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ABSTRACT
Tuning a database system to achieve optimal performance on a
given workload is a long-standing problem in the database com-
munity. A number of recent works have leveraged ML-based ap-
proaches to guide the sampling of large parameter spaces (hundreds
of tuning knobs) in search for high performance configurations.
Looking at Microsoft production services operating millions of
databases, sample efficiency emerged as a crucial requirement to use
tuners on diverse workloads.

This motivates our investigation in LlamaTune, a tuner design
that leverages domain knowledge to improve the sample efficiency
of existing optimizers. LlamaTune employs an automated dimen-
sionality reduction technique based on randomized projections,
a biased-sampling approach to handle special values for certain
knobs, and knob values bucketization, to reduce the size of the
search space. LlamaTune compares favorably with the state-of-the-
art optimizers across a diverse set of workloads. It identifies the
best performing configurations with up to 11× fewer workload
runs, and reaching up to 21% higher throughput. We also show
that benefits from LlamaTune generalize across both BO-based and
RL-based optimizers, as well as different DBMS versions.

While the journey to perform database tuning at cloud-scale
remains long, LlamaTune goes a long way in making automatic
DBMS tuning practical at scale.
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1 INTRODUCTION
Tuning the configuration of a database management system (DBMS)
is necessary to achieve high performance. While DBMS tuning has
been traditionally performed manually, e.g., by DB administrators,
the shift to cloud computing, the increasing diversity of workloads
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and the large number of configuration knobs [11, 31] makes it chal-
lenging to manually tune databases for high performance. As a re-
sult, a number of automated methods [3, 11, 14, 18, 32, 34, 37, 39, 40]
for tuning have been proposed, with recent methods using machine
learning (ML). ML-based methods have been shown to generalize
to a number of workloads [38] and can find configurations that
achieve up to 3-6× higher throughput (or lower latency) [18, 32, 37]
when compared to using manually-tuned configurations.

There are two main classes of ML-based approaches: those that
perform prior training on selected benchmarks and transfer (or
fine-tune) this knowledge given new customer workloads (e.g.,
OtterTune [32] and CDBTune [37]), and those [3, 11, 18] that di-
rectly tune a new customer workload by iteratively selecting a
configuration using an optimizer, and running workloads with
them (Figure 1). Algorithms used in these configuration optimizers
try to balance between exploring unseen regions of the configu-
ration search space, and exploiting the knowledge gathered until
that point. Search-based methods [40], RL-based methods [18] or
Bayesian Optimization (BO) methods [3, 11] are commonly used,
though a recent study [38] found that SMAC [15], a BO-based
method, performed best for DBMS tuning.

In both settings, the cost and time involved in exploring several
configurations before reaching a chosen one is the core challenge
for practical relevance. Based on our visibility into production
services operating millions of databases in Azure, we find that
sample efficiency (i.e., how few workload runs does it take to reach
a given level of performance) is crucial to scale autotuning across
diverse workloads. Currently, state-of-the-art methods require 100
or more iterations [38] to converge to a good configuration, with
each iteration taking several minutes1. To this purpose we focus
our investigation in developing techniques that can improve sample
efficiency, and that are broadly complementary to existing work.

We observe that existing optimizers do not leverage expert
knowledge about the system they are tuning and using domain
knowledge has the potential to significantly improve sample effi-
ciency. First, based on our prior work [16] (and others [33, 38]) we
find that tuning a few important knobs is sufficient for achieving
high DBMS performance, and tuning a smaller configuration space
can lead to significant improvements in the number of samples
required [38]. Yet, which knobs are important varies by workload,
and existing methods for identifying important knobs are expensive
and can be unreliable (Section 2.3). Second, we observe that not
all DBMS knob values are the same. For example, in PostgreSQL,
the flag backend_flush_after denotes the number of pages after
1For certain workloads we might need to run each test much longer to saturate the
system at a given VM size for instance [8].
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Figure 1: Overview of DBMS Knob Tuning Procedure

which previously performed writes are flushed to disk. However,
the flag has a special meaning when set to 0, disabling forced write-
back and letting the OS manage it. Such special values can affect the
system in unpredictable ways and existing optimizers are unaware
of such behaviors. Additionally, we note that some parameters
may have very large valid ranges. For instance, shared_buffers
is given as the number of 8K pages to account for potentially 100s
of GBs. Yet, the effect on performance between two nearby values,
(e.g., 100 vs. 101), may be negligible. These insights lead us to ask:
How can we build a domain knowledge-aware configuration tuner
that can minimize the number of samples required without sacrificing
the final DBMS performance achieved?

