holds on
tw(H), ghtw(H), and fhtw(H): fhtw(H) ≤ ghtw(H) ≤ tw(H)+
1. In this work, we focus on FHD, and study algorithms to compute
fhtw(H).

We discuss the hardness of FHD computing which is given in
[14, 15] together with the hardness of GHD, as finding fhtw(H)
by FHD shares some similarities with finding ghtw(H) by GHD.
The key difference between GHD and FHD is the functions used,
namely, 𝜆(·) and 𝛾 (·), where the former is a function that assigns a
hyperedge in EC a value in {0, 1} and the latter is a function that
assigns a hyperedge in FEC a value in the range of [0, 1].

For finding GHD [14, 15], as shown below, it is to check if GHD
exists for a given width 𝑘 (e.g., ghtw(H) ≤ 𝑘) for a hypergraphH
by searching all hypertrees ≤ 𝑘 of width using separators.

check(GHD, 𝑘)
input a hypergraph H = (V, E)
output GHD of H of width ≤ 𝑘 if it exists and answer ’no’ otherwise

As discussed in [14, 15], check(GHD, 𝑘) is NP-complete even
for 𝑘 = 2. Two search algorithms to search hypertree width ≤ 𝑘 ,
GlobalBIP and LocalBIP, are given in [14]. These algorithms are
designed based on some properties, namely, Bounded Intersection
Property (BIP) and Bounded Multi-Intersection Property (BMIP),
which are held for certain classes of conjunctive queries. Addition-
ally, a search algorithm called BalSep is also given in [14] using
balanced separators, and its parallel version is given in [21].

4657

As a main result in [14, 15], deciding fhtw(H) ≤ 2 for a hyper-
graph H is NP-complete, and check(FHD, 𝑘) is intractable even
for 𝑘 = 2. Intuitively, finding FHD is even harder as it is difficult
to make use of an upper bound like 𝑘 used in check(GHD, 𝑘) for
GHD, due to the nature of FHD, which is fractional. In [29], it ap-
proximates fhtw(H) in polynomial time with a cubic error factor,
which is too large to be used. Some improvements in the errors in
the experimental studies can be found [14].

An SMT Approach: We discuss the only approach to compute the
exact FHD which is done using an SMT solver [13]. The Boolean
Satisfiability Problem (SAT) is the first problem proven to be NP-
complete. It has been extensively studied to develop SAT solvers
with various techniques. An SAT encoding method is to encode an
NP-complete problem into an SAT problem, and solve it using an
SAT solver. In [13], it follows the ideas used in [33] which encodes
TD at most 𝑘 width (e.g, check(TD, 𝑘)) into an SAT problem, and
solves it using an SAT solver. Furthermore, in [13], it encodes FHD
at most 𝑘 width (e.g, check(FHD, 𝑘)) into an SMT problem to deal
with real numbers. The SMT approach has several shortcomings.
(1) There is an issue of precision loss in an SMT solver caused by
its internal representation of the real numbers. Such errors are
reported in Hyperbench [14], and we confirm that some results by
SMT differs from the exact answers more than 1𝑒-3. That is, there
is no guarantee that the answer of FHD by SMT is the optimum,
and it is possible that the answer by SMT is a suboptimal solution.
It is worth mentioning that this error is not caused by the encoding
method [13], but due to the limitations of the SMT solver in pro-
cessing real numbers. (2) It is still based on the approaches taken
to check (i.e., check(FHD, 𝑘)). The SMT solver needs to be called
a large number of times to find a real number 𝑘 as the minimum
width, and it is difficult to upper/lower bound such a real number
𝑘 . (3) The SMT encoding treats the original problem as a black-box,
which makes the efficiency of the algorithm highly dependent on
encoding quality and the SMT solver efficiency. In other words, an
SMT solver will give an answer if it terminates. But, it may not
terminate in a reasonable time (e.g., hours).

3 A NEW DP ALGORITHM
In this section, we give a dynamic programming (DP) algorithm.
First, we discuss the elimination order, and show how we deal with
partial elimination orders with which partial eliminatied hyper-
graphs are constructed in tree decomposition. Second, we discuss
DP algorithm design for FHD which is independent of (partial)
elimination orders over a hypergraph. Third, we present the DP
algorithm in detail.

3.1 Elimination Order
Elimination order has been used in tree decomposition over a graph
𝐺 [8], and in hypertree decomposition [34] and fractional hypertree
decomposition (FHD) [13] over a hypergraph H , because such
decompositions can be formulated as a linear order problem to
solve. We discuss the elimination order over a hypergraph below.

An elimination order is a linear order of vertices in a hypergraph
H = (V, E), defined as a bijection 𝜋 : V → {1, 2, · · · , |V|}. For
simplicity, we use 𝜋𝑖 to represent a vertex 𝑣 𝑗 ∈ V as the 𝑖-th vertex
in the linear order (𝜋 (𝑣 𝑗) = 𝑖). With a given linear order, a sequence

of |V| hypergraphs, (H0
𝜋 ,H1

𝜋 , · · · ,H
|𝜋 |
𝜋), can be constructed for

H 𝑖
𝜋 = (V𝑖

𝜋 , E𝑖𝜋). Here, H0
𝜋 = H . H 𝑖

𝜋 = elim(H 𝑖−1
𝜋 , 𝜋𝑖) where

elim(H , 𝑣) is an elimination operation that removes a vertex 𝑣

from the input hypergraph H , adds a hyperedge into the input
hypergraphH , and results in a new hypergraphH ′ = (V\{𝑣}, E∪
{𝑁H (𝑣)}). The lastH

|𝜋 |
𝜋 in the sequence is an empty hypergraph.

With the sequence of hypergraphs constructed, it can obtain a set
of bags, 𝜒 = {𝜒1, 𝜒2, · · · , 𝜒 |𝜋 | } for 𝜒𝑖 = 𝑁H𝑖−1

𝜋
[𝜋𝑖].

In [13], it shows that a tree decomposition𝑇 of (𝑇, 𝜒) exists as it
can be constructed backwards from 𝜒 |𝜋 | to 𝜒1, and proves that, for
a hypergraphH , there exists a linear order 𝜋 ofH , such that the
FHD width built by 𝜋 equals to fhtw(H). Therefore, the problem of
finding a minimum FHD width is equivalent to finding a minimum
width by a linear order.

In order to design a DP algorithm for FHD, we define a partial
elimination order, and a way to construct a tree decomposition in a
forward manner to be used together with the partial elimination
order. In other words, in our DP algorithm, we need to partially
construct a tree and enlarge the tree constructed step-by-step.

Partial elimination order: Let 𝜋 be an elimination order ofH =

(V, E), a partial elimination order 𝜋 ′ is a prefix of 𝜋 overV′ (⊆ V).
Given a partial elimination order 𝜋 ′, in a similar manner, a sequence
of |V′ | hypergraphs can be constructed using elim(,).

The forward construction of a tree decomposition from 𝜒1 to
𝜒 |𝜋 | is given below.

• Create a new node 𝑡𝑖 with the bag of 𝜒𝑖 , and mark 𝑡𝑖 unlinked;
• For every unlinked node 𝑡 𝑗 , 𝑗 < 𝑖 , in 𝑇 , add a new edge
(𝑡 𝑗 , 𝑡𝑖), and mark node 𝑡 𝑗 linked, if 𝜒 𝑗 \ {𝜋 𝑗 } ⊆ 𝜒𝑖 .

The correctness of the forward construction can be proved in a
similar way used to prove the backward construction in [13], which
we omit it here.

In the following, we callH 𝑖
𝜋 in a sequence of |V| hypergraphs,

(H1
𝜋 , · · · ,H

|𝜋 |
𝜋), a partial eliminated hypergraph, which elimi-

nates the vertices from 𝜋1 up to 𝜋𝑖 , and we call the current 𝜋 up to
𝜋1𝜋2 · · · 𝜋𝑖 a partial eliminated order if 𝑖 < |V|.
Example 3.1: Consider an elimination order, 𝜋 = (𝐺, 𝐹, 𝐻, 𝐵,𝐶,

𝐴, 𝐷, 𝐸), for the hypergraph H in Fig. 1. There is a sequence of
hypergraphs, (H0

𝜋 ,H1
𝜋 , · · · ,H

|𝜋 |
𝜋), constructed following the elim-

ination order. Here, H0
𝜋 = H . We show how to construct a tree

decomposition 𝑇 with the elimination order forH (Fig. 1) in a for-
ward fashion from 𝜒1 to 𝜒 |𝜋 | , in Fig. 3. Note that with 𝜋 , we have
𝜋1 = 𝐺 , 𝜋2 = 𝐹 , · · · , 𝜋 |𝜋 | = 𝐸. In Fig. 3,H 𝑖

𝜋 is shown in a subfigure
in which a red vertex is the 𝑖-th vertex (𝜋𝑖) to be removed from
H 𝑖−1

𝜋 , a hyperedge to be added intoH 𝑖
𝜋 is indicated by the dashed

line excluding the red vertex if it does not exist, 𝜒𝑖 is the closed
neighborhood of 𝜋𝑖 , and 𝛾𝑖 is the fractional edge cover (FEC) of 𝜒𝑖 .
Fig. 3(a) showsH1

𝜋 by eliminating 𝜋1 = 𝐺 fromH0
𝜋 (Fig. 1). We have

𝜒1 = {𝐹,𝐺}, a node 𝑡1 is created in 𝑇 with the bag of 𝜒1. Its FEC of
𝜒1 is 𝛾 = {𝑒4}. Fig. 3(b) showsH2

𝜋 by eliminating 𝜋2 = 𝐹 fromH1
𝜋 .

