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ABSTRACT
In the business scenarios at Ant Group, there is a rising demand for
collaborative data analysis among multiple institutions, which can
promote health insurance, financial services, risk control, and oth-
ers. However, the increasing concern about privacy issues has led to
data silos. Secure Multi-Party Computation(MPC) provides an effec-
tive solution for collaborative data analysis, which can utilize data
value while ensuring data security. Nevertheless, the performance
bottlenecks of MPC and the strong demand for scalability pose
great challenges to secure collaborative data analysis frameworks.

In this paper, we build a secure collaborative data analysis sys-
tem SCQL with a general purpose. We design more efficient MPC
protocols and relational operators to meet the demand for scalabil-
ity. In terms of system design, we aim to implement a system with
security, usability, and efficiency.

We conduct extensive experiments on SCQL to validate our opti-
mization improvements: (1) Our optimized secure sort protocol sorts
onemillion 64-bit data in only 4.5 minutes, 126× faster than EMP(9.4
hours). (2) The end-to-end execution time of the typical vertical
scenario query is reduced by 1991× from the state-of-the-art semi-
honest collaborative analysis framework Secrecy(rewritten with
Additive Secret Sharing protocol), with appropriate security trade-
offs. (3)We test the system in theWAN setting with 𝑖𝑛𝑝𝑢𝑡 𝑠𝑖𝑧𝑒 = 107
to demonstrate the scalability. We have successfully deployed SCQL
to address problems in real-world business scenarios at Ant Group.
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1 INTRODUCTION
In recent years, there has been a rising demand for collaborative
data analysis, especially in the fields of medical research, financial
services, and risk management [3, 28, 31, 43, 50]. It is proved that
the supplementary features or samples provided by different insti-
tutions can bring further improvement in performance. However,
with the increasing concern for privacy issues and the introduction
of relevant regulations (e.g., GDPR [1]), the data between different
institutions cannot be shared, resulting in data silos. As a typical sce-
nario, when a user submits a medical insurance claim, the insurance
company needs to combine external medical data for claim review.
However, the hospitals cannot disclose their databases, which vio-
lates patient confidentiality. Essentially, we need an infrastructure
to enable arbitrary queries to be securely executed on the collective
data of mutually distrustful institutions.

The most straightforward solution to the aforementioned prob-
lem is to utilize a Trusted Execution Environment (TEE) to pro-
tect the security of the data, such as works like Opaque [57], En-
claveDB [48], ObliDB [17], StealthDB [54] and OCQ [14]. TEE-based
methods first send encrypted sensitive data to a hardware-based
trust zone. Then the data is decrypted and processed within this
trusted enclave. Because the data is processed in plaintext, there
will be no performance loss in computations and no need for tedious
algorithm adaptation. However, these methods require the deploy-
ment of specialized hardware and demand that users fully trust the
hardware provider, which may not be satisfied in many practical
applications. In addition, TEE-based methods are also vulnerable
to various side-channel attacks [10, 33, 53].

Another longstanding research direction is encrypted databases,
such as CryptDB [47], Monomi [52], BlindSeer [44], Arx [45] and
Seabed [42]. Users encrypt the data and outsource it to servers,
which directly perform computations on the encrypted data. These
cryptography-based systems have to employ various cryptographic
primitives to deal with different types of queries. For example, par-
tially homomorphic encryption (PHE) [41] supports queries with
aggregation, order preserving encryption (OPE) [8, 9] supports
range queries, deterministic encryption (DET) [7] and searchable
encryption (SE) [13, 51] supports match queries. Nevertheless, these
property-preserving encryption schemes leak certain data proper-
ties ( e.g., the order and equality properties) and search patterns,
which suffer from various attacks [11, 30, 32, 40]. Recent work [49]
has attempted to solve the aforementioned problem by utilizing
Turing-complete Fully Homomorphic Encryption (FHE) [21] to sup-
port various types of queries. However, there is still a long way to
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go in terms of implementing general-purpose query operators (e.g.,
GROUP-BY ) and achieving a practical performance.

Secure Multi-Party Computation (MPC) [18], another crypto-
graphic technique, offers a richer set of underlying primitives and
better performance compared to FHE, which makes it another
emerging solution for collaborative data analysis. MPC enables
a group of independent data owners who do not trust each other
to jointly compute a function that depends on all of their private
inputs. MPC protocols ensure that each party learns nothing except
the output after they participate in the computation. Recently, a
series of works have attempted to design secure relational oper-
ators to achieve general-purpose collaborative queries and make
efforts from different perspectives to improve the security and per-
formance of queries.

SMCQL [3] is the first attempt to utilize MPC techniques, specifi-
cally Garbled Circuits [22], in the field of collaborative data analysis
applied to healthcare scenarios. It decomposes the query plan and
allows the data holders to perform local computations on plaintext
data, which reduces time-consuming MPC calls and the compu-
tational scale involved. Conclave [55] improves efficiency further
based on SMCQL. On the one hand, it utilizes Spark [56] to accel-
erate local plaintext computation. On the other hand, it designs
hybrid MPC-plaintext protocols, which require selectively trusted
party (STP) annotations, as alternatives to the MPC protocols. Sen-
ate [46] focuses on the scenario with malicious adversaries, where
participants may arbitrarily deviate from the prescribed protocol in
an attempt to violate data security. It decomposes the joint protocol
of all participants into step-wise merging of smaller sub-circuits
between two participants, thereby enhancing efficiency through
parallelism. However, providing malicious security incurs signifi-
cant additional costs. Secrecy [34] addresses another scenario where
some data owners lack computational capabilities by outsourcing
computation to three computing nodes. It designs secret relational
operators and logical transformations to improve efficiency. Simi-
larly, Scape [24] adopts the same outsourcing setup as Secrecy and
it further provides guarantees for malicious security. It proposes
optimized general join and aggregation operators, which are the
core bottlenecks of query performance.

Although these works have taken a step forward in the direc-
tion of MPC-based collaborative data analysis, there are still some
concerns when it comes to practical applications:

• SMCQL, Conclave, and Senate employ GC as the MPC back-
end. Although these techniques require only a small con-
stant number of communication rounds, the actual commu-
nication and computation overhead is high, which limits
their practical application compared to Secret Sharing (SS)
schemes in terms of overall performance [16].

• Secrecy and Scape adopt the outsourced computation, which
has two issues. Firstly, data owners often do not accept
data being distributed to external computing nodes due
to concerns about business competition and data privacy.
Secondly, the end-to-end MPC mode cannot leverage data
distribution for performance optimization, just like the op-
timizations in SMCQL and Conclave.

• Conclave, Secrecy, and Scape do not support SQL syntax,
which is not user-friendly for data analysts.

• Real-world applications require support for larger data vol-
umes and higher efficiency.

In this paper, we establish Secure Collaborative Query pLatform
(SCQL), which enables mutually distrusting parties to make queries
of their collective data and has comprehensive support for SQL
operators. The Additive Secret Sharing scheme (cf. section 2) is
employed to ensure the security of the computation process. The
data owners serve as the computation nodes of the MPC, thereby
keeping the data in the hands of its source.

To run the queries, we need to support the relational operators
in SQL based on Additive Secret Sharing. Most importantly, we
redesign and optimize the sorting protocol, which implements the
GROUP-BY operator and is the bottleneck of query execution. Most
existing implementations use sorting networks, which rely on ex-
pensive comparison operators. Instead, we employ the radix sort,
which is more MPC-friendly.