Contributions We address these challenges in LlamaTune with
the following contributions. First, we show that surprisingly it is
possible to achieve the benefits of only tuning important knobs
but without using any prior knowledge. Specifically, we leverage a
randomized low-dimensional projection approach [25] where we
perform a projection of the configuration space from all dimen-
sions (𝐷) to a lower-dimensional subspace (𝑑) and then use the
optimizer to tune this smaller subspace. We also discuss how such
a method can be integrated with a DBMS and handle categorical
and numerical knobs. Second, to handle knobs that have a differ-
ent behavior for special values, we design a new biased-sampling
based approach. This makes the optimizer aware of the special
case behavior with high probability during its random initialization
phase and minimizes the number of samples required to find good
configurations. To address large value ranges, we experiment with
bucketizing nearby values into groups (e.g., 100MB increments) to
further reduce the search space that needs to be explored. We find
that this can improve convergence without sacrificing much from
the performance of the optimal configuration for some workloads.

We combine the above techniques to design LlamaTune2, an end-
to-end tuning framework that can tune a DBMS for new workloads
without using any prior knowledge. We integrate LlamaTune with
three state-of-the-art optimizers: two BO-based ones (SMAC [15],
GP-BO [29]), and an RL-based one (DDPG [37]). We evaluate Lla-
maTune using six popular OLTP workloads and consider scenarios
where we tune for optimizing throughput or tail latency (95th per-
centile). Our results show that LlamaTune can converge to the
optimal configuration up to 11× faster than SMAC while also reach-
ing up to 20.85% higher throughput. We also demonstrate that
similar gains can be achieved when LlamaTune is used with GP-BO,
or DDPG. Finally, we also detail the process and our experiences
of porting LlamaTune to a newer DBMS version, and show that
LlamaTune can deliver meaningful gains with little effort.

2Llamas have been known to learn simple tasks with few repetitions [36].

2 PRELIMINARIES
In this section, we formalize the DBMS knob configuration problem
and discuss existing methods for tuning. Then, we identify some
limitations of existing tuners and opportunities for improvements.

2.1 Background and Related Work
2.1.1 Automatic Database Tuning. We can formulate database knob
configuration tuning as an optimization problem. Consider as input,
a set of set of𝑛 knobs, 𝜃1, . . . , 𝜃𝑛 , alongside their respective domains
Θ1, . . . ,Θ𝑛 . These knobs domains can be either continuous, discrete,
or categorical. Given this set of knobs, the resulting configuration
space can be defined asΘ = Θ1× . . .×Θ𝑛 . We assume a performance
metric is encoded by the objective function 𝑓 : Θ → R, that assigns
a single performance value to each configuration. Common perfor-
mance metrics used in database tuning include system throughput,
or tail latency (e.g., 95th percentile latency). Retrieving the value 𝑓
at some configuration point 𝜃 requires measuring this performance
metric when the system is executed with 𝜃 . Given a workload, the
goal of database tuning is to find a configuration 𝜃∗ that maximizes
(or minimizes) the target metric: 𝜃∗ = argmax𝜃 ∈Θ 𝑓 (𝜃 )

Most database knob tuning frameworks are built around a com-
mon architecture and the main components include (i) a knowledge
base (KB), (ii) a configuration optimizer, and (iii) an experiment
controller. The knowledge base holds a record of all previously eval-
uated samples,D = {𝜃 𝑗 , 𝑓 (𝜃 𝑗 )}, and gets updated every time a new
configuration is evaluated. The configuration optimizer leverages
the knowledge base to recommend configuration points 𝜃 𝑗 that
are promising (i.e., may lead to higher performance). Finally, given
a configuration, the controller orchestrates the execution of the
workload and propagating the results (i.e., 𝜃 𝑗 , 𝑓 (𝜃 𝑗 )) back to KB.

Assuming a fixed workload, the tuning process is iterative as
shown in Figure 1. At first, 1 the optimizer uses the current knowl-
edge base, in order to 2 suggest a configuration that it expects
to improve performance. Then, this configuration 3 is applied
to the DBMS instance running on a separate testing environment
(green-shaded area). Subsequently, 4 the controller invokes the
workload that feeds queries to the DBMS; the workload usually
runs for several (e.g., 5-10) minutes. Once the workload execution
completes, 5 the controller collects the performance data (e.g.,
throughput) and any related metrics (e.g., internal DBMS metrics),
and 6 forwards them to the knowledge base, which is then updated
with the observation (i.e., configuration, measured performance
pair). The above process is repeated until a certain budget 𝑇 (e.g.,
number of iterations, time, or cost limit) is exhausted.