We have 𝜒2 = {𝐶, 𝐷, 𝐸, 𝐹 }, and a node 𝑡2 is created in 𝑇 with the
bag of 𝜒2. There is an edge (𝑡1, 𝑡2) in 𝑇 because 𝜒1 \ {𝐺} ⊆ 𝜒2, the
FEC of 𝜒2 is 𝛾 = {𝑒2}. Fig. 3(h) shows the entire tree decomposition
𝑇 constructed. Here, an FHD width can be computed based on 𝛾 ’s
using 𝛾𝑖 = 𝜌∗ (𝜒𝑖) (refer to Eq. (4) by replacing 𝜆 with 𝛾), for each

4658

𝐴
𝐵

𝐶 𝐷

𝐸

𝐹

𝐺

𝐻

𝑡1 :
𝜒1={𝐹,𝐺 }
𝛾1={𝑒4 }

(a) 𝐻 1
𝜋 (eliminate𝐺)

𝐴
𝐵

𝐶 𝐷

𝐸

𝐹

𝐻

𝑡2 :
𝜒2={𝐶,𝐷,𝐸,𝐹 }

𝛾2={𝑒2 }

𝑡1

(b) 𝐻 2
𝜋 (eliminate 𝐹)

𝐴
𝐵

𝐶 𝐷

𝐸

𝐻

𝑡2

𝑡1
𝑡3 :

𝜒3={𝐴,𝐶,𝐻 }
𝛾3={𝑒3 }

(c) 𝐻 3
𝜋 (eliminate 𝐻)

𝐴
𝐵

𝐶 𝐷

𝐸

𝑡2

𝑡1 𝑡3
𝑡4 :

𝜒4={𝐴,𝐵,𝐷,𝐸}
𝛾4={𝑒1 }

(d) 𝐻 4
𝜋 (eliminate 𝐵)

𝐴

𝐶 𝐷

𝐸

𝑡5 :
𝜒5={𝐴,𝐶,𝐷,𝐸}

𝛾5={ 12𝑒1,
1
2𝑒2,

1
2𝑒3 }

𝑡2

𝑡1

𝑡3 𝑡4

(e) 𝐻 5
𝜋 (eliminate𝐶)

𝐴

𝐷

𝐸

𝑡6 :
𝜒6={𝐴,𝐷,𝐸}
𝛾6={𝑒1 }

𝑡5

𝑡2

𝑡1

𝑡3 𝑡4

(f) 𝐻 6
𝜋 (eliminate𝐴)

𝐷

𝐸

𝑡7 :
𝜒7={𝐷,𝐸}
𝛾7={𝑒1 }

𝑡6

𝑡5

𝑡2

𝑡1

𝑡3 𝑡4

(g) 𝐻 7
𝜋 (eliminate 𝐷)

𝐸

𝑡8 :
𝜒8={𝐸}
𝛾8={𝑒1 }

𝑡7

𝑡6

𝑡5

𝑡2

𝑡1

𝑡3 𝑡4

(h) 𝐻 8
𝜋 (elimiate 𝐸)

Figure 3: An elimination order (𝐺, 𝐹, 𝐻, 𝐵,𝐶,𝐴, 𝐷, 𝐸) the hypergraphH in Fig. 1
bag 𝜒𝑖 , for 1 ≤ 𝑖 ≤ 𝜋 , and fhtw(H) can be identified if it explores
all linear orders.

3.2 The Order Independent
We show that the elimination order plays an important role in
FHD. With the goal of designing a DP algorithm to solve FHD, we
explore the order independent property of the elimination order.
In brief, with this property, two partial hypergraphs constructed
are identical even if they are constructed with different elimination
orders. Below, we first discuss how and why a DP algorithm works
on a simple case of FHD: computing tw(𝐺) for a graph 𝐺 = (𝑉 , 𝐸).
Note that 𝐺 is a special hypergraph in which every hyperedge has
2 vertices. Then we discuss how to extend it to compute fhtw for a
hypergraph. The equation used is given as follows

𝑇𝑊 (𝑆) = min
𝜋∈∏︁(𝑉)max

𝑣∈𝑆
|𝑄 (𝜋<,𝑣, 𝑣) | (7)

with which it computes all subsets 𝑆 ⊆ 𝑉 using DP. Here,
∏︁(𝑉) is

the set of all linear orders (permutations) for a set of vertices,𝑉 . For
a given linear order 𝜋 , 𝜋<,𝑣 is the set of vertices that appear before
𝑣 in the order 𝜋 , and𝑄 (𝑆, 𝑣) is a non-empty set of vertices, 𝑆 (⊂ V),
such that any vertex 𝑤 ≠ 𝑣 in V \ 𝑆 and 𝑣 can be connected by
a path over the induced subgraph 𝐺 [𝑆 ∪ {𝑣,𝑤}]. As observed in
Eq. (7), the complexity of computing 𝑄 (𝜋<,𝑣, 𝑣) is high as it needs
to enumerate all such linear orders. To reduce such complexity, in
[8], it is proved that it does not need to compute all linear orders
(Eq. (7)). To make it efficient, in [8], it shows that it can compute
𝑄 (𝜋<,𝑣, 𝑣) using a set, i.e., 𝑄 (𝑆 \ {𝑣}, 𝑣), instead of all linear orders
in the set in computing treewidth for 𝐺 .

𝑇𝑊 (𝑆) = min
𝑣∈𝑆

max{𝑇𝑊 (𝑆 \ {𝑣}), |𝑄 (𝑆 \ {𝑣}, 𝑣) |}

Figure 4: A hypergraph eliminates {𝐴, 𝐵,𝐶} in two orders

We present the result of this property in a Lemma below, which is
not given explicitly in [8].

Lemma 3.1: Let 𝐺 = (𝑉 , 𝐸) be a graph, and 𝜋1, 𝜋2 ∈
∏︁(𝑆) be

any two different linear orders on subset 𝑆 ⊆ 𝑉 . The simple graphs
obtained by the two elimination orders of vertices, 𝜋1 and 𝜋2, are
identical such that elim(𝐺, 𝜋1) = elim(𝐺, 𝜋2).

The DP algorithm is given in [8] in 𝑂∗ (2𝑛) time complexity and
𝑂∗ (2𝑛) space complexity1 where 𝑛 = |𝑉 |, which is too high to deal
with a large graph 𝐺 . In [8], a divide-&-conquer algorithm is given
based on the same property in Lemma 3.1.

However, the similar observation by Lemma 3.1 for 𝐺 does not
hold for hypergraphs. In other words, different elimination orders
can result in different hypergraphs. We show it using an example.

1The𝑂∗-notation suppresses all polynomial factors in𝑂-notation.

4659

Example 3.2: Consider a set of vertices, 𝑆 = {𝐴, 𝐵,𝐶}, in a hyper-
graphH shown in Fig. 4 with two elimination orders, 𝜋1 = 𝐴𝐶𝐵 and
𝜋2 = 𝐵𝐴𝐶 . The hypergraph by 𝜋1 adds hyperedges 𝑒1 = {𝐵, 𝐷, 𝐸},
𝑒2 = {𝐵,𝐺, 𝐻 }, and 𝑒3 = {𝐷, 𝐸, 𝐹,𝐺, 𝐻 } to H , whereas the hyper-
graph by 𝜋2 adds hyperedges 𝑒′1 = {𝐴,𝐶, 𝐹,𝐺}, 𝑒

′
2 = {𝐶, 𝐷, 𝐸, 𝐹,𝐺},

and 𝑒′3 = {𝐷, 𝐸, 𝐹,𝐺, 𝐻 } toH . The two hypergraphs obtained via
the two different elimination orders are not identical.

We need a condition to compute FHD efficiently for two hyper-
graphs obtained via two different orders to be identical.
The width of a bag:We identify the key factor hidden in Lemma 3.1.
In doing so, we re-examine the sequence of |𝑉 | graphs, (𝐺0

𝜋 ,𝐺
1
𝜋 , · · · ,

𝐺𝑛
𝜋) for 𝑛 = |𝑉 |, with a linear order 𝜋 . We observe that the width of

a bag at a node in (𝑇, 𝜒) for a graph,𝐺 , is the cardinality of the bag
minus one, where the bag consists of the closed neighbors of the
eliminated vertex from 𝐺 . That is, the width of the bag 𝜒𝑖 at node
𝑡𝑖 created for 𝜋𝑖 in𝑇 for𝐺𝑖

𝜋 is equal to the degree of the eliminated
vertex 𝜋𝑖 such that

𝜔 (𝜒𝑖) = |𝑁𝐺𝑖−1
𝜋
[𝜋𝑖] | − 1 = 𝑑𝐺𝑖−1

𝜋
(𝜋𝑖) (8)

Here, 𝑁𝐺𝑖−1
𝜋
[𝜋𝑖] is the closed neighborhood of the vertex 𝜋𝑖 , and

𝑑𝐺𝑖−1
𝜋
(𝜋𝑖) is the degree of 𝜋𝑖 in the graph 𝐺𝑖−1

𝜋 . The vertex has the
same degree which is irrelevant to the elimination order used over
the same subset of vertices.
The vertex-width: We define a similar concept over a hypergraph
called vertex-width. In a hypergraphH = (V, E), the vertex-width
of a vertex 𝑣 ∈ V = (V, E) is the weight of minimum FEC of its
closed neighborhood, i.e.,

𝜔H (𝑣) = 𝜌∗ (𝑁H [𝑣], E) (9)

Consider the sequence of |V| hypergraphs, (H0
𝜋 ,H1

𝜋 , · · · ,H
|𝜋 |
𝜋),

in terms of a linear order 𝜋 . As discussed in the forward construction
of a tree decomposition, 𝑇 , a node 𝑡𝑖 is created for 𝜋𝑖 in 𝑇 with the
bag of 𝜒𝑖 = 𝑁H𝑖−1

𝜋
[𝜋𝑖]. With Eq. (6), we have the width of 𝜒𝑖 as

𝜔 (𝜒𝑖) = 𝜌∗ (𝑁H𝑖−1
𝜋
[𝜋𝑖], E).

Definition 3.1: LetH 𝑖
𝜋 = (V𝑖

𝜋 , E𝑖𝜋) be a partial eliminated hyper-
graph over a partial elimination order 𝜋 that eliminates vertices
in {𝜋1, 𝜋2, · · · , 𝜋𝑖 } fromH in order. The vertex-width of a vertex 𝑣
in a partial eliminated hypergraphH 𝑖

𝜋 is the minimum FEC of its
closed neighborhood over the hyperedges in E, i.e.,

𝜔H𝜋
(𝑣) = 𝜌∗ (𝑁H𝑖

𝜋
[𝑣], E) (10)

It is important to note that the vertex-width of a vertex 𝑣 given
in Eq. (6) allows us to compute 𝜔 (𝜒𝑖) = 𝜌∗ (𝜒𝑖 , E) for the input
hypergraph as well as any partial eliminated hypergraphs using E,
even though the hyperedges of a partial eliminated hypergraph are
different from the input hypergraph.

Example 3.3: Consider the hypergraphH = (V, E) in Fig. 4 with
two different elimination orders, 𝜋1 = 𝐴𝐶𝐵 and 𝜋2 = 𝐵𝐴𝐶 . The
vertex-width of𝐺 in the 2 partial eliminated hypergraphs,H𝜋1 and
H𝜋2 , is 𝜔H𝜋1

(𝐺) = 𝜔H𝜋2
(𝐺) = 𝜌∗ ({𝐷, 𝐸, 𝐹,𝐺, 𝐻 }) = 5.