Existing works demonstrate that data distribution can be used
to improve the efficiency of collaborative data analysis. Typically,
there are two types of data distribution: horizontal scenario and
vertical scenario (cf. section 2). Existing optimizations allow for
scalable queries in horizontal scenarios, but they have limited ef-
fectiveness in vertical scenarios. To fill this gap, we design more
efficient relational operators specifically tailored for the security
requirements in vertical scenarios. By making suitable security
compromises, we greatly improve the query performance.

In terms of usability, SCQL establishes a virtual database and
users can write SQL queries as if they were using a centralized data-
base. Users do not need to worry about the physical distribution of
data or be aware of the MPC expertise. SCQL automatically trans-
lates a query into the corresponding MPC protocols and delegates
the computation to the underlying MPC infrastructure.

Besides, we propose the Column Control List (CCL) annotation
(cf. section 4.3) in SCQL to describe users’ security requirements.
On the one hand, CCL is used for static semantic checks and rejects
some illegal queries. On the other hand, it also defines the inter-
mediate information that users allow to open, thus the system can
automatically select a more efficient implementation at runtime.

Our contributions are summarized as follows:
• We design new MPC building blocks, e.g. shuffle and sort,

which greatly alleviates the bottleneck of collaborative data
analysis. Additionally, they may be of broader interest be-
yond SCQL and work in other MPC applications.

• We innovatively propose high-performance relational op-
erators in vertical scenarios. To the best of our knowledge,
this is the first work that delves into algorithm optimization
specifically designed for secure collaborative data analysis
in vertical scenarios.

• We implement and open-source a user-friendly and efficient
framework, which is thoroughly evaluated and confirmed
to provide significant improvements in performance at the
levels of MPC building block (section 5.2), relational opera-
tors (section 5.3), and end-to-end queries (section 5.4).

The rest of this paper is organized as follows: we first introduce
the basic settings and Additive Secret Sharing background in section
2. Then we explain the algorithm design in section 3, including
the redesign of the sorting protocol to implement the oblivious
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baseline and a detailed explanation of the optimization of relational
operators in the vertical scenarios. In section 4, we provide a detailed
introduction to the implementation. To provide a better explanation,
we used an example to demonstrate the overall workflow and the
use of CCL annotations. Further, in section 5, we conduct extensive
experiments on SCQL to validate our optimization improvements.
Finally, we briefly introduce related works in section 6 and conclude
in section 7 .

2 PRELIMINARY
Data Setting. In collaborative data analysis, there are two types of
data distribution: one is the horizontal scenario, where the partici-
pants share the same data schema but have different users, and the
joint dataset is like putting them together horizontally. The other
is the vertical scenario, where the participants share some common
users, but each participant has different data columns, and the joint
dataset is like putting them together vertically. We use two query
examples to demonstrate these scenarios.

In medical analysis, horizontal cases are more common. The
Comorbidity query in SMCQL [3] is shown in Figure 1, and it finds
the top tenmost common diagnoses for individuals with clostridium
difficile (cdiff). In this case, hospitals hold data tables with the
same schema, but their patients are different. The tables across
the hospitals are merged with UNION. The algorithm optimization
for horizontal scenarios is more straightforward. For example, in
this case, each hospital can locally aggregate a partial statistic, and
then only a small amount of joint computation is needed to merge
these partial statistics. The optimizations in prior works [3, 55] are
sufficient for horizontal scenarios.

SELECT1

diag2
, COUNT(*) as cnt3

FROM (4

SELECT diag FROM P1.cdiff_cohort_diagnoses 5

UNION ALL 6

SELECT diag FROM P2.cdiff_cohort_diagnoses7
)AS m 8
GROUP BY diag9

ORDER BY cnt DESC10

LIMIT 1011

Figure 1: Example query in horizontal scenario

Figure 2 shows an example of a vertical scenario. Alice, a financial
institution, holds the income, age, and credit rank of users; while
Bob, an e-commerce platform, obtains transaction amount, and
activity status of users. Alice wants to analyze the young people
(ages between 20 and 30) and calculate the user count, average
income, and maximum transaction amount with different credit
ranks and active states on the e-commerce platform. We get the
SQL statement in Figure 2 to meet the above requirements. In this
case, participants hold different features, and user alignment is
achieved through an INNER JOIN based on field 𝐼𝐷 . We will focus
on performance optimization in this scenario later.
Security Setting. In joint analysis, participants need to reach a con-
sensus on the queries to be executed, thus making the queries public.
So protecting the queries is not within our security objectives.

In practice, the original data is prohibited from leaving its owner,
e.g. the sensitive financial data and user privacy data. Therefore, we

SELECT1
ta.credit_rank2
, tb.is_active3
, COUNT(*) as user_cnt4
, AVG(ta.income) as avg_income5
, MAX(tb.order_amount) as max_amount6

FROM ta INNER JOIN tb 7
ON ta.ID = tb.ID8
WHERE ta.age >= 209

AND ta.age <= 3010
GROUP BY ta.credit_rank, tb.is_active11



















Figure 2: Example query in vertical scenario

abandon the commonly adopted outsourcing computation mode
which requires distributing data to computing nodes, even if the
computation security is ensured by the trusted hardware or the
MPC cluster. Instead, the participants should be both data holders
and computing nodes.

We adopt Secret Sharing techniques to realize multi-party secure
computation. Secret sharing techniques are more flexible than Gar-
bled Circuits in implementing complex operators and achieve better
performances in general. Efficient ABY3 protocol [37] is a popu-
lar choice among current collaborative analysis solutions [24, 34].
ABY3 is a three-party computation protocol, where the parties do
not collude. In fact, any two parties can recover the third party’s
private data, and this violates the requirement of data not leav-
ing its source. Hence, we employ Additive Secret Sharing in the
semi-honest adversarial setting without non-collusion assumption,
where the parties attempt to infer sensitive information while fol-
lowing the protocol.

Following the MPC with pre-processing paradigm [29, 38], we
introduce a trusted third party (TTP) to generate correlated ran-
domness, which enables more efficient and scalable MPC [6]. Note
that it is only responsible for randomness generation and has no ac-
cess to sensitive data of joint analysis. In theory, input-independent
randomness can be massively pre-produced in the offline stage,
thereby achieving a better online performance.

Although we present the Additive Secret Sharing for subsequent
algorithm design, SCQL supports switching between different MPC
infrastructures and schemes. It reserves the freedom for users to
choose protocols based on their own security needs.
Additive Secret Sharing. Additive Secret Sharing shares 𝑥 addi-
tively in the ring Z2𝑙 as the sum of 𝑛 values, where 𝑙 is the bitwidth
and 𝑛 is the number of parties. Though it naturally supports mul-
tiple parties, we introduce basic protocols under the 2PC setting.

• Sharing Scheme: 𝑥 = ⟨𝑥⟩0 + ⟨𝑥⟩1 𝑚𝑜𝑑 2𝑙 , where ⟨𝑥⟩0 and
⟨𝑥⟩1 are two random shares for secret 𝑥 and owned by 𝑃0
and 𝑃1 respectively. Note that we omit 2𝑙 for conciseness in
the following and denote a shared value in angle brackets.

• Addition: ⟨𝑧⟩ = ⟨𝑥⟩ + ⟨𝑦⟩. 𝑃𝑖 locally computes ⟨𝑧⟩𝑖 = ⟨𝑥⟩𝑖 +
⟨𝑦⟩𝑖 (𝑖 ∈ {0, 1}). Since ⟨𝑧⟩0+⟨𝑧⟩1 = ⟨𝑥⟩0+⟨𝑥⟩1+⟨𝑦⟩0+⟨𝑦⟩1 =
𝑥 + 𝑦, (⟨𝑧⟩0, ⟨𝑧⟩1) is a correct secret sharing pair of 𝑧.