Based on how much prior knowledge is available at the start of
the tuning process, one can categorize various auto-tuners proposed
in prior literature. Some tuning frameworks [11, 18, 32, 37] assume
that before the tuning process begins, the KB has already been
populated with prior observations. In particular, these frameworks
rely upon an initial profiling (or training) phase that includes eval-
uating thousands configuration points using benchmark workloads
(e.g., up to 30K for OtterTune [32]). This way, they can leverage
prior knowledge gained from the training phase in order to pro-
pose good-performing configurations for new workloads. Other
tuning frameworks [3, 34, 40] begin the tuning process without any
prior knowledge: i.e., the KB is initially empty. Starting from zero

2954



knowledge, these tuners can only use the aforementioned tuning
process to gather knowledge about the workload or the DBMS. To
combat this challenge, these tuners typically use algorithms that try
to balance between exploring unseen regions of the configuration
search space, and exploiting the knowledge gathered so far. As the
tuning process progresses and the KB accumulates more samples,
these frameworks are eventually able to find configurations that
achieve good performance.

In the above architecture, we can see that the configuration
optimizer used plays a key role in determining the time (and hence
cost) it takes to find a good performing configuration. Thus, we
next survey configuration optimizers used in prior work.

2.2 Configuration Optimizers
The configuration optimizer methods used by prior works can be
classified into three categories: (i) Search-based, (ii) Reinforcement
Learning (RL) based, and (iii) Bayesian Optimization (BO) based.

A popular example of a search-based method is BestConfig [40],
which employs heuristics to divide the search space into multi-
ple segments and navigates it through branch and bound policies.
Even though it can quickly choose which points to evaluate next,
it does not makes use of a KB, which has been shown to hurt
its performance [3]. Reinforcement learning methods proposed in
[14, 18, 37] leverage the Deep Deterministic Policy Gradient (DDPG)
algorithm [20], which trains an RL actor using a trial-and-error ap-
proach. The actor utilizes a deep neural network that is trained
based on DBMS internal metrics, and can propose configurations
that balance exploration and exploitation. In general, for RL meth-
ods to work well, thousands of samples have to be evaluated [18]
and prior work [38] has found that RL based methods require more
iterations due to the complexity of the neural networks used.

The majority of prior database auto-tuners use BO-based meth-
ods [3, 7, 11, 32, 39]. Bayesian optimization is a gradient-free, se-
quential, model-based approach that aims to find the optimum of
an expensive-to-evaluate unknown function 𝑓 , by evaluating as few
samples as possible [30]. It also handles cases where the evaluated
samples 𝑓 (𝜃 𝑗 ) are noisy. BO consists of two main components: the
surrogate model, and the acquisition function. A surrogate model is
an ML model, which given a set of observations 𝑓 (𝜃𝑘 ), constructs
an approximation of 𝑓 ; this approximation is refined each time a
new point is evaluated. The acquisition function is used to choose
which point to evaluate next. To do so, it uses the surrogate model
to compute the expected utility of many candidate points, and then
selects the one with the highest utility. Utility values are calculated
such that BO can effectively trade-off between the exploration of
unseen regions, and the exploitation of good-performing ones.

While there are many BO variants, database knob tuners [11,
32, 39] have typically used “vanilla” Gaussian process (GP) as
their surrogate model. However, a recent comprehensive evalu-
ation [38] of different BO variants shows that GP is not the optimal
choice for database knob configuration tuning. After experimenting
with many modern black-box optimizers (including the ones used
for database tuning [3, 11, 32, 39]) this study [38] concluded that
the best performing optimizer was SMAC (i.e., Sequential Model-
based Algorithm Configuration) [15]. SMAC uses a random forest

Table 1: SHAP’s top-8 knobs vs hand-picked ones for YCSB-A.
Underlined knobs indicate the differences between the two.

SHAP (top-8) Hand-picked (top-8)

autovacuum_vacuum_threshold autovacuum_analyze_scale_factor
autovacuum_vacuum_scale_factor autovacuum_vacuum_scale_factor
commit_delay commit_delay
enable_seqscan full_page_writes
full_page_writes geqo_selection_bias
geqo_selection_bias max_wal_size
shared_buffers shared_buffers
wal_writer_flush_after wal_writer_flush_after

(RF) surrogate model, and is shown to perform very well in high-
dimensional and heterogeneous search spaces, consisting of con-
tinuous, discrete, and categorical knobs. Compared to vanilla GPs,
RFs can inherently support categorical features, which helps find
better configurations while also converging faster [15]. Another
method that improves over vanilla GP uses two separate kernels,
Matérn and Hamming, for continuous and categorical features, re-
spectively. This GP variant, which we refer to as GP-BO [29], also
showed promising performance when dealing with a mixed search
space, and a moderate number (i.e., up to 20) of dimensions [38].

In this work we focus on designing a domain knowledge-aware
configuration optimizer and show that our techniques can be inte-
grated with SMAC, GP-BO, and DDPG..