Like Lemma 3.1 which gives a sufficient condition to compute
TD for a graph 𝐺 , we give a similar but bf weaker sufficient con-
dition to compute FHD for a hypergraphH . We observe that the
hyperedges of a partial eliminated hypergraph, H 𝑖

𝜋 , is different

from that in the original hypergraph H ; however, for FHD, the
vertex-width, 𝜔 (·), in a partial eliminated hypergraph is computed
by the original hyperedges in H . With it, we consider if we can
derive some condition like the one used in Eq. (8) regarding TD for a
graph, which says that the ’degree’ of a vertex remains the same for
different elimination orders. Here, we consider two vertex-widths,
𝜔H𝜋1

(𝑣) and 𝜔H𝜋2
(𝑣), for any two partial elimination orders, 𝜋1

and 𝜋2, over the same subset V′ (⊆ V). If two vertex-widths
are equal (e.g., 𝜔H𝜋1

(𝑣) = 𝜔H𝜋2
(𝑣)) by Eq. (10), then it implies

𝜌∗ (𝑁H𝑖
𝜋1
[𝑣], E) = 𝜌∗ (𝑁H𝑖

𝜋2
[𝑣], E). If two vertex-widths are equal

because 𝑁H𝑖
𝜋1
[𝑣] = 𝑁H𝑖

𝜋2
[𝑣], then it implies that, for any vertex

𝑣 , they have the same neighbors on different eliminated hyper-
graphs. In other words, their primal graphs must be identical. The
weaker sufficient condition we find is that two primal graphs with
different linear orders over the same subset need to be identical for
their vertex-widths to be the same. This condition is similar to the
condition on graph (Lemma (3.1)). We give a lemma below.

Lemma 3.2: LetH = (V, E) be a hypergraph. For any two different
partial elimination order over V′ (⊆ V), 𝜋1 and 𝜋2, its partial
eliminated hypergraphs,H𝜋1 andH𝜋2 , have the same primal graph,
i.e., 𝐺 (H𝜋1) = 𝐺 (H𝜋2).
Proof Sketch: As the elimination operation on V′ only affects
the adjacency of 𝑁H (V′), we focus on the adjacency of 𝑁H (V′),
and consider its two cases. The first case is whenV′ is connected.
EliminatingV′ fromH makes the vertices in 𝑁H (V′) pairwise
adjacent. The resulting primal graph is 𝐺 (elim(H ,V′)) = (V \
V′, E ∪ 𝑐𝑙𝑖𝑞𝑢𝑒 (𝑁H (V′))). We prove it as follows. IfV′ is a chain
𝑣1, 𝑣2, · · · , 𝑣 |V′ | and we eliminate 𝑣𝑖 at some step. Let 𝑣𝑙 , 𝑣𝑟 be the
vertices of 𝑣𝑖 adjacent to the left and right on the chain, eliminat-
ing 𝑣𝑖 makes the neighbors of 𝑣𝑖 , 𝑁H (𝑣𝑖), pairwise adjacent. This
is due to the fact that 𝑣𝑙 and 𝑣𝑟 are adjacent to 𝑣𝑖 , 𝑣𝑙 and 𝑣𝑟 be-
come adjacent, and also adjacent to 𝑁H (𝑣𝑖), such that 𝑁H (𝑣𝑙) =
𝑁H (𝑣𝑙) ∪ 𝑁H (𝑣𝑖), 𝑁H (𝑣𝑟) = 𝑁H (𝑣𝑟) ∪ 𝑁H (𝑣𝑖). This means the
adjacency on 𝑣𝑖 spreads to 𝑣𝑙 and 𝑣𝑟 and the chain cannot be bro-
ken. In addition, in the last elimination, 𝑁H (V′) will spread to
the last vertex and become pairwise adjacent. For general cases,
for any 𝑢, 𝑣 ∈ 𝑁H (𝑆), there must be a path 𝑣1, ..., 𝑣𝑘 ∈ V′ and
𝑢 ∈ 𝑁H (𝑣1), 𝑣 ∈ 𝑁H (𝑣𝑘). This reduce to the chain case where 𝑢
and 𝑣 are adjacent. The second case is when V′ is composed of
𝑘 connected components 𝐶1, · · · ,𝐶𝑘 . EliminatingV′ fromH will
make the vertices in each 𝑁H (𝐶1), · · · , 𝑁H (𝐶𝑘) pairwise adjacent.
The resuting primal graph is 𝐺 (elim(H ,V′)) = (V \ V′, E ∪
𝑐𝑙𝑖𝑞𝑢𝑒 (𝑁H (𝐶1)) ∪ · · · ∪ 𝑐𝑙𝑖𝑞𝑢𝑒 (𝑁H (𝐶𝑘))). And the elimination op-
eration does not affect the disconnected vertices. We can deal with
each 𝐶𝑖 independently. □

3.3 A DP algorithm for FHD over hypergraphs
Let H = (V, E) be a hypergraph,

∏︁(V) be the set of all linear
orders ofH , and let 𝜒𝜋𝑖 and 𝛾𝜋𝑖 be the bag and the corresponding
minimum FEC for 𝜋𝑖 . Note that the weight of the minimum FEC on
the bag 𝜒𝜋𝑖 , weight(𝛾𝜋𝑖) is equal to the vertex-width of 𝜋𝑖 on the
partial eliminated hypergraphH𝜋𝑖−1 (Eq. (10)). The fhtw(H) can

4660

be formulated as follows.
fhtw(H) = min

𝜋∈∏︁(V) max
𝑖=1,· · · , |V |

weight(𝛾𝜋𝑖)

= min
𝜋∈∏︁(V) max

𝑖=1,· · · , |V |
𝑤H𝜋𝑖−1

(𝜋𝑖)
(11)

With Eq. (11), it needs to enumerate all |V|! linear orders (permuta-
tions), whose computational complexity is unacceptable. To speed
up the computation of Eq. (11), we compute the width of the tree
decomposition for the partial eliminated hypergraph. LetV′ ⊆ V
be a subset of vertices, and 𝜋 be a partial order of

∏︁(V′) overV′.
We have

width(H , 𝜋) = max
𝑖=1,· · · , |V′ |

𝑤H𝜋𝑖−1
(𝜋𝑖) (12)

Here, the partial width onV′ can be derived as follows.
fhtw(H ,V′) = min

𝜋∈∏︁(V′) width(H , 𝜋)

= min
𝜋∈∏︁(V′) max

𝑖=1,· · · , |V′ |
𝑤H𝜋𝑖−1

(𝜋𝑖)
(13)

Let 𝐻elim(V′) be the partial eliminated hypergraph from which
the vertices ofV′ have been eliminated, and letHelim(V′)+𝜋𝑖 be
the partial eliminated hypergraph obtained by first eliminatingV′
followed by eliminating one more vertex 𝜋𝑖 . The width of such a
partial eliminated hypergraph is given as follows.

fhtw(𝐻elim(V′) ,V \ V′) = min
𝜋 ∈∏︁(V\V′) max

𝑖=1,· · · ,|V\V′ |
𝑤HV′+𝜋1∼𝑖−1

(𝜋𝑖) (14)

Let the size of a subset ofV′ be 𝑘 for 1 ≤ 𝑘 ≤ |V|. The problem of
computing fhtw(H) becomes to compute

(︁ |V |
𝑘

)︁
pairs of subprob-

lems (fhtw(H ,V′), fhtw(Helim(V′) ,V \ V′)). And Eq. (11) can
be represented as follows.

fhtw(H) = min
V′⊆V,|V′ |=𝑘

max{fhtw(H,V′), fhtw(Helim(V′) ,V \ V′) } (15)

With Lemma (3.2), the problem of fhtw(H) and the subproblems
fhtw(H ,V′) and fhtw(Helim(V′) ,V \V′) are in the same form.
A recursive algorithm can be given. We represent the general form
of the problem as follows.

fhtw(Helim(V1) ,V2), withV1,V2 ⊆ V andV1 ∩V2 = ∅
and solve Eq. (15) as follows.

fhtw(Helim(V1) ,V2) = min
V′⊆V2,|V′ |=𝑘

max{fhtw(Helim(V1) ,V
′),

fhtw(Helim(V1∪V′) ,V2 \ V′) }
(16)

The time complexity to compute Eq. (16) with different 𝑘 conforms
to the following recursive formula.

𝑇 (𝑛) =
(︃
𝑛

𝑘

)︃
(𝑇 (𝑘) +𝑇 (𝑛 − 𝑘) + 𝑝 (𝑛)) (17)

Let 𝑘 = ⌊𝑛2 ⌋, we can get a 𝑂∗ (4𝑛) algorithm with no extra space
requirement. When 𝑘 = 𝑛−1, we can obtain a𝑂∗ (2𝑛) DP algorithm
by maintaining fhtw(H ,V′).
Lemma 3.3: Let H = (V, E) be a hypergraph and for any non-
emptyV′ ⊆ V , we have

fhtw(H,V′) = min
𝑣∈V′

max{fhtw(H,V′ \ {𝑣}), 𝜔Helim(V′\{𝑣}) (𝑣) }

= min
𝑣∈V′

max{fhtw(V,V′ \ {𝑣}), 𝜌∗ (𝑁Helim(V′\{𝑣}) [𝑣], E) }
(18)

We show a new DP algorithm, DP4FHD, in Algorithm 1. It takes
a hypergraph,H = (V, E) as input, and outputs a tree decomposi-
tion by FHD with two procedures, DP4ORDER and BuildFHD. In

Algorithm 1: DP4FHD (H = (V, E))
1 Main
2 𝜋 (V) ← DP4ORDER(H) ;
3 return BuildFHD (H, 𝜋 (V));
4 Procedure DP4ORDER (H = (V, E))
5 Initialize fhtw(H, ·) with +∞;
6 fhtw(H, ∅) ← −∞, 𝜋 (∅) ← () ;
7 for 𝑖 = 1 to |V | do
8 for each V′ ⊆ V with |V′ | = 𝑖 do
9 for each 𝑣 ∈ V′ do
10 if max{fhtw(V′ \ {𝑣}, 𝜌∗ (𝑁elim(H,V′) [𝑣], E)) } <

fhtw(H,V′) then
11 fhtw(H,V′) ←

max{fhtw(V′ \ {𝑣}, 𝜌∗ (𝑁elim(H,V′) [𝑣], E)) };
12 𝜋 (V′) ← 𝜋 (V′ \ {𝑣}) .𝑐𝑜𝑛𝑐𝑎𝑡𝑒 (𝑣) ;

13 return 𝜋 (V) ;
14 Procedure BuildFHD (H = (V, E), 𝜋 = (𝜋1, 𝜋2, ...,))
15 Initialize 𝑙𝑖𝑛𝑘𝑒𝑑 (·) with 𝐹𝑎𝑙𝑠𝑒 ;
16 𝑇 ← ∅; H0

𝜋 ← H;
17 for 𝑖 = 1 to |𝜋 | do
18 H𝑖

𝜋 ← elim(H𝑖−1
𝜋 , 𝜋𝑖) ;

19 𝜒𝑖 ← 𝑁H𝑖−1
𝜋
[𝜋𝑖]; 𝛾𝑖 ← 𝐹𝐸𝐶 (𝜒𝑖) ;𝑉 (𝑇) ← 𝑉 (𝑇) ∪ {𝜒𝑖 };