• Scalar-multiplication: ⟨𝑦⟩ = 𝑐 · ⟨𝑥⟩, where 𝑐 is a public scalar.
𝑃𝑖 locally computes ⟨𝑦⟩𝑖 = 𝑐 · ⟨𝑥⟩𝑖 (𝑖 ∈ {0, 1}). Obviously,
(⟨𝑦⟩0, ⟨𝑦⟩1) is a correct secret sharing pair of 𝑦.
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• Multiplication: ⟨𝑧⟩ = ⟨𝑥⟩ · ⟨𝑦⟩ is achieved with the help of a
Beaver-triplet (⟨𝑎⟩, ⟨𝑏⟩, ⟨𝑐⟩), where a and b are uniformly
random values and 𝑐 = 𝑎 · 𝑏. Then the parties compute
⟨𝑒⟩ = ⟨𝑥⟩ + ⟨𝑎⟩ and ⟨𝑓 ⟩ = ⟨𝑦⟩ + ⟨𝑏⟩. In this way, 𝑥 and
𝑦 are secretly masked by random values. 𝑒 and 𝑓 can be
reconstructed without leakage. 𝑃𝑖 finishes the computation
by computing locally ⟨𝑧⟩𝑖 = −𝑖 ·𝑒 · 𝑓 + 𝑓 · ⟨𝑥⟩𝑖 +𝑒 · ⟨𝑦⟩𝑖 + ⟨𝑐⟩𝑖 .

• Other functions: Comparison protocol is implemented under
the Boolean sharing [15], which enables bit decomposition.
In this way, the sign of the subtraction is obtained as a com-
parison result. Non-linear functions are implemented with
Addition andMultiplication, with the help of approximation
methods like Taylor series expansion [23, 38].

3 ALGORITHM DESIGN
In this section, we discuss the secure relational operators of SQL and
reveal our design motivations. We first describe how to implement
a fully secure version as the baseline and analyze its bottlenecks.
Then, we introduce algorithm optimizations for vertically parti-
tioned collaborative data analysis, which can greatly improve the
performance with reasonable security compromises.

3.1 Oblivious baseline
We first illustrate the most crucial relational operators with exam-
ples. Since we adopt a different Secret Sharing scheme from existing
work, tedious algorithm modifications are needed to implement
a baseline. Here, we focus on the optimization and adaptation of
SortByKey, which is the bottleneck of the computation. Finally, we
summarize the problems with this baseline.
Relational Operators. JOIN is implemented with a brute-force ap-
proach. Suppose we have two relations R and S with𝑚 and 𝑛 tuples
respectively and join them based on a predicate 𝜃 : 𝑅.𝐼𝐷 = 𝑆.𝐼𝐷 ,
as illustrated in Figure 3. The result is the cartesian product of
R and S, and each tuple is augmented with a boolean bit denot-
ing whether the predicate is true. The cardinality of the resulting
relation explodes to (𝑚 · 𝑛).

Next, we provide a simple example and illustrate the steps of
GROUP-BY-AGG in Figure 4. For simplicity, we assume in the example
that the two input relations are aligned. So we skip the JOIN step
and only consider the GROUP-BY-AGG operator.

• Sort: sort the relationwith secure SortByKey protocol based
on column 𝑘 and result in columns 𝑘′ and 𝑣 ′.

R
ID

1
2
4

S
ID

1
3
4

R join S

1
1
1
2
2
2
4
4
4

R.ID

1
3
4
1
3
4
1
3
4

S.ID

1
0
0
0
0
0
0
0
1

𝜃

Figure 3: Illustration of oblivious JOIN

• Agg: aggregate column 𝑣 ′ based on the group identifier bit.
First, we need to calculate 𝑏, the binary identifier for the
group starting position, based on the group key 𝑘′. If the
group key of the current row is not equal to the previous
row, then the new group starts, i.e. 𝑏 [𝑖] := 𝑘′ [𝑖 − 1] ≠ 𝑘′ [𝑖].
Next, we calculate the aggregation column 𝑎𝑔 row by row.
When encountering the starting point of a group, we re-
set the aggregation value. Otherwise, we accumulate the
current row of 𝑣 ′ into the aggregation value, i.e. 𝑎𝑔[𝑖] :=
𝑏 [𝑖] ·𝑣 ′ [𝑖] + (1−𝑏 [𝑖]) · (𝑎𝑔[𝑖−1] +𝑣 ′ [𝑖]). Note that the com-
parison operators and arithmetic protocols used in these
and subsequent formulas are the ones we introduced in
section 2.

• Mask: mask the unnecessary values. For security reasons,
intermediate information other than the output should not
be revealed. Therefore, only the last element in each group
of accumulated column 𝑎𝑔 should be retained. Similar to the
aggregation above, we first calculate the binary identifier
𝑓 to indicate the end position of a group, i.e. 𝑓 := 𝑘′ [𝑖] ≠
𝑘′ [𝑖 +1]. Then, we set the unnecessary rows to a predefined
invalid number x, i.e. 𝑘′ [𝑖] := 𝑓 [𝑖] · 𝑘′ [𝑖] + (1 − 𝑓 [𝑖]) · 𝑥
and 𝑎𝑔[𝑖] := 𝑓 [𝑖] · 𝑎𝑔[𝑖] + (1 − 𝑓 [𝑖]) · 𝑥 .

• Shuffle: apply secure Shuffle protocol to the relation and
reveal the result. If the result is revealed directly without
shuffling, we can infer the size of each group from the
position of valid rows.

SortByKey. From the above description, we know that Shuffle
and SortByKey protocols are crucial for implementing relational op-
erators. The sorting network such as Batcher’s sort [2] is a popular
solution among existingworks [24, 34], due to its input-independent
control flow and ease of parallelization. However, it heavily relies
on comparison protocol, which is inefficient in MPC. Therefore,
we implement the stable radix sort instead. Radix sort is imple-
mented based on the ABY3 protocol in existing work [12] and we
redesigned it under Additive Secret Sharing for the first time. To
better understand radix sort and facilitate our discussion of how it
inspires the later optimization of the GROUP-BY operator, we first
explain the algorithm process on the left side of Figure 5. This
example shows the sorting of column K, i.e. the list [1, 0, 3, 2].

First, we decompose the elements in column 𝐾 into binary digits
[01, 00, 11, 10]. The Least Significant Bit (LSB) and the Most Signifi-
cant Bit (MSB) are denoted as K_bin_0 and K_bin_1 respectively.
We append column 𝑖𝑛𝑑𝑒𝑥 at the end to analyze the destination
index of each element after sorting. Then we sort the relation table
according to each bit column from LSB to MSB. After that, column
𝐾 is sorted. We assemble the destination indexes after sorting of
original elements into a vector as 𝑝 = [1, 0, 3, 2], which uniquely
identifies the sorting operation and is called a permutation vector.
For example, 1 is the destination index of the first element in K
after sorting. 𝑝 (𝐾) represents sorting the key K using p.

To reduce the workload of sorting, we do not need to sort the
entire relation table each time. Instead, we can process the digits
one by one from the LSB. Each time, we use the GenPerm function
to generate the permutation vector corresponding to the current
digit, and then merge it with the previous permutation vector using
the Compose function. In the end, we can obtain the end-to-end
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Figure 4: Illustration of oblivious GROUP-BY-AGG

permutation vector. Similarly, when implementing SortByKey, we
first generate the permutation vector based on the key column and
then sort all value columns only once.