2.3 Motivation
2.3.1 Only Tuning Important Knobs. While database tuners that
start with zero knowledge are able to suggest good-performing
configurations eventually, they typically require many iterations
until they can do so. For instance, using the current state-of-the-art
BO-variant, SMAC [15], still requires around 100 samples to reach
optimal performance for most workloads [38]. With each sample
evaluation (or iteration) taking 5 − 10 minutes, the overall tuning
process takes 8-16 hours. The main reason optimizers need a large
number of iterations is that the configuration search space exposed
to them is very high-dimensional. The size of these search spaces
are typically proportional to the number of configuration knobs
that the user wishes to tune and this can include hundreds of knobs
for popular databases like Postgres or MySQL [32].

However, recent studies have shown that tuning a handful of
knobs can be sufficient to achieve near-optimal performance and sig-
nificantly reducing the number of knobs can accelerate the tuning
process [16, 33, 38]. Intuitively, the configuration search space gen-
erated by few (important) knobs is much smaller than the one when
considering all knobs, making BO-based methods much more effec-
tive at finding configurations that yield good performance [30, 33].
However, it still remains challenging to identify and select the
correct set of important knobs for different workloads or systems.

2.3.2 Identifying Important Knobs. All existing methods for au-
tomatically identifying important knobs use a ranking-based pro-
cess [16, 33, 38]. Ranking-basedmethods typically use a space-filling
sampling, like Latin Hypercube Sampling (LHS) [23], to generate

3Note that y-axis limits are chosen to improve readability of graphs. The only point
below Y-axis minimum is the default configuration which is iteration 0.
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Figure 2: Best performance on YCSB-A, when tuning SHAP’s
top-8 knobs; hand-picked top-8 knobs, and all knobs are base-
lines (left plot). Best performance on TPC-C, when tuning
YCSB-A’s top-8 knobs (SHAP & hand-picked) (right plot).3

and evaluate thousands of configurations. With this set of evaluated
configurations alongside the measured performance, an ML model
is trained to quantify how each knob affects the DBMS perfor-
mance, an i.e., importance score. Recent work [38] has shown that
SHAP [22] values provide the most meaningful importance score in
the context of DBMS tuning. SHAP uses a game-theoretic approach
to break down the impact of each individual feature when analyzing
the performance deviation from the default configuration.

Although these statistical methods do not require any human
input for computing the important knob ranking, they require eval-
uating thousands of data samples [16, 33]. Thus, using important
knob ranking to prune the configuration space is not useful in a
setting where we start with zero knowledge. Moreover, as we dis-
cuss next, methods that identify important knobs are (1) not always
reliable, which can lead to finding worse configurations, and (2) the
important knobs found for one workload may not work for others.

Limitations of ranking important knobs. Using the read-write
balanced YCSB-A [6] as our workload, we generate (using LHS) and
evaluate 2, 500 configurations for PostgreSQL v9.6, where we vary
the values of 90 knobs. Following prior work [38], we employ SHAP
(using RF) to rank all knobs in descending order of importance.
From this ranking, we select the top eight ones, which, according
to SHAP, should be able to provide most of the tuning performance
gains. We also consider two baselines: the full set of 90 knobs, and
a hand-picked set of eight important knobs, which differs slightly
from the SHAP-based one. Table 1 shows both important knob sets.

Given these three sets, we launch a tuning session using SMAC
for 100 iterations, optimizing for throughput; we repeat the experi-
ment five times with different random seeds. Figure 2a shows the
best throughput reached at each iteration; shaded regions corre-
spond to [5%, 95%] confidence intervals. We make two observations.
First, tuning SHAP’s top-8 knobs achieves worse final through-
put compared to both the hand-picked top-8 knobs, and all knobs.
Thus, while it is possible to reduce the number of knobs tuned and
still achieve optimal performance (e.g., hand-picked top-8 knobs),
SHAP’s ranking fails to extract the “correct” set of important knobs.
Second, tuning the hand-picked top-8 set of knobs identifies a
better-performing configuration, while also converging much faster.
Therefore, exploring the appropriate low-dimensional configura-
tion space, can greatly benefit the performance of BO methods.

We next study the issue of transferring important knobs across
workloads. Using SHAP’s important knobs for YCSB-A, we launch a
similar experiment for a different workload, TPC-C (Figure 2b). We
observe that when tuning all knobs, SMAC reaches a significantly
higher throughout compared to only tuning the top-8 knobs from
YCSB-A. Thus, reusing a set of important knobs derived from one
workload to tune another, does not always lead to gains.

In summary, we see that tuning a low-dimensional space, gen-
erated by a set of important knobs can lead to finding better con-
figurations with fewer iterations compared to the state-of-the-art
SMAC algorithm. However, existing statistical-based methods for
selecting important knobs cannot be utilized as they are expensive,
not always reliable and can lead to worse tuning outcomes.