20 for 𝑗 = 1 to 𝑖 − 1 do
21 if 𝑙𝑖𝑛𝑘𝑒𝑑 (𝑗) = 𝐹𝑎𝑙𝑠𝑒 and 𝜒 𝑗 \ {𝜋 𝑗 } ⊆ 𝜒𝑖 then
22 𝐸 (𝑇) ← 𝐸 (𝑇) ∪ { (𝜒𝑖 , 𝜒 𝑗) }, 𝑙𝑖𝑛𝑘𝑒𝑑 (𝑗) ← 𝑇𝑟𝑢𝑒 ;

23 return (𝑇, 𝜒,𝛾) ;

DP4ORDER (line 4-13), it determines an elimination order 𝜋 (V).
In BuildFHD (line 14-24), it builds FHD following the elimination
order. First, we discuss DP4ORDER which is based on Lemma 3.3.
We compute fhtw(H ,V′) for eachV′ ⊆ V (line 8) while increas-
ing the size ofV′ (line 7). During the DP process, 𝜋 (V′) maintains
the corresponding partial elimination order of V′ (line 12) and
the elimination order returned is the order, 𝜋 (V), forH (line 13).
Next, we discuss BuildFHD. BuildFHD is a forward construction
algorithm of building FHD by elimination order as discussed in
Section 3.1. Here, 𝑙𝑖𝑛𝑘𝑒𝑑 (·) indicates whether a node is linked or
unlinked and is initialized with 𝐹𝑎𝑙𝑠𝑒 , 𝑇 is a tree, and H 𝑖

𝜋 is the
partial eliminated hypergraph starting from 0 (line 15-17). It for-
ward construct FHD from 𝜋1 to 𝜋 |𝜋 | (line 17-22). In each iteration
(line 17-22),H 𝑖

𝜋 , 𝜒𝑖 , and 𝛾𝑖 computed before adding a node 𝜒𝑖 into
the tree 𝑇 (line 19). Then, for every 𝑗 < 𝑖 (line 20), it checks if the
𝑗-th node is unlinked and 𝜒 𝑗 \ {𝜋 𝑗 } ⊆ 𝜒𝑖 (line 21). If it is true, then
it adds an edge (𝜒𝑖 , 𝜒 𝑗) into the tree 𝑇 and marks the 𝑗-th node
linked (line 22). Finally, it returns a 𝐹𝐻𝐷 = (𝑇, 𝜒,𝛾), which is the
output of DP4FHD.

We discuss the time/space complexity of DP4FHD. The compu-
tation of minimum FEC is a LP problem solvable in polynomial
time. The time complexity of DP4FHD is related to the number
of variables used in DP which is related to |E | and |V|. For time
complexity, assume we need 𝑇 (|E |, |V′ |) time to compute the min-
imum FEC of V′. Then DP4FHD needs 𝑂 (|V|2 |V | · 𝑇 (|E |, |V|))
time, because we do at most |V| step to compute for each subset
V′. For space complexity, DP4FHD only needs to keep the result of
the subsetV′ with definitely size 𝑘 for computing the 𝑘 + 1 subsets.
Thus the space complexity of DP4FHD is 𝑂 (

(︁ |V |
|V|
2

)︁
).

4661

4 THE BOUNDS ON FHD
We give aDP algorithm,DP4FHD, for FHD. However, its complexity
is too high to be used for computing FHD in practice. In this section,
we discuss several upper/lower bounds to be used to prune in the
DP algorithm.

4.1 Upper Bounds
Given a hypergraph H = (V, E), an upper bound for fhtw(H)
(Eq. (11)) or fhtw(𝐻elim(V′)) (Eq. (14)) can be computed by selecting
vertices in a linear order for all vertices inV iteratively, and such
an upper bound computed can be used for a hypergraph or a partial
eliminated hypergraph. In brief, it initializes a linear order 𝜋 as
empty, and then it appends a new unselected vertex into 𝜋 following
some strategy one-by-one until all vertices are appended into 𝜋 .
We introduce two such strategies below.

The min-width strategy: This strategy computes the fractional
edge cover (FEC) of a bag constructed by each vertex, and selects
the vertex that is with the min-width (i.e. min FEC) to eliminate.
The strategy maintains the min FEC for all bags constructed by
vertices, and recomputes some of vertices when a vertex is selected
to be eliminated. A heap is used to maintain the min-width.

The min-fill strategy: This strategy avoids adding hyperedges to
the hypergraph, and selects the vertex with the smallest number
of non-adjacent neighbors pairs. A heap is used to maintain the
smallest fill-in in each iteration.

4.2 Lower Bounds
We give three lower bounds that only depend on the vertex-width
in a hypergraph. There are two trivial lower bounds, 𝛿 (H) and
𝛿2 (H), based on the vertex-width 𝜔 (𝑣) (Eq. (10)) for a hypergraph
H = (V, E).

𝛿 (H) = min
𝑣∈V

𝜔 (𝑣)

𝛿2 (H) = min
𝑣∈𝑉
{𝜔 (𝑣) |𝑣 ∈ V ∧ ∃𝑢 ∈ V : 𝜔 (𝑢) ≤ 𝜔 (𝑣)}

Here, 𝛿 (H) and 𝛿2 (H) are the smallest and the second smallest
vertex-width of a vertex inH .

First, we give a lower bound, 𝛾𝑅 (H), for a hypergraph H by
extending the Ramachandramurthi’s bound given for treewidth
over graphs.

𝛾𝑅 (H) =
⎧⎪⎪⎨⎪⎪⎩
𝜌∗ (V, E)(𝐸𝑞. (5)), ifH is a hyperclique

min
𝑢,𝑣∈V,𝑢∉𝑁H [𝑣]

max{𝜔 (𝑢), 𝜔 (𝑣)}, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

We show that the fhtw(H) is at least 𝛾𝑅 (H) ≥ 𝛿2 (H) ≥ 𝛿 (H).
Second, we give a lower bound based on hypergraph minor.

Here, a hypergraph H ′ is a minor of another hypergraph H , de-
noted H ′ ≪ H , if H ′ can be obtained from H by a sequence
of operations, namely, vertex deletion, edge contraction of two
vertices that are contained in a common hyperedge, addition of a
hyperedge 𝑒 such that the set 𝑒 induces a clique in the primal
graph, and deletion of a proper subhyperedge. We explain the
edge contraction in brief, where the others are self-explained. Let
H = (V, E) be a hypergraph and H ′ = (V′, E′) be a hyper-
graph by contracting an edge {𝑥,𝑦} in the primal graph𝐺 (H) such
that V′ = (V \ {𝑥,𝑦}) ∪ {𝑣𝑥𝑦} and E′ = {𝑒 ∈ E|𝑒 ∩ {𝑥,𝑦} =

Algorithm 2:MMDH (H = (V, E))
1 𝜔𝑚𝑎𝑥 ← 0;
2 for 𝑖 = 1 to |V | − 1 do
3 𝑣 ← argmin𝑢∈V 𝜔 (𝑢), 𝜔𝑚𝑎𝑥 ← max{𝜔𝑚𝑎𝑥 , 𝜔 (𝑣) };
4 𝑢 ← select(H, 𝑣) ;
5 H ← contract(H, {𝑣,𝑢}) ;
6 return 𝜔𝑚𝑎𝑥 ;

∅} ∪ {(𝑒 \ {𝑥,𝑦}) ∪ {𝑣𝑥𝑦}|𝑒 ∈ E, 𝑒 ∩ {𝑥,𝑦} ≠ ∅}, where 𝑣𝑥𝑦 is
a new contracted vertex and every hyperedge containing either
𝑥 or 𝑦 is set to contain 𝑣𝑥𝑦 . We have fhtw(H ′) ≤ fhtw(H) if
H ′ ≪ H . The proof of fhtw(H ′) ≤ fhtw(H) is similar with the
proof of ghtw(H ′) ≤ ghtw(H) given in [4]. Based on the width
based lower bounds, we can have a new lower bound by looking
at the maximum of this bound over all hypergraph minors. ➊ The
contraction degeneracy of a hypergraphH , denoted 𝛿 (H), is the
maximum of 𝛿 (H ′) over all hypergraph minorsH ′ ofH . ➋ The 𝛿2-
contraction degeneracy of a hypergraphH = (V, E) with |V| ≥ 2,
denoted 𝛿2 (H), is the maximum of 𝛿2 (H ′) over all hypergraph
minorsH ′ ofH with at least two vertices. ➌ The 𝛾𝑅-contraction
degeneracy of a hypergraph H = (V, E) with |V| ≥ 2, denoted
𝛾𝑅 (H), is the maximum of 𝛾𝑅 (𝐻) over all hypergraph minorsH ′
ofH with at least two vertices.

For a hypergraph H , fhtw(H) is at least 𝛾𝑅 (H) ≥ 𝛿2 (H) ≥
𝛿 (H). This can be proved based on (a) 𝛾𝑅 (H) ≥ 𝛿2 (H) ≥ 𝛿 (H),
and (b) fhtw(H ′) ≤ fhtw(H) if H ′ ≪ H . Note that this lower
bound is held on hypergraphs, but not held on partial eliminated hy-
pergraphs. That is, fhtw(H ′

𝑒𝑙𝑖𝑚 (V′) ,V\V
′) ≤ fhtw(H𝑒𝑙𝑖𝑚 (V′) ,V\

V′) is not always held, if H ′
𝑒𝑙𝑖𝑚 (V′) is a hypergraph minor of a

partial eliminated hypergraph H𝑒𝑙𝑖𝑚 (V′) . But we can use it to
compute the lower bound of fhtw(H𝑒𝑙𝑖𝑚 (V′)) if we treat a partial
eliminated hypergraph as a hypergraph, and use the inequality
fhtw(H𝑒𝑙𝑖𝑚 (V′)) ≤ fhtw(H𝑒𝑙𝑖𝑚 (V′) ,V \V′). It can be used as a
lower bound of fhtw(H𝑒𝑙𝑖𝑚 (V′) ,V \V′).

We give a simple heuristic algorithm, namedMMDH, in Algo-
rithm 2 to compute the contraction degeneracy, which is based on
the same algorithm for graphs. In Algorithm 2, it needs to select
a neighbor𝑤 to which the minimum width vertex 𝑣 is contracted
based on heuristic strategy, including the min-width strategy, the
max-width strategy, the least common vertices strategy and the
least common edges strategy.

5 A BRANCH-&-BOUND ALGORITHM
We present a DP algorithm named DP4FHD in Algorithm 1, and
discuss several upper/lower bounds in Section 4. In this section, we
give a branch-&-bound algorithm, named BB4FHD, in Algorithm 3,
which is based on the DP4FHD algorithm and the upper/lower
bounds discussed. The upper/lower bounds used can be arbitrary
algorithm in Section 4 and we will discuss them in Section 8.

In Algorithm 3, we compute fhtw for partial eliminated hyper-
graphs by pushing the vertex-width layer by layer, i.e., using the
result onV′ to update allV′ extendable states with size of |V′ | +1.
Note that, with branch-&-bound, we can prune those states that
will not participate in the following processing. In BB4FHD, we use
|V| + 1 maps, 𝐹𝐻𝑇𝑊0 [·], 𝐹𝐻𝑇𝑊1 [·], · · · , 𝐹𝐻𝑇𝑊 |𝑉 | [·] to maintain
the state in each layer with Π[·] to store the partial linear orders.