On the right side of Figure 5, we show the function dependen-
cies in the implementation of SortByKey and we have to design
these functions based on Additive Secret Sharing. We mainly ex-
plain the core implementation path shown by the red arrow. Since
the adaptation of the remaining functions to existing work [12] is
straightforward, we will not go into detail to save space.

We first implement the SecurePermutation and detailed steps
are shown on the left side of Figure 6. Although the operator has
been implemented in previous work with the same MPC scheme as
ours [19], we have made two optimizations for our scenario:

• We remove the offline part. SecurePermutation is called
by subsequent functions with an input-independent ran-
dom permutation vector 𝜋 , which can be directly sent to
the TTP without the need for complex offline services.

• Our protocol is designed for Boolean Sharing inputs. If 𝑋 is
a Boolean share, it can be represented with fewer bits based
on its value range, resulting in a shorter random mask 𝑅
and saving communication when opening (𝑋 − 𝑅). In our
subsequent calls to this function, 𝑋 is a permutation vector
whose bit length depends on the number of samples to be
sorted. Only 32 bits are needed to sort more than 4.2 billion
data, and communication is then reduced by 50% compared
to using 64-bit Additive Secret Sharing.

Now we use SecurePermutation to implement the Shuffle
protocol in the middle of Figure 6. Each of the parties generates a
random permutation vector locally, i.e. 𝜋1 and 𝜋2, which are used
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Figure 5: SortByKey implemented with radix sort

as inputs to call SecurePermutation in turn. In this way, the two
parties shuffle the input ⟨𝑋 ⟩ collaboratively. Note that each party
only holds a single-step permutation vector, which ensures the
security of Shuffle.

Finally, we represent the implementation of the SecretSort pro-
tocol on the right side of Figure 6. The function of SecretSort is
similar to SecurePermutation, which sorts the target vector using
a given permutation vector, but the difference is that the permu-
tation vector of SecretSort is secretly shared. With the help of
Shuffle, the shared permutation vector ⟨𝜋⟩ and the target vector
⟨𝑋 ⟩ are shuffled simultaneously, and the shuffled permutation vec-
tor ⟨𝜋 ′⟩ is then opened. After that, the two parties can use 𝜋 ′ to
permute the local shares of the shuffled target vector ⟨𝑋 ′⟩.

• Correctness: Since the same shuffling is applied to 𝜋 and
𝑋 , their element-wise correspondence remains the same.
Therefore, each element of 𝜋 ′ still records the target po-
sition of each element of 𝑋 ′, which is equivalent to the
original permutation.

• Security: Although we open 𝜋 ′, neither party can reverse
the shuffle, as we mentioned above. This is similar to adding
a random mask to 𝜋 , so the masked 𝜋 ′ can be opened with-
out sacrificing security.

The modification of GenPerm is trivial, and the implementation
of Compose is similar to that of SecretSort, so we omit them here.
By using these functions, we can finally implement 𝑆𝑜𝑟𝑡𝐵𝑦𝐾𝑒𝑦.
Bottlenecks. Although we have implemented the basic version of
joint analysis, the performance of this version is impractical due to
the following issues:

• After the JOIN operator, the size of the result relation rapidly
expands, and all subsequent calculations need to be exe-
cuted on this scale, resulting in too much redundant com-
putation and storage. Therefore, it is difficult to continue
when the input scale is larger than ten thousand.

• GROUP-BY relies on the time-consuming SortByKey proto-
col. There is a huge time consumption when there are many
group-by keys.

• AGG requires accumulation row by row, and the result of
this row depends on the previous row. Each aggregation
requires a secret Multiplication, which involves two
rounds of communication. Therefore, with the increase in
the number of rows, the latency becomes unacceptable. An-
other problem is that AGG-MIN and AGG-MAX are inefficient,
because they rely on inefficient comparison protocols.
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Figure 6: Implementation of Secret Sort protocol

3.2 Vertical Optimizations
Existing works mainly focus on horizontal scenarios and fully en-
crypted scenarios. To fill the gap in vertical scenarios, we design
appropriate security trade-offs to achieve scalability.
JOIN.Many redundant entries are generated by JOIN. For example,
in the example in Figure 3, only 2 of the 9 entries in the result are
valid. If we allow the size of the intersection to be leaked, we can
shuffle the data once, and then open the predicate 𝜃 , which greatly
reduces the number of relations, and reduces the time consumption
of subsequent steps. Due to the shuffle operation, it is not possible
to restore the original entries corresponding to the intersection
result, so only the size of the intersection is leaked. This is the first
compromised JOIN implementation.

Collaborative modeling in the vertical scenario has been widely
applied. It is assumed that the participants have aligned their sam-
ples before modeling, which is usually accomplished using Private
Set Intersection (PSI) [20, 35]. Similarly, EQUAL-JOIN is widely used
in collaborative data analysis to align the samples of participants.
Therefore, we can provide PSI-JOIN as an efficient implementation
of EQUAL-JOIN for the participants who can tolerate knowing the
intersection of samples. We implement ECDH-PSI [27] because it
is easy to understand and more communication-friendly compared
to other algorithms.

In addition to solving the problem of dimension expansion, the
main advantage of implementing EQUAL-JOIN with PSI is that the
resulting data is private instead of secretly shared. Private data
refers to data that exists in plaintext form within its owner and is
unknown to other participants. The existence of private data can
provide better performance for MPC protocols. For example, As
shown in Figure 6, the execution time of SecretSort is four times
that of SecurePermutation simply because the permutation vector
of SecretSort is a secretly shared ⟨𝜋⟩, unlike SecurePermutation
where it is a private 𝜋 . In the optimization of GROUP-BY later, we
further leverage this feature.
GROUP-BY. Inspired by the idea of radix sort and the private
feature brought by PSI, we propose five optimizations. We first
explain them, followed by an example to illustrate their application.

Opt-1: Sort payload only once. GROUP-BY need to sort the relation
table with multiple keys, and the communication cost is
proportional to the payload size. Similar to the SortByKey
protocol, we first generate a permutation vector composed
of all the GROUP-BY keys, and then perform a one-time

sorting of the entire relation, thereby reducing communica-
tion. As in the example later on, there are four GROUP-BY
keys, so the communication for sorting the payload is re-
duced by 75%.

Opt-2: Merge local keys. SortByKey is a very time-consuming pro-
tocol. Notice that there is no priority among the GROUP-BY
keys. To utilize the private feature, we first merge multiple
local keys to reduce the number of calls to secret sorting pro-
tocols. After optimizing the vertical scenario, SortByKey
is called at most once. As in the example later on, there
are four GROUP-BY keys, so the sorting time is reduced by
75%.

Opt-3: Choose cheaper secret protocol.When implementing SortByKey,
it is necessary to process each decomposed binary bit, and
the time consumption of processing each bit is more than
twice that of SecretSort. In SCQL, MPC defaults to using
64-bit numbers, so the time consumption of SortByKey is
above 128 times that of SecretSort. Moreover, the time
consumption of the SecretSort operator is 4 times that
of SecurePermutation as we analyzed in section 3.1. The
functions of these three protocols are similar, and we should
try to use the cheapest one. If we use SecurePermutation
to replace SortByKey, the time for a single sorting is re-
duced by 500 times.

Opt-4: Reduce valid bits of keys. Since SortByKey needs to process
each binary bit one by one, its complexity is directly re-
lated to the number of valid bits in the key column. We
can encode the keys with ordinal encoding, which means
mapping each unique label to an integer value. The final
integer used will not exceed the total number of samples
𝑛, and the number of valid bits will be at most log2 (𝑛). For
example, for sorting 1 million samples, only 20 bits of valid
bits are needed, which reduces the execution time by about
70% compared to the original 64 bits.