3 LOW-DIMENSIONAL TUNING
In this section, we present a new approach which bypasses the
need to identify the exact set of important knobs, yet realizes the
benefits of low-dimensional tuning.
Setup.We consider a scenario where a user/operator is tuning a
DBMS for a specific workload given no prior knowledge. Given 𝐷
tuning knobs, a𝐷-dimensional space𝑋𝐷 is constructed to represent
the configuration search space. Each point 𝑝 ∈ 𝑋𝐷 corresponds to
a specific DBMS configuration, where 𝑝’s coordinates determine
the value of each of the 𝐷 tuning knobs. This space is then given
as input to a BO optimizer (e.g., SMAC), whose goal is to model the
DBMS performance at each point 𝑝 ∈ 𝑋𝐷 .

Due to the high dimensionality 𝐷 of the input search space 𝑋𝐷 ,
modeling the DBMS performance across the whole space accurately
requires the evaluation of many points (configurations). Yet, as
we’ve seen, many of those parameters those dimensions represent
are less important, and hence amenable to compression in a model.
With this in mind, if instead of the input space 𝑋𝐷 , the BO method
received as an input, a smaller 𝑑-dimensional space 𝑋𝑑 , where
𝑑 << 𝐷 , then fewer points would be needed to effectively learn
the (smaller) space 𝑋𝑑 . Thus, choosing a smaller space 𝑋𝑑 instead
of 𝑋𝐷 has the potential to improve the optimizer performance: i.e.,
find better configurations or similar-performing ones, faster.

However, not every reduced space 𝑋𝑑 may lead to benefits. For
example, tuning an 1-dimensional space generated by a single non-
important knob would not lead to any performance improvements.
Therefore, it is vital for this smaller space 𝑋𝑑 to include DBMS
configurations that can achieve high performance; ideally the best-
performing ones. Given this, we set the following goal:

For a user-provided 𝐷-dimensional input configuration space 𝑋𝐷 ,
devise an approximation using some 𝑑-dimensional space 𝑋𝑑 , where
𝑑 << 𝐷 , which is likely to contain at least one point 𝑝 ′ ∈ 𝑋𝑑 that can
yield performance close to the optimal 𝑝∗ ∈ 𝑋𝐷 .

3.1 Synthetic Search Spaces
The low dimensional spaces we discussed in Section 2.3 assumed
that each dimension of the space corresponds to a specific configu-
ration knob. While this makes it easier for us to envision this space,
it makes no difference for the optimizer, which can be given any
search space as input. To this end, we now decouple this one-to-one
relationship of configuration knobs to input search space dimen-
sions. In particular, we can use “artificial” dimensions (or synthetic
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knobs) to generate our low dimensional space, 𝑋𝑑 . These synthetic
knobs do not have any physical meaning themselves, yet their val-
ues determine the values of one (or more) DBMS configuration
knobs. In other words, one can define amapping from the synthetic
knob values (i.e., approximated space 𝑋𝑑 ), to the physical DBMS
configuration knobs (i.e., original input space 𝑋𝐷 ). This enables us
to realize the benefits of optimizing a low-dimensional space, while
avoiding the need to identify important knobs.

The idea of using a synthetic smaller space 𝑋𝑑 to implicitly opti-
mize a high-dimensional input search space 𝑋𝐷 , has been recently
studied in the BO community [13, 35]. Multiple theoretically-sound
approaches have been proposed to define this space, construct
the mapping between the two spaces 𝑋𝑑 , 𝑋𝐷 , and/or extend the
standard BO algorithm to better navigate through this smaller
space [13, 17, 25, 35]. For these methods to be effective, the tar-
get objective function should be affected by a small subset of the
original high-dimensional space. If 𝑑𝑒 is the size of this subset, for
a low-dimensional space 𝑋𝑑 with 𝑑 > 𝑑𝑒 , these methods provide
theoretical guarantees that with high probability, each 𝑝 ∈ 𝑋𝐷 can
be obtained by projecting some point 𝑝 ′ ∈ 𝑋𝑑 . In other words, if the
low-dimensional space is larger than the effective dimensionality
of the objective function, then it is possible to achieve near-optimal
performance just by tuning this smaller space [17, 35]. As we dis-
cussed in Section 2.3, a small set of important knobs are responsible
for most of the DBMS performance improvements, which satisfies
the necessary condition. Thus, we believe that low-dimensional
BO-methods are a promising way to improve the optimizer perfor-
mance for database tuning. We next discuss two popular methods.

3.2 Random Low-Dimensional Projections
REMBO [35] was one of the first attempts to solve the problem
of high-dimensional search spaces in BO using randomized low-
dimensional linear projections. Given as an input the target di-
mension 𝑑 , REMBO first defines a 𝑑-dimensional search space,
𝑋𝑑 = [−

√
𝑑,
√
𝑑]𝑑 . This search space is given as input to the BO

method, which will suggest points 𝑝 ∈ 𝑋𝑑 . Then, REMBO generates
a random projection matrix A ∈ R𝐷 × 𝑑 , whose entries are i.i.d.
using 𝑁 (0, 1). Matrix A is then used to project a point suggested
by the BO, 𝑝 , from the low-dimensional 𝑋𝑑 , to a corresponding
point p̂ of the original high-dimensional space 𝑋𝐷 . To perform this
projection a single matrix-vector product is computed as p̂ = Ap.
Essentially, each synthetic knob 𝑗 of the 𝑋𝑑 space controls every
knob 𝑖 of the 𝑋𝐷 space to a certain degree, quantified by the weight
𝐴𝑖, 𝑗 of the projection matrix (i.e., all-to-all mapping).