4662

Algorithm 3: BB4FHD (H = (V, E))
1 Main
2 𝜋 (V) ← BB4ORDER(H) ;
3 return BuildFHD (H, 𝜋 (V)) /* Same as DP4FHD */

4 Procedure BB4ORDER (H = (V, E))
5 Initialize 𝐹𝐻𝑇𝑊0 [·], ..., 𝐹𝐻𝑇𝑊|𝑉 | [·],Π[·] with ∅;
6 Initialize fhtw𝑚𝑖𝑛, 𝜋𝑚𝑖𝑛 with upper(H) ;
7 𝐹𝐻𝑇𝑊0 [∅] ← lower(H) ;
8 for 𝑖 = 0 to |V | − 1 do
9 for each state V′ ∈ 𝐹𝐻𝑇𝑊𝑖 do
10 𝜋 ←∏︁[V′];
11 for each vertex 𝑣 ∈ V \ V′ do
12 S ← V′ ∪ {𝑣}, 𝜋 ′ ← 𝜋.𝑐𝑜𝑛𝑐𝑎𝑡𝑒 (𝑣) ;
13 𝜔𝑣 ← 𝜔H𝜋 ′ (𝑣), 𝜔𝑝 ← max{𝐹𝐻𝑇𝑊𝑖 [V′], 𝜔𝑣 };
14 𝑙𝑜𝑤 ← lower(𝐻𝜋 ′) ;
15 if max{𝑙𝑜𝑤,𝜔𝑝 } ≥ fhtw𝑚𝑖𝑛 then
16 continue;

17 if S ∉ 𝐹𝐻𝑇𝑊𝑖+1 or 𝐹𝐻𝑇𝑊𝑖+1 [S] > 𝜔𝑝 then
18 𝐹𝐻𝑇𝑊𝑖+1 [S] ← 𝜔𝑝 ,

∏︁[S] ← 𝜋 ′ ;

19 𝑢𝑝, 𝜋𝑢𝑝 ← upper(H𝜋 ′) ;
20 if max{𝜔𝑝 ,𝑢𝑝 } < fhtw𝑚𝑖𝑛 then
21 fhtw𝑚𝑖𝑛 ← max{𝜔𝑝 ,𝑢𝑝 };
22 𝜋𝑚𝑖𝑛 ← 𝜋 ′ .𝑐𝑜𝑛𝑐𝑎𝑡𝑒 (𝜋𝑢𝑝) ;

23 return 𝜋𝑚𝑖𝑛 ;

They are initialized with ∅ (line 5). The global optimal solution
fhtw𝑚𝑖𝑛 and its corresponding elimination order 𝜋𝑚𝑖𝑛 is initial-
ized with an upper bound heuristic (line 6). The DP process starts
with the ∅ state and sets the lower bound ofH as the initial width
(line 7). Then, the algorithm computes fhtw for a partial eliminated
hypergraph layer by layer, and enumerates the states in the layer
to transfer (lines 8-22). For each stateV′, it enumerates all vertex
𝑣 ∈ V \ V′ to extend state S = V′ ∪ {𝑣}, and enlarges a par-
tial linear order 𝜋 ′ (line 12). Then it computes the vertex-width of
the partial eliminated hypergraph by 𝜋 ′ (Eq. (10)) in line 13. We
prune it if its value is greater than or equal to the current fhtw𝑚𝑖𝑛

(lines 15-16). We compute it for S and the current global optimal
solution by the current solution (lines 17-22).

It is important to mention that the BB4FHD algorithm (Algo-
rithm 3) is an anytime algorithm, and can terminate at any time, as
it alwaysmaintains the current global optimal solution fhtw𝑚𝑖𝑛, 𝜋𝑚𝑖𝑛 .

Problem reduction techniques: The time complexity of Algo-
rithm 3 is exponentially related to the problem size. To reduce the
problem size without losing the optimality is profitable. We simply
introduce 6 reduction rules following the same ideas used in [13],
which are given for preprocessing only as the approach taken in
[13] is an SMT encoding method.

Given a hypergraphH = (V, E), the 6 rules are given to reduce
H below. Rule-1 A hyperedge can be removed if it is a subset of
another hyperedge.Rule-2A vertex only belongs to one hyperedge
can be removed. Rule-3 Two vertices, 𝑢 and 𝑣, belong to the same
class if they have the same closed neighborhood, i.e., 𝑁H [𝑣] =
𝑁H [𝑢]. We only need to keep one vertex in a class. Rule-4 A
vertex 𝑣 ∈ V is a simplicial vertex if the neighborhood of 𝑣 forms a
clique in the primal graph of𝐺 (H), which can be removed. Rule-5
The connectivity and biconnectivity on hypergraph is the same
to its primal graph. For different biconnected components, we can
solve the elimination order problem separately. Rule-6 For any
hyperclique H𝐶 of H , there must be a bag that contains H𝐶 in

the tree decomposition of H . Thus, we can select a hyperclique
H𝐶 = {𝑣1, ..., 𝑣𝑘 } and place it at the last of the order, i.e, 𝜋 =

(· · · , 𝑣1, · · · , 𝑣𝑘).

6 THE FHDWIDTH COMPUTATION
The computation of FHD width (e.g., 𝜌∗ (V, E) (Eq. 5)) is a funda-
mental operation, and is frequently used in our branch-&-bound
algorithm. We explain it below. In our algorithm, we need to deal
with the input hypergraph, H = (V, E), any partial eliminated
hypergraph H𝜋 = (V𝜋 , E𝜋), and other H ′ = (V′, E′), for exam-
ple hypergraph minors, sub-hypergraph, etc. The computation of
vertex-width (Eq. (10)) for a vertex 𝑣 is to be one of 𝜌∗ (𝑁H (𝑣), E),
𝜌∗ (𝑁H𝜋

(𝑣), E), 𝜌∗ (𝑁 ′H (𝑣), E
′), and is needed in the preprocess-

ing stage, in DP (or branch-&-bound) processing, in computing
upper/lower bounds. The cost of computing FHD width is high due
to the fact that it is a linear programming (LP) problem.

We find that most of FHD width computation is 𝜌∗ (·, E). In
other words, it uses the same set of E to compute 𝜌∗ (S, E) for
different S from time to time frequently. In the view of linear
programming, we convert a hyperedge, 𝑒𝑖 , and set S to 0-1 vector
form (e.g, V = {1, 2, 3, 4, 5}, 𝑒𝑖 = {1, 2, 4} → (1, 1, 0, 1, 0)𝑇), then
𝜌∗ (·, E) can be written as this type of linear programming:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 | |𝛾 | |1
subject to E𝛾 =

[︁
𝑒1 · · · 𝑒 |V |

]︁
𝛾 ≥ S, 0 ≤ 𝛾 ≤ 1

(19)

Here, E is in the form of matrix, S is in the form of vector for
the input set S, and 𝛾 is a vector where every element in 𝛾 is
between 0 and 1. With Eq. (19), we can build an index to accelerate
this process for different S with preprocessing. In doing so, we
construct a lattice for various of sets of vertices and the same set of
hyperedges. We give a lemma below.

Lemma 6.1: LetV be the universe set, E be a collection of subsets
of V , and 𝜌∗ (S, E) be the minimum fractional edge-over (FEC) of
S regarding E. Then, for any other S′ ⊆ V , we have ➀ 𝜌∗ (S, E) ≤
𝜌∗ (S′, E) if S ⊆ S′, and ➁ 𝜌∗ (S, E) ≥ 𝜌∗ (S′, E) if S ⊇ S′.

The lemma obviously holds and it guides us to make use of
the bounds computed for a new FEC width computation request.
Let S = {S1,S2, · · · } be the collection of sets we have already
computed and their width 𝜌∗ (S𝑖 , E) have been stored. Then for
a new FEC width computation 𝜌∗ (S, E), we search the lower and
upper bound as follows: ➀ 𝑢𝑝𝑝𝑒𝑟 (S) = minS′∈S∧S⊆S′ 𝜌∗ (S′, E),
and ➁ 𝑙𝑜𝑤𝑒𝑟 (S) = maxS′′∈S∧S⊇S′′ 𝜌∗ (S′′, E).

The queries of lower/upper bounds are known as a𝑛-dimensional
partial order maintenance problem. It has been studied when S is
static or when the queries/updates of S are already known that
come offline. In the literature, we have not yet found any efficient
methods to address the dynamic update with online queries. In this
work, we use a k-d tree to support the lower/upper bound queries.

The lower/upper bounds of an FHD width may speed up the
LP computation. We substitute them as known conditions into
the formula (e.g, add an addition condition lower(S) ≤ ||𝛾 | |1 ≤
upper(S) into Eq. (19)). On the other hand, we can skip some width
computation in Algorithm 3 by combining the bounds with the
current global optimal solution fhtw𝑚𝑖𝑛 and 𝐹𝐻𝑇𝑊𝑖 [S].

4663

7 RELATEDWORK
We discuss hypergraph decompositions: TD, GHD, and FHD to-
gether with HD. Note that the bounded TD is too loose to be used.
For computing GHD, a basic search algorithm based on properties
BIP and BMIP is proposed in [15], which is to deal with some re-
stricted class of conjunctive queries, and several algorithms with
some heuristic to speed up computing such properties are given in
[14]. In addition, a parallel algorithm is given in [21]. The SMT
approach discussed is the only practical algorithm to compute
FHD [13] for all conjunctive queries.

As both GHD and FHD are known NP-complete to check (e.g.,
check(,𝑘)), HD is proposed in [20] under a special condition fol-
lowing GHD. It is known that HD width, denoted by htw(H),
can be checked (e.g., check(HD, 𝑘)) in polynomial time instead of
NP-complete for GHD and FHD. As it is one in polynomial time,
htw(H) is greater than ghtw(H), which is greater than fhtw(H).
Hypertree decomposition (HD) has been extensively studied as an
effective alternative instead of GHD and FHD. To compute HD,
a backtracking-based search algorithm, named det-𝑘-decomp, by
exploring separators to check is implemented and reported in [22],
and a parallel search algorithm with searching balanced separator,
named log-𝑘-decomp, can be found in [19]. All the existing algo-
rithms for hypertree decompositions (HD, GHD, FHD) are based
on check(,) while exploring all separators.

8 EXPERIMENTAL STUDIES
We have conducted extensive experimental studies using Hyper-
bench benchmark [14]. Hyperbench contains 3,648 hypergraphs
(called instances) including CQs and CSPs collected from various
sources. We use the full hypergraphs used in [19, 21]. As reported
in Hyperbench, the statistics on the known min-widths,𝑤𝑚𝑖𝑛 , are
as follows. There are 710, 596, 310, 385, 450, 496, and 702 instances
which are with the known min-width, 1, 2, 3, 4, 5, 6, and > 6, re-
spectively. Since the existing fhtw results are not complete, we use
the smaller of the known ghtw and htw [1] as min-width.