Opt-5: Min/Max aggregation for free. The radix sorting algorithm
gives us an insight that, for multi-key sorting, we should
start from the low-priority keys to the high-priority ones.
When sorting with the high-priority keys, the ordering of
low-priority keys is preserved. For the aggregation func-
tions MIN and MAX, we can include the related aggregation
column as a sorting key with the lowest priority to generate
the permutation vector. After sorting, the last element in
a group is the desired maximum/minimum value. In this
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way, we skip the process of row-by-row aggregation and
eliminate the dependency on time-consuming comparison
protocols during the process.
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SELECT MAX(A.V) GROUP BY A.K1, B.K2, B.K3, B.K4

Figure 7: Vertical GROUP-BY pipeline

We use a GROUP-BY query with four keys in Figure 7 to illustrate
the optimizations. Leveraging Opt-2, we first merge the local keys
to obtain 𝐾𝐴 and 𝐾𝐵. Since the aggregation function is MAX, we use
Opt-5 to let aggregation column 𝑉 participate in this key merging
process. 𝐾𝐴 and 𝐾𝐵 are generated using Opt-4, and the keys are
combined with ordinal encoding. Since 𝐾𝐴 contains 𝑉 with the
lowest priority, our permutation vector generation should start
from 𝐾𝐴. We use the plaintext GenPerm function to generate the
corresponding permutation vector 𝑃𝐴 for 𝐾𝐴. According to Opt-
3, we sort 𝐾𝐵 based on 𝑃𝐴 with SecurePermutation instead of
SortByKey. This step involves the data of both participants, so all
subsequent processes are encrypted by Secret Sharing. The per-
mutation vector 𝑃𝐵′ corresponding to the sorted 𝐾𝐵′ is generated
using the secret GenPerm, and merged with the 𝑃𝐴 to generate the
end-to-end permutation vector 𝑃 . Finally, we only need to use 𝑃 to
sort the aggregation column 𝑉 once, corresponding to Opt-1.
AGG. To avoid the row-by-row aggregation process, we first adopt
the method in [24]. They innovatively employ the Brent-Kung net-
work to achieve a traversing function. Although the communication
volume is doubled, the number of communication rounds decreases
from 𝑛 to O(log𝑛). This optimization makes the performance of
the aggregation function practical.

If users allow for some security concessions, the cost of the ag-
gregation function is further reduced to almost zero. Reviewing the
aggregation steps in Figure 4, the aggregation formula is: 𝑎𝑔[𝑖] :=
𝑏 [𝑖] ·𝑣 ′ [𝑖] + (1−𝑏 [𝑖]) · (𝑎𝑔[𝑖−1] +𝑣 ′ [𝑖]). If we open the group iden-
tifier 𝑏, Multiplication is replaced by Scalar-multiplication
as described in section 2, which is a completely local computation
without interaction. So the time consumption will be almost free. In
terms of security, open 𝑏 is equivalent to revealing the number of
samples contained in each group. Taking Figure 4 as an example, it
is equivalent to the query: select count(v) from R group by k.

4 IMPLEMENTATION
In this section, we elaborate on platform design. Firstly, we present
the high-level architecture and explain the roles of the core modules.
Then, we provide a query example to demonstrate the execution
process, which showcases the interaction between the components

and highlights the user interface’s usability. Further, we introduce
a specific annotation, i.e. Column Control List (CCL), that describes
users’ security requirements.

4.1 Architecture
We demonstrate the architecture of SCQL in Figure 8. Though
we illustrate SCQL with two participants, Additive Secret Sharing
naturally supports three or more participants. Party 1 and Party
2 represent two participants in collaborative data analysis, who
are the data owners and also responsible for actual computation.
The original data of each participant is stored in its local database.
Additionally, we need a trusted third party to deploy centralized
service modules. Note that the trusted third party has no access to
actual data and is only involved in assisting with the generation of
execution plans. We explain the roles of the four core modules in
the following:
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Trusted Third Party

SCDB
Session 
Manager Parser Planner

TranslatorGraph 
Scheduler

Graph 
Splitter

DDL/DCL 
Executor

SCQL Engine

Data
Source
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Figure 8: Architecture of SCQL

Client. It provides users with an interface that allows them to
submit queries via the command line and receive execution results.
GRM. Global Resource Manager (GRM) supplies SCDB with the
necessary information for query execution. GRMplays a role similar
to DNS, providing SCDB with services to map logical tables to
related physical tables.
SCDB. Secure Collaborative DataBase (SCDB) plays the role of
a database management system in collaborative data analysis. In
order to free users from concerns about the physical distribution of
data tables, SCDB creates virtual databases. Users only need to write
logical table names in the same way as in the centralized queries.
Moreover, the computational tasks are automatically dispatched to
the corresponding SCQLEngines, and users do not need to specify
the physical address in the query.

SCDB needs a database to store the table schemas and annota-
tions. The details of internal components are better illustrated by
concrete workflows, so we leave it in section 4.2.
SCQLEngine. It is deployed at each participant and constitutes
the execution engine with other participants for collaborative data
analysis. It consists of four layers from the bottom up:

• Data Source Adaptor: It connects the local databases and the
execution infrastructures. Various database management
systems are supported in SCQL.

• Execution Infrastructure: SCQLEngine is a hybrid MPC-
plaintext execution engine. It integrates open-source MPC
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infrastructures [36]1 to enable joint computation while en-
suring data security. It also integrates open-sourced plain-
text execution infrastructure2 for local computations. In
different execution steps, we can switch to different in-
frastructures to meet the security requirements and obtain
better performances.

• Operator Group: each node in the execution graph is a SQL
operator as we described in section 3. These operators can
be divided into two categories in terms of the execution
mode. One type is plaintext operators, which delegate the
computation to the local database or the plaintext execution
infrastructures. The other type is secure operators that are
implemented with the help of MPC infrastructures and re-
quire coordination with other SCQLEngines from different
participants.

• DAG scheduler: It receives the execution graph from SCDB
and schedules the execution of nodes.

4.2 Workflow
To better understand the user interface and internal components of
SCDB, we display the workflow with the case in Figure 2. Here, we
assume that SCDB, GRM, and SCQLEngines have been deployed.
The data tables have been stored in the local databases and regis-
tered in GRM.
Data Preparation. The first step is to create a virtual database and
two accounts for collaborative data analysis. Similar to a centralized
database, there is an initial account named root in SCDB. We com-
plete this step with the root account in Figure 9. CREATE DATABASES
is used to create a virtual database named 𝑑𝑒𝑚𝑜 . SHOW DATABASES
lists all the virtual databases. Then we use CREATE USER to create
an account named 𝑎𝑙𝑖𝑐𝑒 with the password "alice123". We need to
grant permissions to 𝑎𝑙𝑖𝑐𝑒 by using the GRANT command, which
allows this account to create tables, edit column annotations, and
delete tables in 𝑑𝑒𝑚𝑜 . Similarly, an account for 𝑏𝑜𝑏 is created.