If the original space 𝑋𝐷 is unbounded (i.e., has no constraints),
then the projected point p̂ will be a valid point in 𝑋𝐷 . Yet, in many
problems (including DBMS tuning), there exist box constraints as-
sociated with 𝑋𝐷 (e.g., ranges of DBMS configuration knob values).
In this case, it is possible that for some point 𝑝 ∈ 𝑋𝑑 , the projected
point Ap ∉ 𝑋𝐷 . REMBO handles this by “clipping” the projected
point 𝑝 to the nearest point that belongs in𝑋𝐷 . If say𝑋𝐷 = [−1, 1]𝐷 ,
REMBO proposes to clip each point coordinate so that it lies within
the [−1, 1] range [35]. However, subsequent works have found that
this heuristic forces the optimization to be done on the facets of
𝑋𝐷 , thus neglecting almost all interior points [17].

Algorithm 1 BO with low-dimensional random projections. Blue
underlined text highlights differences to original BO algorithm.
Input: 𝑑, 𝐷, 𝑛𝑖𝑛𝑖𝑡 , 𝑁𝑖𝑡𝑒𝑟𝑠

Output: Approximate optimizer 𝑝∗
1: Generate random projection matrix A ∈ R𝐷 × 𝑑

2: Generate 𝑛𝑖𝑛𝑖𝑡 points p𝑖 ∈ 𝑋𝑑 using a space-filling design (LHS)
3: Evaluate obj. function 𝑓 (Ap𝑖 ) for the generated points
4: Fit initial data D0 = {(p𝑖 , 𝑓 (Ap𝑖 )}𝑛𝑖𝑛𝑖𝑡𝑖=1 to BO surrogate model
5: for 𝑗 = 1, ..., 𝑁𝑖𝑡𝑒𝑟𝑠 do
6: Find point 𝑝 𝑗 ∈ 𝑋𝑑 that maximizes the acquisition function
7: Evaluate obj. function on the projected point 𝑓 (Ap𝑗 )
8: Update surrogate model with D𝑗 = D𝑗−1 ∪ {(p𝑗 , 𝑓 (Ap𝑗 )}
9: end for
10: return Ap∗ for the best point p∗ ∈ D
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Figure 3: Best throughput on YCSB-A, when using SMAC to
optimize a low-dimensional space from REMBO or HeSBO
projections. Baseline (green line) tunes the original space.
Shaded areas correspond to 95% confidence interval ranges.3

HeSBO. To alleviate this drawback, researchers proposed HeSBO
(i.e., Hashing-enhanced Subspace BO) [25], a random linear projec-
tion variant that avoids clipping. HeSBO draws inspiration from
hashing and sketching to construct its mapping. Assuming an orig-
inal 𝐷-dimensional search space 𝑋𝐷 and given as an input the
target dimension 𝑑 , HeSBO first defines a 𝑑-dimensional search
space 𝑋𝑑 = [−1, 1]𝑑 . Then, it generates a random projection matrix
A ∈ R𝐷 × 𝑑 , such that each row contains exactly one non-zero
element in a random column that is set to ±1; the index of the
column and the sign of the value are sampled uniformly at random.
It does so, using two uniform hashing functions: ℎ that chooses the
non-zero entry for each dimension of𝑋𝐷 , and 𝜎 that determines the
sign of this entry. Intuitively, A defines an instance of count-sketch
projection [4], which is able to adequately preserve the characteris-
tics (i.e., pairwise point distances) of the original high-dimensional
space for up to 𝑑 (important) dimensions [25].

HeSBO, as expressed by A, provides an one-to-many mapping.
Every original knob 𝑖 in 𝑋𝐷 is controlled by exactly one synthetic
knob 𝑗 in 𝑋𝑑 , while each synthetic knob can control multiple origi-
nal ones. Thus, it is impossible for any projection to fall outside of
𝑋𝐷 . This enables HeSBO to perform better than REMBO, especially
when high-performing points are in the interior of 𝑋𝐷 [17, 25].
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3.3 BO with Random Projections
Integrating either REMBO or HeSBO in the original BO algorithm
requires minimal changes. Algorithm 1 describes the modified ver-
sion and highlights the main differences compared to the “vanilla”
high-dimensional BO algorithm. The user provides 𝑑 , the number
of dimensions of the low dimensional space. Ideally, this number
should be an estimate of the number of important knobs of the
DBMS (we discuss how to choose this later). The user also provides
𝑛𝑖𝑛𝑖𝑡 , the number of initial random samples to be generated, as
well as 𝑁𝑖𝑡𝑒𝑟𝑠 , the number of iterations to perform (time budget).
Reasonable defaults can also be provided based on prior studies.