We study our anytime branch-&-bound algorithm, BB4FHD, to
compute fhtw for a hypergraph, which can find an approximate
fhtw in a limited time, and can find the exact fhtw if time is allowed.
We discuss the upper/lower bound used in BB4FHD testing. First,
for the upper bound, we use the smallest among all the strategies
discussed in Section 4, because all the strategies can be computed
in linear time. Second, for the lower bound, we compare the width-
based bounds and the minor-based bounds. For the width-based
bounds, we test 𝛿2 and 𝛾𝑅 . Here, 𝛿2 can be computed in linear
time, whereas 𝛾𝑅 needs to be computed with additional sorting. For
the minor-based bounds, we report the min-width strategy with
𝛾𝑅 , as all of the minor-based strategies are similar. Note that 𝛾𝑅
needs to compute using 𝜌∗ (,) (Eq. 6) which is costly. Below, we use
BB4FHD-X where X is one of the three, namely, 𝛿2, 𝛾𝑅 , and 𝛾𝑅 . We
implemented our algorithms in C++ and complied it by GCC 8.5.0
with -O2 flag.

We compare BB4FHD with one exact algorithm and three ap-
proximate algorithm: ❶ the exact algorithm FraSMT [13] (which is
the state-of-the-art SMT encoding method), ❷ a theoretical approx-
imation algorithm ApproxFHD [29], ❸ an approximate algorithm
ImproveHD [14], and❹ an approximate algorithm FracImprove [14].

0 1 10 60 300 600 1800 3600 7200

Timeout (s)

0

10

20

30

40

50

60

70

P
a
s
s
in

g
 R

a
te

 (
%

)

BB4FHD-γR

BB4FHD-δ2

BB4FHD-γR

FraSMT

(a) Exact Testing

0 1 10 60 300 600 1800 3600 7200

Timeout (s)

0

10

20

30

40

50

60

70

P
a
s
s
in

g
 R

a
te

 (
%

)

BB4FHD-γR

noBB

noWC

DPonly

(b) Ablation Study

Figure 5: Pass rates with different timeouts
Table 1: FraSMT vs BB4FHD-𝛾𝑅 : # of solved, and time (sec.)

H = (V, E) Fractional Hypertree Decomposition FHD
Origin of
Instances

Size of
Instances

Instances in
Group

FraSMT BB4FHD-𝛾𝑅
#solved avg max stdev #solved avg max stdev

Real World 75 < | E | ≤ 100 405 97 842.0 7,153.3 1,579.0 47 2,325.6 7,187.4 2,614.0
50 < | E | ≤ 75 514 356 587.2 7,052.0 1,691.0 315 7.7 2,036.0 115.7
10 < | E | ≤ 50 369 234 120.0 943.0 619.8 232 24.6 4,968.0 327.0
| E | ≤ 10 915 913 0.2 5.7 0.3 915 0.0 0.0 0.0

Synthetic | E | > 100 66 11 1,067.7 5,802.8 1,697.7 9 708.9 5,262.1 1,726.1
75 < | E | ≤ 100 422 345 1,266.7 7,120.8 1,927.1 274 581.0 6,815.2 1,427.0
50 < | E | ≤ 75 215 202 320.5 5,858.0 877.5 215 0.1 0.3 0.1
10 < | E | ≤ 50 647 285 413.6 7143.1 1171.0 565 157.3 6,588.8 608.2
| E | ≤ 10 95 95 8.5 329.1 44.3 95 0.3 25.7 2.6

Total 3,648 2,538 374.8 7153.3 1203.2 2,667 140.0 7,187.4 736.5

CQs 1,113 1,113 0.3 43.6 1.7 1,113 0.0 0.5 0.0

We test FraSMT using the optimal parameters given in [13] with the
SMT solver Z3. ApproxFHD needs to guess a lower bound𝑤𝑙 , and
outputs a FHD width in𝑂 (𝑤3

𝑙
) if it is found. If no width is found, it

concludes that fhtw > 𝑤𝑙 . Here, we provide the best lower bound
of each hypergraph for ApproxFHD. ImproveHD and FracImprove
are a “fractional improvement” algorithm based on HD, and need to
guess an upper bound𝑤𝑢 to check. We provide the smallest upper
bound𝑤𝑚𝑖𝑛 we have in Hyperbench. The output of FracImprove is
the best with a minimum fractional improvement at 0.1 and 0.5.

All experiments are conducted on a machine with an AMD
2.7Ghz CPU (96 cores) and 512GB main memory running Linux.

HyperBench Testing: Exact. We have conducted a complete Hy-
perbench test and record the pass rate of the instances using time-
outs of 1, 10, 60, 300, 600, 1,800, 3,600, and 7,200 (sec). Here, the
pass rate is the proportion of the number of instances in which the
optimal fhtw can be calculated among all instances. We report the
results by BB4FHD-𝛿2, BB4FHD-𝛾𝑅 , BB4FHD-𝛾𝑅 , and FraSMT in
Fig. 5a. As illustrated in Fig. 5a, BB4FHD-𝛿2 and BB4FHD-𝛾𝑅 out-
perform BB4FHD-𝛾𝑅 and FraSMT. The pass rates of BB4FHD-𝛾𝑅
is slightly better than BB4FHD-𝛿2.

Our branch-&-bound algorithms can finish at anytime or even
when the timeout is small.When the timeout is 1s and 10s,BB4FHD-
𝛾𝑅 can pass approximately 20% more instances in Hyperbench than
FraSMT. Below, we report BB4FHD-𝛾𝑅 as it outperforms the other
BB4FHD variants.

We compare FraSMT and BB4FHD-𝛾𝑅 with the same timeout of
7,200s, and summarize the results in Table 1. Here, we follow the
experiments reported in [19] to divide the instances in Hyperbench
by size and origin. The instances are divided into two categories:
real world applications and synthetic generated. For each category,
the number of instances, |E |, is further divided. We report the
numbers of solved instances passed in each range as #solved and
the running times (avg, max, stdev).

Overall, BB4FHD-𝛾𝑅 passes more instances (2,667 out of 3,648,
73.1%) than FraSMT (2,538 out of 3,648, 69.5%) in total and the

4664

Table 2: The average width reduction

𝑤𝑚𝑖𝑛
BB4FHD-𝛾𝑅 FraSMT ApproxFHD ImproveHD FracImprove
Total avg. Total avg. Total avg. Total avg. Total avg.

2 260 0.48 257 0.48 231 0.48 186 0.48 240 0.48
3 162 0.62 158 0.62 134 0.62 141 0.62 153 0.62
4 103 0.67 88 0.67 74 0.54 73 0.66 95 0.63
5 245 0.60 233 0.54 31 0.98 42 0.93 220 0.52
6 321 0.75 179 0.60 28 0.59 155 0.50 276 0.53
> 6 501 1.55 30 0.73 193 1.05 286 1.31 426 1.08

Table 3: The width reduction of BB4FHD-𝛾𝑅 (1 sec)

Width
Reduction

ApproxFHD ImproveHD FracImprove
Total avg. Total avg. Total avg.

≥ 1 1898 13.55 53 2.11 17 3.42
[0.5, 1) 102 0.61 487 0.59 69 0.59
(0, 0.5) 128 0.22 336 0.22 423 0.19

total(> 0) 2128 12.13 876 0.64 509 0.35
= 0 1287 0 1855 0 540 0
< 0 0 0 379 -1.06 74 -0.08

timeout 221 * 526 * 2513 *

average time by BB4FHD-𝛾𝑅 is 2.7x faster than FraSMT. BB4FHD-
𝛾𝑅 outperforms FraSMT significantly in solving small and medium-
sized instances (|E | ≤ 50). But due to its high time complexity,
BB4FHD-𝛾𝑅 performs worse on large-sized instances compared to
FraSMT. The SMT encoding method can solve some large-sized
instances with application-derived characteristics We will study it
future to accelerate DP algorithms based on such characteristics.

We also report the results for CQs (in total 1,113 instances).
These instances are relatively simple in Hyperbench. Among 1,113
instances, the largest fhtw does not exceed 3, and most belong
to the acyclic hypergraph. Both FraSMT and BB4FHD-𝛾𝑅 solve
all instances. BB4FHD-𝛾𝑅 is much more efficient than FraSMT.
BB4FHD-𝛾𝑅 solves all instances in 0.5 seconds, whereas FraSMT
takes over 40 seconds on some, and the running time varies.

HyperBench Testing: Width Reduction. We compare BB4FHD-
𝛾𝑅 with all baseline algorithms in a timeout of 2 hours, and report
the fractional width reduction based on known min width𝑤𝑚𝑖𝑛 in
Table 2. Here, “Total” is the total number of instances corresponding
to the 𝑤𝑚𝑖𝑛 in Hyperbench, and “avg.” is the width reduction on
average, where the larger is better. BB4FHD-𝛾𝑅 can reduce width
in all cases on the largest number of instances, and the average
width reduction is also the largest in almost all cases. BB4FHD-
𝛾𝑅 has advantages when dealing with instances with large width
(𝑤𝑚𝑖𝑛 > 5), while FraSMT will become less reliable when the
problem is complex.

ApproxFHD can quickly output results on all instances with an
average time 0.42s. This is because of its very loose approximation
bounds, and it simply chooses not to decompose on more than 90%
of instances. ImproveHD and FracImprove need to compute an HD
with a given width first, cannot be efficient on average time 405.79s
and 5061.06s, and will not output results on all instances (94.87%
and 37.75% of instances have output), respectively. Here, HD is
computed with the best known width known in Hyperbench. In
practice, there is no such width to assist HD construction.

HyperBench Testing: Approximate.We compare the approxi-
mate performance of BB4FHD-𝛾𝑅 with the three approximate al-
gorithms, ApproxFHD, ImproveHD, and FracImprove. We consider
query optimization scenarios, to set the timeout of all algorithms to

Table 4: A case study with 3 hypergraphs

H = (V, E) |V | | E | Degree Types
rand_q0239 77 45 11 CQ Random
Pi-40-10-07948-40-76 40 98 11 CSP Application
Pi-40-10-07948-40-13 40 98 9 CSP Application

0.2
0.5

1.4
19.0

35.7
216.5

4077.2

Running Time (s)

7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9

C
u
rr

e
n
t

W
id

th

Terminate:5254.1s

(a) rand_q0239

0.1
0.2

2.1

Running Time (s)

6.0

6.2

6.4

6.6

6.8

7.0

C
u
rr

e
n
t

W
id

th

Terminate:2424.6s

(b) Pi-40-10-07948-40-76

0.1
0.3

1.4

Running Time (s)

6.6

6.8

7.0

7.2

7.4

7.6

7.8

8.0

C
u
rr

e
n
t

W
id

th

Timeout:7200s

(c) Pi-40-10-07948-40-13

Figure 6: Anytime width update

1 second and compare the width output for each instance. BB4FHD-
𝛾𝑅 achieves best approximate results on nearly all instances. Specif-
ically, BB4FHD-𝛾𝑅 can achieve better (possibly the same) approxi-
mate results on 3,219 instances, of which 1,164 results are strictly
better than those of the other comparison algorithms. And the two
numbers are 1,267 and 0, 2,234 and 352, 618 and 44 in ApproxFHD,
ImproveHD, and FracImprove. BB4FHD-𝛾𝑅 provides results for all
instances, while ApproxFHD, ImproveHD, and FracImprove time-
out on 221, 526, 2,513 instances, respectively. This demonstrates
the great potential of our approach in practical scenarios.