 
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Figure 9: Preparation commands at root

The second step is to add the logical table to the virtual database
after switching to the accounts created for data owners in the
previous step. We take 𝑎𝑙𝑖𝑐𝑒 as an example and list the commands
in Figure 10. The CREATE TABLE statement at line 1 adds the table
𝑡𝑎 to the virtual database 𝑑𝑒𝑚𝑜 , where TID is the table identifier
registered from GRM. The DESCRIBE statement displays the table
1https://github.com/secretflow/spu.
2ApacheArrow: https://github.com/apache/arrow.

schema. Moreover, the data owners need to set the CCL with the
GRANT command for all the columns used. A query must pass the
CCL check before execution to ensure that all calculations are in
line with the expectations of the data owners. We skip over the
explanations of these CCL annotations for now and leave them to
be discussed in Section 4.3. Then, 𝑏𝑜𝑏 sets up table 𝑡𝑏 in the same
way.
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Figure 10: Preparation commands at alice
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Figure 11: Query submission

Query Execution. Now, Alice can submit the query to SCDB, as
shown in Figure 11, and get the result. To better understand the
execution process of SQL and the internal components of SCDB,
we draw the pipeline in Figure 12.
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Figure 12: Query execution pipeline

After the Client submits a SQL statement, SCDB creates a session
for the request and performs user authentication to reject illegal
user access. The Parser parses the SQL statement into an Abstract
Syntax Tree (AST). Then, the Planner generates a logical plan based
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on the syntax tree. For the DCL (GRANT/REVOKE) and DDL (CRE-
ATE/DROP) queries in the data preparation stage, the logical plans
are handed over to the DDL/DCL Executor. If it is a DCL plan,
the executor sends the permission information to the Metadata
Storage. As for the DDL plan, SCDB sends the table ID and user
tokens to GRM. After confirming that the user has been granted the
table ownership, GRM returns the table schema to SCDB, which
is then sent to the Metadata Storage. In this way, a logical table is
successfully registered in the virtual database.

For a DQL (SELECT) statement, a logical plan is also generated
first, followed by a plan optimization step. We adopt former opti-
mizations in collaborative data analysis [3, 34, 55]. For example,
predicate push-down optimization can be used here to reduce the
amount of data entering the MPC environment, thus improving
the performance. In fact, we reuse the Parser and Planner of the
open-source database3 and make corresponding adaptations for
our scenario. For example, we make appropriate modifications to
the functionality of Parser according to the syntax we support and
select plan optimization configurations in Planner that are suit-
able for secure collaborative data analysis. Then, the Translator
reads the CCL annotations from the Metadata Storage and verifies
whether the query complies with the restrictions of the data own-
ers. After the CCL check, the Translator converts the logical plan
into an execution graph composed of SQL operators. Next, Graph
Scheduler optimizes the execution graph, e.g. merging nodes and
removing duplicate nodes, and distributes the split subgraphs to
SCQLEngine Group for execution. Finally, the results are returned
to the Client via SCDB after the execution is completed.

4.3 Column Control List
CCL is proposed to describe users’ security requirements. Each
CCL configuration can be described by a triplet: <src_column,
dest_party, constraint>, which indicates that src_column is ac-
cessible to dest_partywith the constraint. The syntax for setting
CCL is: GRANT src_column TO dest_party WITH constraint.

There are three types of constraints:
• mustOpSet. The src_column must go through specified op-

erations before revealing. For example, if we define𝑚𝑢𝑠𝑡 =
{𝑠𝑢𝑚 |𝑎𝑣𝑔,𝑢𝑛𝑖𝑜𝑛}, it means that the src_column must be
horizontally unioned with other participants and aggre-
gated by 𝑠𝑢𝑚 or 𝑎𝑣𝑔 function before being output to the
dest_party. The list of operators that we can configure is
displayed in Figure 13.

⎼ Project
⎼ Select
⎼ Join

+ AsJoinKey
+ AsJoinPayload

⎼ GroupBy
+ AsGroupKey
+ AsGroupPayload

⎼ Union

⎼ AggregationFunc
+ Sum, Count, Avg, Min, Max

⎼ ArithmeticOp
+ Add, Sub, Mul, Div

⎼ ComparisonOp
+ Equal, NE, LT, LE, GT, GE

⎼ LogicalOp
+ And, Or, Not

1. Relational operations 2. Expression operations

Figure 13: Operator list

3TiDB: https://github.com/pingcap/tidb

• blockOpSet. The listed operators are prohibited from being
performed on src_column during the execution. If a col-
umn is not configured, we add a default configuration to it,
i.e. 𝑏𝑙𝑜𝑐𝑘 = {𝑎𝑙𝑙}, which indicates that no operations can
be performed on this column.

• relaxRule. It is used to define intermediate information that
is allowed to be opened, thus improving the performance
of the corresponding operator. Currently, SCQL supports
the following four rules:
– public: src_column can be reveal to dest_party.When

the operands are configured as public, we invoke plain-
text relational operators in the execution graph, the
same as the optimizations in SMCQL and Conclave.

– reveal_join_size: when src_column is used as a JOIN
condition, the intersection size can be revealed to des-
ignated dest_party. In this case, we adopt the first
compromised JOIN mentioned in section 3.2.

– reveal_join_result: when src_column is used as a JOIN
condition, the intersection can be revealed to dest_party.
In this case, we adopt the PSI-JOIN in section 3.2.

– reveal_group_size: when src_column is used as a GROUP-
BY key, The sample size of each group can be revealed
to dest_party. In this case, we adopt the compromised
AGG in section 3.2.

In summary,mustOpSet and blockOpSet are used for static seman-
tic checking to reject illegal queries. relaxRule is used for runtime
optimization to reduce secret computations and speed up execution.

Now, we are ready to review the CCL annotations of alice in
Figure 10 and analyze the effect of each configuration. According
to the configuration in line 13, projecting on 𝑡𝑎.𝐼𝐷 and its derived
columns or using 𝑡𝑎.𝐼𝐷 as a selection predicate is prohibited. If Bob
submits the following three queries, they will be rejected:

• select id from ta;
• select count(id) from ta;
• select income from ta where id = 'xxx';

Next, if both Alice and Bob configure the relaxRule for their
own column 𝐼𝐷 as in line 14, the execution of JOIN will invoke the
efficient PSI-JOIN in section 3.2. The configurations in lines 15 and
16 describe the usage of columns 𝑡𝑎.𝑐𝑟𝑒𝑑𝑖𝑡_𝑟𝑎𝑛𝑘 and 𝑡𝑎.𝑖𝑛𝑐𝑜𝑚𝑒 in
the target query. During the configuration process, we should try
to minimize the authorized scope as much as possible to prevent
data abuse. If we want to expand their applications, we only need to
modify the configuration accordingly. For example, if we not only
want to calculate the average income but also want to calculate the
maximum income, we only need to change the configuration in
line 16 and set𝑚𝑢𝑠𝑡 = {𝑎𝑣𝑔|𝑚𝑎𝑥}.

5 EXPERIMENTS
In this section, we conduct comprehensive experiments to validate
the performance of SCQL. In the building block test, we test the
proposed MPC protocols in section 3.1. Then, we compare the per-
formance of different implementations of relational operations in
section 3.2. Finally, we analyze the effectiveness of our optimization
in end-to-end queries and demonstrate the scalability of SCQL.
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5.1 Experimental setup
Settings.We set the ring size of the secret sharing schema as 64 bits
and 20 bits are used for the fractional part. Zero sharing technique
is applied to reduce the interaction cost with the help of pseudo-
random functions (PRF) [37]. Taking the 𝑆𝑒𝑐𝑢𝑟𝑒𝑃𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 pro-
tocol in Figure 6 as an example, party A generates a random vector
as ⟨𝑅⟩𝐴 and party B generates two random vectors as ⟨𝑅⟩𝐵 and
⟨𝜋 (𝑅)⟩𝐵 . Simultaneously, the TTP generates the same three ran-
dom vectors by using the PRF negotiated with party A and party
B. TTP calculates the correction item, i.e. ⟨𝜋 (𝑅)⟩𝐴 = 𝜋 (⟨𝑅⟩𝐴 +
⟨𝑅⟩𝐵) − ⟨𝜋 (𝑅)⟩𝐵 and sends it to A. In this way, the communication
volume for generating correlated random vectors is greatly reduced.
Moreover, we implement ECDH-PSI with the Curve25519.
Environment. We conduct experiments on two Alibaba Cloud
servers with 16 vCPU and 128GB RAM each. The CPU model is
Intel(R) Xeon(R) Platinum 8269CY CPU @ 2.50GHz. The network
condition is manipulated with the Linux traffic control tool (e.g., tc
command). To be specific, we consider the transmission 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ
and 𝑙𝑎𝑡𝑒𝑛𝑐𝑦. In the WAN setting, we limit the network connection
by 100 Mbps with 20 ms of roundtrip latency.