At first, the projection matrix A is generated randomly, as de-
scribed in the previous paragraphs. Note that this matrix A is com-
puted only once, and remains constant for the entire duration of the
optimization process. Then, given 𝑛𝑖𝑛𝑖𝑡 , a space-filling sampling
method (e.g., LHS) is employed that generates an initial set of points
𝑝 ∈ 𝑋𝑑 . Since these points belong to the approximated space 𝑋𝑑 ,
they are first projected to 𝑋𝐷 and then clipped (if using REMBO).
For each projected (and possibly clipped) point, the correspond-
ing objective function is computed (i.e., workload is run). Once all
initial points have been evaluated, the points and the respective
objective function values are used to initialize the surrogate model.

Now, the BO surrogate model can guide the optimization pro-
cess. Initially, the model suggests a candidate point 𝑝 ∈ 𝑋𝑑 that
maximizes the value of the acquisition function. Recall from earlier
that the acquisition function tries to propose points that either can
provide knowledge about unknown regions (i.e., exploration), or im-
prove the knowledge of already-found good regions, by exploring
nearby regions (i.e., exploitation). The suggested point is then pro-
jected (and possibly clipped) to 𝑋𝐷 , as before. Finally, the objective
function is evaluated at that point, and the surrogate model param-
eters are updated using the new observation. The above process is
repeated, until we exhaust the given number of iterations.

Converting Points to DBMS Knob Values. So far, we assumed
that both REMBO and HeSBO project the point suggested by the
BO method to the uniform high-dimensional space 𝑋𝐷 = [−1, 1]𝐷 .
However, in reality a DBMS configuration knob space is much more
heterogeneous compared to 𝑋𝐷 . Usually, a DBMS configuration
space consists of many knobs of different types, like numerical or
categorical. The former receive values from a [𝑚𝑖𝑛,𝑚𝑎𝑥] range of
valid values, while the latter from a predefined list of choices (e.g.,
on, off). Because the [𝑚𝑖𝑛,𝑚𝑎𝑥] range of values (or the number
of choices) can significantly vary across different knobs [32], we
need to make sure that [−1, 1] values are properly converted to
meaningful values for the DBMS knobs.

To achieve this, we employ min-max uniform scaling. In general,
to translate a value 𝑥 ∈ [𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥 ] to a value 𝑦 ∈ [𝑦𝑚𝑖𝑛, 𝑦𝑚𝑎𝑥 ],
the following formula is used: 𝑦 = 𝑦𝑚𝑖𝑛 + 𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
(𝑦𝑚𝑎𝑥 −𝑦𝑚𝑖𝑛).

Hence, for numerical knobs, we uniformly scale the projected value
𝑥 ∈ [−1, 1] to the respective [𝑚𝑖𝑛,𝑚𝑎𝑥] range, of each knob. If a
numerical knob takes discrete values, we further round the scaled
value to the correct integer value. For categorical knobs,we perform
a two-step conversion process. We first rescale the projected value
𝑥 ∈ [−1, 1] to a value𝑦 ∈ [0, 1], and then we split this range equally
to as many bins, as is the number of different choices. The final
categorical knob value is defined by which bin the value 𝑦 falls into.

3.4 Dimensionality of the Projected Space
The only additional input for using these low dimensional projec-
tion methods is the number dimensions 𝑑 . Given that the objective
function is unknown, it is usually not trivial to provide a good value
for 𝑑 . Fortunately, the DBMS knob configuration tuning problem
has been studied extensively, and we can rely on observations of
past works to provide a good estimate for 𝑑 [16, 33, 38].

Prior works have shown good performance improvements when
tuning around the 10-20% most important, of all knobs considered
for tuning. For instance, in [16] the authors consider a subset of
30 knobs for PostgreSQL v9.6, and show that tuning the 5 most
important ones (≈ 17%) can yield near-optimal performance. Sim-
ilarly, prior work [33] in tuning Oracle v12.2 used a set of 10-40
hand-chosen knobs and [38] showed that tuning the top-20, out of
197 knobs (≈ 10%) was sufficient for MySQL v5.7. Since the total
number of knobs we consider for PostgreSQL v9.6 is 90, we con-
sider 𝑑 to be in the range of [8, 16]. However, as we show next,
setting 𝑑 to an even higher value (i.e., > 16) is not detrimental to
the optimizer performance.
Case Study. We perform a case study using YCSB-A. Our goal
is two-fold. First, we want to evaluate how effective REMBO and
HeSBO methods are at finding a good projection of the original
DBMS configuration space, which can result in better performance.
Second, we want to explore how much our selection of 𝑑 influences
the optimizer performance. Our setup consists of tuning 90 knobs
of PostgreSQL v9.6 for 100 iterations (first 10 are LHS-generated
samples) targeting maximum throughput using SMAC (more setup
details in Section 6). We experiment with both REMBO and HeSBO,
where we set 𝑑 to 8, 16, or 24 dimensions.