In Table 3, from a different view, we show how good BB4FHD-
𝛾𝑅 can be. Here, we take the width by ApproxFHD, ImproveHD,
and FracImprove as basis, respectively. We report the width re-
duction of BB4FHD-𝛾𝑅 on average (“avg.”). We group the width
reduction in “≥ 1”, “[0.5, 1)”, “(0, 0.5)”, “= 0”, and “< 0” groups,
and we report the number of instances and the average width
reduction in each group. Here, the group of “= 0” is the group
that all have the same width computed, and the average reduc-
tion (“avg.”) is 0. BB4FHD-𝛾𝑅 outperforms one if the corresponding
“avg.” value is greater than 0. BB4FHD-𝛾𝑅 is always and far bet-
ter than ApproxFHD. FracImprove will timeout on most instances.
Compared with ImproveHD, BB4FHD-𝛾𝑅 can reduce the width on
about 900 instances, excluding the 526 timeout instances.

TheAnytimeAlgorithm.We study our anytime algorithm,BB4FHD,
by case studies. We select three representative hypergraphs, namely,
(Case-1) rand_q0239, (Case-2) Pi-40-10-07948-40-76, and (Case-3)
Pi-40-10-07948-40-13 from Hyperbench with the consieration of
the width and the distribution of the fhtw updated timeouts. The
details of the three hypergraphs are shown in Table 4. For Case-1,
the hypergraph is a randomly selected conjunctive query, and its
fhtw is very fractional. For Case-2 and Case-3, the 2 hypergraphs
are taken from CSP applications, and their fhtw is integer-like.

We show the current optimal fhtw changes with the running
time on the three hypergraphs in Fig. 6. For Case-1, as shown in
Fig 6a, the current optimal fhtw is updated in 7.90, 7.38, 7.35, 7.30,
7.23 7.14, and 7.12. The fhtw computed for this hypergraph is very
fractional and the current optimal fhtw has been updated many
times with minor differences in computing. Our BB4FHD can prune
many in such fractional behavior. This is because such fractional
behavior makes BB4FHD more likely to use the current fhtw to
distinguish the different solutions and therefore achieve the high

4665

Figure 7: The subgraph queries
Table 5: Query evaluation time (ms) on EmptyHeaded

EmptyHeaded native EmptyHeaded + new FHD
FHD search Execution Total FHD search Execution Total

S1 1,087.8 4,033.7 5,121.5 1.2 3,960.9 3,962.1
S2 776.9 8.8 785.7 1.2 8.3 9.5
S3 15,661.2 2,513.5 18,174.7 4.3 2,636.3 2,640.6
S4 >2h NA NA 2.6 4,169.7 4,172.3
S5 7,836.3 3,880.1 11,716.3 4.5 3,229.1 3,233.6
S6 8,778.5 11,538.4 20,316.9 2.4 11,357.7 11,360.1
S7 13,670.6 15,368.3 29,038.9 8.0 15,366.4 15,374.4
Q1 523.1 1,492.7 2,015.7 0.7 1,423.0 1,423.8
Q2 582.0 363.4 945.4 0.6 324.3 324.9
Q3 576.7 324.3 901.0 0.5 273.5 274.0
Q4 1,206.7 1,448.9 2,655.5 0.8 1,392.2 1,393.0
Q5 1,049.7 362.9 1,412.6 1.9 384.9 386.8

performance by pruning. Such very fractional cases mainly occur in
very complex or randomly generated instances, and give BB4FHD
the opportunity to solve larger-scale instances. For Case-2, as shown
in Fig. 6b, it has only been updated 3 times, 7, 6.5, and 6. For Case-3,
as shown in Fig. 6c, it has only been updated 3 times, 8, 7, and 6.5.
The fhtw computed in the two hypergraphs is integer-like whose
decimal precision is at most 0.5. This means the minimum FEC
induced from the fhtw computation is rather simple. And this kind
of integer-like fhtw is very detrimental to BB4FHD, due to the fact
that the fhtw of the candidates are almost the same. We cannot
prune some solutions by the width in BB4FHD. On the other hand,
as shown in Fig. 6b, the anytime result is already the optimal at
very beginning, even though it takes a long time to terminate. This
indicates that the optimal integer-like fhtw can be easily obtained.

Ablation Study. In order to study the impacts of (a) Branch-&-
Bound and (b) width computation optimization methods on top of
the basic DP algorithm, namely BB4FHD-𝛾𝑅 , we test three other
cases. One is DP only, denoted as DPonly, one is to disable width
computation optimization methods in BB4FHD-𝛾𝑅 , denoted as
noWC, and one is to disable Branch-&-Bound in BB4FHD-𝛾𝑅 , de-
noted as noBB. We report the pass rates of the 4 algorithms on
Hyperbench as shown in Fig. 5b. Both Branch-&-Bound and width
computation optimization methods significantly affect the perfor-
mance, while Branch-&-Bound has a greater impact. Specifically,
under the 7,200s time limit set, noBB solves 2,042 instances with an
average time of 422.69s, while BB4FHD-𝛾𝑅 uses 0.07s; noWC solves
2,440 instances with an average time of 59.85s, while BB4FHD-𝛾𝑅
uses 0.57s; DPonly solves 1,807 instances with an average time of
174.49s while BB4FHD-𝛾𝑅 uses 0.01s.

Query Evaluation onReal Database Systems. We conduct query
evaluation to test graph pattern queries and SQL queries on Empty-
Headed, PostgreSQL, and DuckDB. EmptyHeaded is a query pro-
cessing engine that supports both FHD and WCOJ [31]. Its built-in
query optimizer enumerates FHDs via a brute force search, then
selects one min-width FHD together with other optimizations to
generate a query plan. Instead, we generate 10 min-width FHDs
with our FHD algorithm for EmptyHeaded to select. We compare
the optimization time for searching FHDs and the execution time

S1 S2 S3 S4 S5 S6 S7 Q1 Q2 Q3 Q4 Q5

1

10

102

103

104

105

106

T
im

e
 (

m
s
)

FHD + materialized view

native

FHD Time

Figure 8: Query evaluation on PostgreSQL

between the native EmptyHeaded and the EmptyHeaded with new
FHD algorithm. On the other hand, PostgreSQL/DuckDB do not
support FHD and WCOJ. To simulate this, for an FHD plan, we first
process every bag in the FHD plan as an SQL materialized view,
and then join all such views by binary joins. It is worth mentioning
that this results in significant additional I/O overhead in writing
and reading materialized views.

The queries tested are as follows. ➊ The 7 graph pattern queries
(Fig. 7) are two 6-vertex subgraph queries (𝑆1, 𝑆2), three 8-vertex
subgraph queries (𝑆3, 𝑆4, 𝑆5) and two 10-vertex subgraph queries (𝑆6,
𝑆7) from DBLP dataset. Each query counts the number of subgraphs
centered around every node in the data graph. ➋ The 5 cyclic SQL
queries are taken from query5 (𝑄1) in TPC-H, and query24a (𝑄2),
query24b (𝑄3), query78 (𝑄4) in TPC-DS, and query3 (𝑄5) in LSQB.
We generate data with SF=1 for LSQB and 1GB for TPC.

The EmptyHeaded results are shown in Table 5. For FHD search-
ing time, our algorithm significantly outperforms the built-in al-
gorithm. As all FHD plans are with the min width, the execution
time are similar. The PostgreSQL results are shown in Fig. 8, due to
space limit. The DuckDB shows the similar performance. For graph
pattern queries (𝑆1 ∼ 𝑆7), PostgreSQL does not perform well for
such complex cyclic queries. The FHD plan used achieves up to two
orders of magnitude performance improvement. For SQL queries,
the benefit of FHD is less obvious. There are two main reasons:
fisrt, the simulation in PostgreSQL/DuckDB needs additional I/O
overhead; second, FHD does not take data distribution into con-
sideration, where the result for a bag in FHD used may generate
very large intermediate relations (𝑄4, 𝑄5). We will explore how to
integrate FHD and WCOJ into a database system.

9 CONCLUSION
In this paper, we give a DP algorithm for computing FHD which is
the first approach that is not based on check(,). We give a branch-&-
bound algorithm, BB4FHD, together with upper/lower bounds to
accelerate the DP algorithm. Our BB4FHD algorithm is an anytime
algorithm that can give a feasible solution at any time when it
stops and can give a better solution if more time is allowed. With
BB4FHD, we can compute the optimal fhtw for 2,667 out of the
total number of 3,648 instances, which is better than FraSMT, which
computes the optimal fhtw for 2,538. BB4FHD can compute the
optimal fhtw for 84% instances within time of 1 second. We confirm
that BB4FHD can compute fhtw efficiently and it leads to efficient
query processing in database systems.

10 ACKNOWLEDGEMENT
This work was supported by the Research Grants Council of Hong
Kong, China, No.14205520.

4666

REFERENCES
[1] [n.d.]. Experimental Data for log-k-decomp. https://zenodo.org/record/6389816.
[2] Christopher Aberger, Andrew Lamb, Kunle Olukotun, and Christopher Re. 2018.

LevelHeaded: A Unified Engine for Business Intelligence and Linear Algebra
Querying. In 2018 IEEE 34th International Conference on Data Engineering (ICDE).
449–460.

[3] Christopher R. Aberger, Andrew Lamb, Susan Tu, Andres Nötzli, Kunle Oluko-
tun, and Christopher Ré. 2017. EmptyHeaded: A Relational Engine for Graph
Processing. ACM Trans. Database Syst. 42, 4, Article 20 (oct 2017), 44 pages.

[4] Isolde Adler, Tomas Gavenciak, and Tereza Klimosová. 2012. Hypertree-depth
and minors in hypergraphs. Theor. Comput. Sci. 463 (2012), 84–95. https:
//doi.org/10.1016/j.tcs.2012.09.007

[5] Kamal Amroun, ZinebHabbas, andWassila Aggoune-Mtalaa. 2016. A compressed
generalized hypertree decomposition-based solving technique for non-binary
constraint satisfaction problems. AI Communications 29, 2 (2016), 371–392.