5.2 Evaluation of Secure Sorting
In this section, we evaluate our redesigned SortByKey protocol,
which is the bottleneck of GROUP-BY. We first test 𝑆𝑜𝑟𝑡𝐵𝑦𝐾𝑒𝑦 pro-
tocol and the related protocols as described in section 3.1. Then we
compare our implementation with the commonly used open-source
implementation of EMP4, which is based on Bitonic Sort.
Related protocols.We adopt the WAN setting to evaluate these
communication-dominated protocols and vary the input size to test
the execution time. The results are shown in Table 1.

Table 1: Execution time (ms) of SortByKey

Input SP0 SP1 SecSort SBK SBK_valid

103 10.1 20.3 50.7 3404 643
104 10.4 20.9 57.3 7960 2076
105 67.3 136 536 75566 23007
106 691 1402 5367 769886 267668

Now we analyze whether the time ratios of the three protocols
are consistent with our previous complexity analysis. Here, SP
refers to the SecurePermutation protocol, and SP0 and SP1 rep-
resent that the input permutation vectors are located in the two
participants P0 and P1 respectively. SecSort indicates the 𝑆𝑒𝑐𝑟𝑒𝑡𝑆𝑜𝑟𝑡
protocol and SBK means 𝑆𝑜𝑟𝑡𝐵𝑦𝐾𝑒𝑦 protocol.

When the input size exceeds 105 and communication dominates
the execution time, the result is consistent with theoretical value:
(1) SP1 is approximately twice the time of SP0, because we used
Zero Sharing technology in section 5.1 and we assume that TTP
and P0 are in the same local area network. (2) The execution time
of SecSort is supposed to be 7 times that of SP0, due to the fact
that 𝑆𝑒𝑐𝑟𝑒𝑡𝑆𝑜𝑟𝑡 involves two rounds of SP0, two rounds of SP1, and
one round of open masked values. (3) The execution time of SBK
4https://github.com/emp-toolkit/emp-sh2pc

is about 140 times that of SecSort, which is consistent with our
analysis in section 3.2.

We also test Opt-4 in section 3.2, i.e. reduce valid bits of keys, and
the results are in the column SBK_valid. The protocol automatically
determines the number of valid bits based on the input size. The
smaller the input size is, the fewer valid bits we get, thus resulting
in higher optimization ratios. Here, we achieved a performance
improvement of 1.9 to 4.3 times.
Comparison with EMP. We demonstrate the results in Figure 14,
with execution time plotted in log-scale. Since the asymptotic com-
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Figure 14: Compare SortByKey with EMP

plexity of Bitonic Sort is O(𝑛𝑙𝑜𝑔2𝑛), while our Radix Sort is O(𝑛𝑙),
our advantage becomes more obvious as the input size increases.
In the end, we sorted one million 64-bit data in only 4.5 minutes,
while EMP required 9.4 hours, which is approximately 126 times
slower than our implementation.

5.3 Relational Operation Test
Further, we test the performance of three core relational operations
introduced in section 3.1 and section 3.2. We vary the input size and
compare the performance of different implementations for JOIN,
AGG, and GROUP-BY.
JOIN. We have three implementations of JOIN. Plaintext-JOIN
is used in previous work [3, 55] when the join column is public.
Oblivious-JOIN and PSI-JOIN are as we introduced in sections 3.1
and 3.2. PSI protocol is computation-dominated, so we test it under
the LAN setting without network restrictions and the results are in
Table 2. We can see that: (1) Oblivious-JOIN is difficult to scale, as

Table 2: Performance of JOIN (Time: s)

Input Size 103 104 105 106 107

Plaintext-JOIN 0.001 0.011 0.121 2.602 30.701
PSI-JOIN 0.040 0.423 3.291 33.284 309.401
Oblivious-JOIN 10.400 OOM OOM OOM OOM

the memory runs out with an input size of only 10,000. (2) PSI-JOIN
and Plaintext-JOIN both have low execution time even with mil-
lions of data, but PSI-JOIN is 10 times slower than Plaintext-JOIN
under this amount of data.
AGG. We test two implementations of the AGG as described in sec-
tion 3.2 and the results are in Table 3. The prefix Plain represents
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the version with secure concession, which reveals the group identi-
fier. The prefix Obliv represents the version that uses the Brent-
Kung network for acceleration. Furthermore, the performance of
AGG also varies depending on whether a comparison protocol is
needed. Therefore, we chose Sum and MAX as the representatives for
this performance testing.

Table 3: Performance of AGG (Time: s)

Input Size 103 104 105 106 107

LAN

Obliv-Sum 0.011 0.031 0.174 1.971 20.012
Obliv-Max 0.062 0.094 0.383 3.824 39.201
Plain-Sum 0.001 0.001 0.011 0.102 0.932
Plain-Max 0.001 0.001 0.001 0.008 0.076

WAN

Obliv-Sum 0.512 0.773 2.931 17.630 138.255
Obliv-Max 2.291 3.370 8.494 41.891 301.673
Plain-Sum 0.001 0.001 0.012 0.110 0.932
Plain-Max 0.001 0.001 0.001 0.008 0.071

We observe that: (1) As there are no network limitations in the
LAN setting, the test results represent the computational cost. The
result gap between the WAN and LAN settings represents the com-
munication cost. Comparing these two costs, we found that 85.5%
to 97.9% of the time for Oblivious-AGG is spent on network com-
munication. (2) The WAN setting is more realistic for showcasing
the true effect of the Oblivious operator in real-world applications.
The results in WAN setting the runtime of Obliv-MAX is 2.2 to 4.5
times that of Obliv-SUM, due to the dependence on the compari-
son protocol. (3) Although the oblivious operators are more than
100 times slower than plaintext ones, the slowest Obliv-MAX only
takes 302 seconds, which is practical enough. (4) Since the group
identifier is revealed, the aggregation processes for Plain-Sum and
Plain-Max are both local computations, therefore their runtime is
almost the same.
GROUP-BY.We test the performance of the three implementations
of GROUP-BY, summarized in Table 4. In this test, we assume
that each of the two parties holds one key. Plaintext GROUP-BY
(P-GB) refers to the case where the GROUP-BY key is public and
can be sorted in plaintext. Oblivious GROUP-BY (O-GB) calls the
SortByKey once for each key. Vertical GROUP-BY (V-GB) includes
all the optimization points mentioned in section 3.2.