[6] Albert Atserias, Martin Grohe, and Dániel Marx. 2008. Size Bounds and Query
Plans for Relational Joins. In 2008 49th Annual IEEE Symposium on Foundations
of Computer Science. 739–748.

[7] Philip A. Bernstein and Nathan Goodman. 1981. Power of Natural Semijoins.
SIAM J. Comput. 10, 4 (nov 1981), 751–771.

[8] Hans L. Bodlaender, Fedor V. Fomin, Arie M. C. A. Koster, Dieter Kratsch, and
Dimitrios M. Thilikos. 2012. On Exact Algorithms for Treewidth. ACM Trans.
Algorithms 9, 1, Article 12 (dec 2012), 23 pages.

[9] Angela Bonifati, Wim Martens, and Thomas Timm. 2017. An analytical study of
large SPARQL query logs. Proc. VLDB Endow. 11, 2 (oct 2017), 149–161.

[10] Hubie Chen, Georg Gottlob, Matthias Lanzinger, and Reinhard Pichler. 2021.
Semantic Width and the Fixed-Parameter Tractability of Constraint Satisfac-
tion Problems. In Proceedings of the Twenty-Ninth International Joint Conference
on Artificial Intelligence (Yokohama, Yokohama, Japan) (IJCAI’20). Article 239,
8 pages.

[11] Binyang Dai, Qichen Wang, and Ke Yi. 2023. SparkSQL+: Next-generation Query
Planning over Spark. In Companion of the 2023 International Conference on Man-
agement of Data (Seattle, WA, USA) (SIGMOD ’23). Association for Computing
Machinery, New York, NY, USA, 115–118.

[12] Ronald Fagin. 1983. Degrees of acyclicity for hypergraphs and relational database
schemes. J. ACM 30, 3 (jul 1983), 514–550.

[13] Johannes K. Fichte, Markus Hecher, Neha Lodha, and Stefan Szeider. 2018. An
SMT Approach to Fractional Hypertree Width. In Principles and Practice of
Constraint Programming, John Hooker (Ed.). Springer International Publishing,
Cham, 109–127.

[14] Wolfgang Fischl, Georg Gottlob, Davide Mario Longo, and Reinhard Pichler. 2020.
HyperBench: A Benchmark and Tool for Hypergraphs and Empirical Findings.
arXiv:2009.01769 [cs.DB]

[15] Wolfgang Fischl, Georg Gottlob, and Reinhard Pichler. 2018. General and Frac-
tional Hypertree Decompositions: Hard and Easy Cases. In Proceedings of the
37th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems
(Houston, TX, USA) (PODS ’18). Association for Computing Machinery, New
York, NY, USA, 17–32.

[16] Lucantonio Ghionna, Luigi Granata, Gianluigi Greco, and Francesco Scarcello.
2007. Hypertree Decompositions for Query Optimization. In 2007 IEEE 23rd
International Conference on Data Engineering. 36–45.

[17] Georg Gottlob, Gianluigi Greco, Nicola Leone, and Francesco Scarcello. 2016.
Hypertree Decompositions: Questions and Answers. In Proceedings of the 35th
ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, PODS
2016, San Francisco, CA, USA, June 26 - July 01, 2016, Tova Milo and Wang-Chiew
Tan (Eds.). ACM, 57–74.

[18] Georg Gottlob, Gianluigi Greco, Nicola Leone, and Francesco Scarcello. 2016.
Hypertree Decompositions: Questions and Answers (PODS ’16). Association for
Computing Machinery, New York, NY, USA, 57–74.

[19] Georg Gottlob, Matthias Lanzinger, Cem Okulmus, and Reinhard Pichler. 2022.
Fast Parallel Hypertree Decompositions in Logarithmic Recursion Depth. In
Proceedings of the 41st ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of
Database Systems (Philadelphia, PA, USA) (PODS ’22). Association for Computing
Machinery, New York, NY, USA, 325–336.

[20] Georg Gottlob, Nicola Leone, and Francesco Scarcello. 2002. Hypertree Decom-
positions and Tractable Queries. J. Comput. System Sci. 64, 3 (2002), 579–627.

[21] Georg Gottlob, Cem Okulmus, and Reinhard Pichler. 2020. Fast and Parallel
Decomposition of Constraint Satisfaction Problems. In Proceedings of the Twenty-
Ninth International Joint Conference on Artificial Intelligence, IJCAI-20, Christian

Bessiere (Ed.). International Joint Conferences on Artificial Intelligence Organi-
zation, 1155–1162. Main track.

[22] Georg Gottlob and Marko Samer. 2009. A Backtracking-Based Algorithm for
Hypertree Decomposition. ACM J. Exp. Algorithmics 13, Article 1 (feb 2009),
19 pages.

[23] Martin Grohe and Dániel Marx. 2014. Constraint Solving via Fractional Edge
Covers. ACM Trans. Algorithms 11, 1, Article 4 (aug 2014), 20 pages.

[24] Xiao Hu, Stavros Sintos, Junyang Gao, Pankaj K. Agarwal, and Jun Yang. 2022.
Computing Complex Temporal Join Queries Efficiently (SIGMOD ’22). Associa-
tion for Computing Machinery, New York, NY, USA, 2076–2090.

[25] Xiao Hu and Qichen Wang. 2023. Computing the Difference of Conjunctive
Queries Efficiently. 1, 2, Article 153 (jun 2023), 26 pages.

[26] Kyoungmin Kim, Jaehyun Ha, George Fletcher, and Wook-Shin Han. 2023. Guar-
anteeing the Õ(AGM/OUT) Runtime for Uniform Sampling and Size Estimation
over Joins. In Proceedings of the 42nd ACM SIGMOD-SIGACT-SIGAI Symposium
on Principles of Database Systems (Seattle, WA, USA) (PODS ’23). Association for
Computing Machinery, New York, NY, USA, 113–125.

[27] Michael Langberg, Shi Li, Sai Vikneshwar Mani Jayaraman, and Atri Rudra.
2019. Topology Dependent Bounds For FAQs. In Proceedings of the 38th ACM
SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems (Amster-
dam, Netherlands) (PODS ’19). Association for Computing Machinery, New York,
NY, USA, 432–449.

[28] Ling Liu, Ryen W. White, Amin Mantrach, Fabrizio Silvestri, Julian J. McAuley,
Ricardo Baeza-Yates, and Leila Zia (Eds.). 2019. The World Wide Web Conference,
WWW 2019, San Francisco, CA, USA, May 13-17, 2019. ACM.

[29] Dániel Marx. 2010. Approximating Fractional Hypertree Width. 6, 2, Article 29
(apr 2010), 17 pages.

[30] Thomas Neumann. 2009. Query simplification: graceful degradation for join-
order optimization. In Proceedings of the 2009 ACM SIGMOD International Con-
ference on Management of Data (Providence, Rhode Island, USA) (SIGMOD ’09).
Association for Computing Machinery, New York, NY, USA, 403–414.

[31] Hung Q. Ngo, Ely Porat, Christopher Ré, and Atri Rudra. 2018. Worst-case
Optimal Join Algorithms. J. ACM 65, 3, Article 16 (mar 2018), 40 pages. https:
//doi.org/10.1145/3180143

[32] Dan Olteanu and Jakub Závodný. 2015. Size Bounds for Factorised Representa-
tions of Query Results. ACM Trans. Database Syst. 40, 1, Article 2 (mar 2015),
44 pages.

[33] Marko Samer and Helmut Veith. 2009. Encoding Treewidth into SAT. In The-
ory and Applications of Satisfiability Testing - SAT 2009, Oliver Kullmann (Ed.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 45–50.

[34] Andre Schidler and Stefan Szeider. 2021. Computing Optimal Hypertree Decom-
positions with SAT. In Proceedings of the Thirtieth International Joint Conference
on Artificial Intelligence, IJCAI-21, Zhi-Hua Zhou (Ed.). International Joint Con-
ferences on Artificial Intelligence Organization, 1418–1424. Main Track.

[35] Yuchao Tao, Xi He, AshwinMachanavajjhala, and Sudeepa Roy. 2020. Computing
Local Sensitivities of Counting Queries with Joins. In Proceedings of the 2020
ACM SIGMOD International Conference on Management of Data (Portland, OR,
USA) (SIGMOD ’20). Association for Computing Machinery, New York, NY, USA,
479–494.

[36] Robert E. Tarjan and Mihalis Yannakakis. 1984. Simple Linear-Time Algorithms
to Test Chordality of Graphs, Test Acyclicity of Hypergraphs, and Selectively
Reduce Acyclic Hypergraphs. SIAM J. Comput. 13, 3 (1984), 566–579.

[37] Qichen Wang and Ke Yi. 2022. Conjunctive Queries with Comparisons. In Pro-
ceedings of the 2022 International Conference onManagement of Data (Philadelphia,
PA, USA) (SIGMOD ’22). Association for Computing Machinery, New York, NY,
USA, 108–121.

[38] Mihalis Yannakakis. 1981. Algorithms for Acyclic Database Schemes. In Proceed-
ings of the Seventh International Conference on Very Large Data Bases - Volume 7
(Cannes, France) (VLDB ’81). VLDB Endowment, 82–94.

[39] Hao Zhang, Jeffrey Yu, Yikai Zhang, Kangfei Zhao, and Hong Cheng. 2020.
Distributed subgraph counting: a general approach. Proceedings of the VLDB
Endowment 13 (08 2020), 2493–2507. https://doi.org/10.14778/3407790.3407840

[40] Hao Zhang, Jeffrey Xu Yu, Yikai Zhang, and Kangfei Zhao. 2022. Parallel Query
Processing: To Separate Communication from Computation. In Proceedings of
the 2022 International Conference on Management of Data (Philadelphia, PA,
USA) (SIGMOD ’22). Association for Computing Machinery, New York, NY, USA,
1447–1461.

[41] Kamal Amroun Zineb Habbas and Daniel Singer. 2015. A Forward-Checking
algorithm based on a Generalised Hypertree Decomposition for solving non-
binary constraint satisfaction problems. Journal of Experimental & Theoretical
Artificial Intelligence 27, 5 (2015), 649–671.

4667

https://zenodo.org/record/6389816
https://doi.org/10.1016/j.tcs.2012.09.007
https://doi.org/10.1016/j.tcs.2012.09.007
https://arxiv.org/abs/2009.01769
https://doi.org/10.1145/3180143
https://doi.org/10.1145/3180143
https://doi.org/10.14778/3407790.3407840

	Abstract
	1 Introduction
	2 Preliminaries
	3 A New DP Algorithm
	3.1 Elimination Order
	3.2 The Order Independent
	3.3 A DP algorithm for FHD over hypergraphs

	4 The Bounds on FHD
	4.1 Upper Bounds
	4.2 Lower Bounds

	5 A Branch-&-Bound Algorithm
	6 The FHD Width Computation
	7 Related Work
	8 Experimental Studies
	9 Conclusion
	10 Acknowledgement
	References