Table 4: Performance of GROUP-BY (Time: s)

Input Size 103 104 105 106 107

LAN
P-GB 0.003 0.030 0.263 2.640 23.252
V-GB 0.071 0.684 4.401 53.636 518.810
O-GB 0.262 1.442 15.932 182.207 1639.573

WAN
P-GB 0.021 0.053 0.291 2.716 23.846
V-GB 1.812 6.360 48.563 422.304 4049.305
O-GB 8.720 27.982 248.827 1804.261 15979.334

From the table, we can see that: (1) Similar to the analysis of
oblivious AGG, we learn that the runtime of O-GB and V-GB is dom-
inated by communication. In the WAN setting, communication

accounts for approximately 87.2% to 97.0% of the execution time. (2)
Through optimization in the vertical scenario, the execution time in
O-GB is about 3 to 4 times that in V-GB. (3) If the number of keys in
GROUP-BY continues to increase, the runtime of oblivious GROUP-
BY will continue to increase linearly, while the runtime of vertical
GROUP-BY will remain almost unchanged, further expanding its
advantage. (4) When the input size is 10 million , O-GB requires 4.4
hours of execution time, while V-GB only requires 1.1 hours. Even
with significant optimization, sorting operations on large datasets
remain time-consuming, making GROUP-BY the main bottleneck.

5.4 End-to-end test
In this section, we first use a case study to demonstrate how the
various optimizations improve execution performance step by step.
Then, we test the scalability of SCQL in horizontal and vertical
scenarios respectively.
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Figure 15: Case study of optimizations

Optimization Test. We use the query in Figure 2 to perform end-
to-end performance tests in the WAN setting in order to show
the effect of each optimization vividly. We first train a baseline
model, and then gradually add a new optimization on top of the
previous one. We show the running time of each version and the
improvement factor relative to the previous version in Figure 15,
with the running time plotted in the log scale. The description of
the six versions is as follows:

• V1: baseline, implemented with oblivious JOIN, oblivious
GROUP-BY, and Oblivious AGG. In this version, we rewrite
the Secrecy [34] using the Additive Secret Sharing and
adopted the optimization of Scape [24] for AGG.

• V2: integrating logical plan optimizations, such as predicate
push-down and execution graph node merging.

• V3: allowing to reveal the intersection size.
• V4: allowing to reveal the intersection and replacing the

oblivious JOIN with PSI-JOIN.
• V5: replacing oblivious GROUP-BY with vertical GROUP-

BY.
• V6: allowing to reveal the group sizes and replacing the

oblivious AGG with plaintext AGG
Since oblivious JOIN cannot scale, the input size of each party is
2000 in this experiment and the intersection size is 1000. Our re-
sult analysis is as follows: (1) V1->V2, predicate push-down has a
significant effect, reducing the data entering the secure computa-
tion by half, resulting in a doubling of performance. (2) V2->V3:
according to the description in section 3.2, shuffling the relation
once is required before revealing the intersection predicate, and
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this secure operation increases the cost of JOIN. However, after the
predicate is revealed, the input size of the subsequent GROUP-BY
and AGG operations is greatly reduced, resulting in a significant
improvement of 44 times. (3) V3->V4: Since both GROUP-BY and
AGG in V3 are performed with a small input size, the JOIN operator
becomes the bottleneck. In V4, the oblivious JOIN is replaced with
a lightweight PSI-JOIN, resulting in a further 6-fold improvement
in performance. (4) V4->V5: the 2-fold improvement in this step is
mainly due to the decrease in the number of SortByKey calls. And
the input size is small, allowing a smaller valid bit to be used for
GROUP-BY keys. (5) V5->V6: the final 2-fold improvement comes
from using plaintext AGG. In summary, the end-to-end time con-
sumption of this typical vertical scenario query is reduced by 1991
times from the rewritten Secrecy (Additive Secret Sharing) to the
best version.
Scalability Test.We select representative queries from the TPC-H
benchmark and transform them into test cases for collaborative
data analysis. There are five queries in this test.

• Q1:from TPC-H Q6, the original query is a single-table
query to compute global aggregate functions. We make
both participants hold a local table with this schema for
collaborative data analysis. Since their tables have the same
schema, this is a typical horizontal scenario. We re-write
the original query to union the tables before executing the
global aggregation.

• Q2: from TPC-H Q1, the original query is a single-table
query for computing group aggregate functions. As before,
we transformed it into a horizontal scenario for testing.

• Q3: from TPC-H Q14, the original query is a two-table
join query for computing global aggregate functions. We
make each participant hold one of the original tables, thus
transforming it into a test case for the vertical scenario.

• Q4: from TPC-H Q12, the original query is a two-table
join query for computing group aggregate functions. We
followed the same process as before to transform it into a
vertical scenario.

• Q5: since the GROUP-BY clause in the previous query has
only one key, we modify TPC-H Q1 to simulate a vertical
scenario where both participants hold a key. We vertically
partitioned the original table and distributed it to the two
participants, with one side holding a GROUP-BY key.

We test in the WAN setting and report the runtime in Table 5.
This table tells us: (1) Q1 and Q2, the two test cases in horizontal
scenarios, have short execution times because of the optimization
technique of pushing down the aggregation functions to the local
side. This technique significantly reduces the amount of data that
actually needs to be computed secretly, therefore they can easily
handle massive data up to tens of millions. (2) Q3 and Q4 have much
shorter execution times than Q5 because they do not require the
time-consuming SortByKey operation. Q4 is slightly more complex
than Q3 because it includes a SecurePermutation, but overall their
execution times are similar because Q3 contains a time-consuming
EQUAL operator in its expression. (3) Q5 represents the most com-
plex scenario when using vertical optimization because it requires
the SortByKey. And the running time for Q5 is approximately 10
times longer than that of Q3 and Q4. (4) For massive data in the tens

Table 5: Scalability test on five typical queries (Time: s)

Query Q1 Q2 Q3 Q4 Q5

LAN

103 0.02 0.19 3.53 0.09 0.17
104 0.02 0.21 3.80 0.39 0.74
105 0.07 0.38 6.88 3.38 6.60
106 0.63 1.94 37.75 32.79 72.61
107 6.40 18.20 347.31 330.16 768.25

WAN

103 0.30 8.85 4.32 1.08 3.44
104 0.30 8.87 4.69 1.44 7.38
105 0.36 9.05 8.28 4.79 45.68
106 0.89 10.60 42.34 36.17 364.04
107 6.70 26.84 384.17 356.85 3926.51

of millions, simple queries can be completed in under 10 minutes,
and even the most complex query, Q5, can be completed in about
one hour. This shows that SCQL has excellent scalability.

6 RELATEDWORK
Outsourced Data Analysis. The data owners encrypt the data
and send it to external nodes to perform outsourcing computations.
There are three lines of work in this area: work based on TEE [14,
17, 48, 54, 57], work based on MPC [24, 26, 34], and work based on
encryption techniques [42, 44, 45, 47, 49, 52]. In practice, sensitive
data is often not allowed to leave its source, so we do not focus on
the outsourcing mode.
DP-Based Data Analysis. Differential privacy (DP) is widely used
to protect the security of the results [25, 39], and recent works [4, 5]
have combined DP with MPC to improve performance through
controlled security relaxation. However, data analysis in real-world
applications often requires sufficient accuracy, so our system does
not integrate DP methods.

7 CONCLUSION
This work proposed SCQL, a framework that enables mutually
distrusting parties to make queries of their collective data. SCQL
provides data analysts with a user-friendly API to support general-
purpose queries and automatically translates these queries into
MPC to ensure security. We design more efficient underlying MPC
protocols as well as relational operations in SQL to improve effi-
ciency and scalability. Comprehensive experiments demonstrate
the effectiveness of our optimizations. In the future, we are inter-
ested in integrating malicious protocols with heightened security
levels and enhancing the performance of hybrid-scenario queries.
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