Figure 3 shows the best throughput achieved at each iteration.
Overall, we observe that HeSBO manages to outperform the base-
line for all values of 𝑑 , while REMBO is not able to match that
performance. REMBO finishes the tuning session with a final con-
figuration that achieves 10-15% worse than the baseline. We find
that this is because most of the low-dimensional points are clipped
during projection to the original DBMS configuration space, which
makes it impossible for the optimizer to explore the interior points.

On the other hand, HeSBO does not suffer from the aforemen-
tioned issue and performs much better for all values of 𝑑 . This
shows that HeSBO can effectively project the original space to
a smaller one that is easier to explore, while also retaining many
points that achieve good performance. Moreover, we see that 𝑑 does
not greatly affect the quality of the projected space. Even though
the 16-dimensional HeSBO performs the best, all three manage to
end up with similar- or better- performing configurations (within
5%) at the end of the tuning session, while also converging much
faster. This highlights the robustness of HeSBO, and means that
we can provide a reasonable estimate of the number of important
knobs, rather than an exact number. For the remainder of the paper,
we use a 16-dimensional HeSBO projection for our experiments.

4 NOT ALL KNOB VALUES ARE EQUAL
Shrinking the search space by reducing the number of dimensions
stemmed from our prior knowledge of a few important knobs af-
fecting the DBMS performance. We next discuss how auto tuning
frameworks can take advantage of another DBMS specific observa-
tion: not all knob values have the same performance semantics.
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4.1 Special Knob Values in Databases
The configuration search space of a DBMS is heterogeneous, and
consists of numerical and categorical knobs. Categorical knobs are
inherently different from numerical ones: they enable (or disable)
some internal functionality of a component, or select mutually ex-
clusive algorithms for a task. For example, PostgreSQL exposes
a plethora of such knobs (e.g., enable_sort, enable_nestloop
etc.) [28]. Choosing different values for a categorical knob may
result in substantial DBMS performance variations. Hence, most ef-
ficient BO methods treat each categorical knob value independently
and make no assumptions regarding their order [15, 38].

On the other hand, the values of numerical knobs have a natural
order, which is actively exploited by the BOmethods when perform-
ing local search. In particular, when the optimizer has identified
a good-performing configuration (point), it often opts to explore
the nearby regions in order to improve the current optimum [30].
However we find, in practice, some numerical knobs do have special
values (e.g., −1, 0) that inevitably break this natural order [27]. We
term these knobs as hybrid knobs. If such a knob is set to its special
value, it does something very different compared to what it nor-
mally does (e.g., disables some feature). Otherwise, it behaves as a
regular numerical knob where it sets some underlying functionality
of the respective component (e.g., buffer size, flush delays, etc.).

We identified 17 hybrid knobs for PostgreSQL v9.6 (24 exist for
PostgreSQL v13.6) from the official documentation [28]; special val-
ues are explicitly mentioned in the knob description. Interestingly
enough, for about half of the hybrid knobs, the special value is
used in the default configuration. Table 2 shows some interesting
examples. In general, most common behaviors related to special
values include (i) disabling some feature, (ii) inferring this knob’s
value based on some other’s knob, or (iii) setting this knob’s value
using an internal heuristic (or to a predefined value). It is worth
noting that the existence of hybrid knobs is neither limited to this
specific PostgreSQL version, nor to this DBMS alone. Other popular
systems like MySQL [24], Apache Cassandra [1] and even the Linux
kernel [9, 10] also expose similar knobs in their configuration.

Special values make the modeling of the DBMS performance
more difficult because they represent a discontinuity in objective
function output relative to its input. Figure 4 shows such an exam-
ple for PostgreSQL’s backend_flush_after knob, when executing
a read-heavy YCSB workload: YCSB-B. Typically, larger values for
this knob translates to allowing more bytes to remain in kernel
page cache, before issuing a writeback request. A value of “0” (red
diamond in the figure), however, disables the writeback mechanism
altogether, resulting in far higher throughput for this workload.
From the performance numbers in this figure, we can also deduce
the following: if the optimizer tuning this knob lacked the knowl-
edge about the special meaning of value 0, it would be unlikely that
it would ever choose this value during tuning. That is because 0 is
located near the worse-performing values (i.e., 1-10). Instead, the
optimizer would focus on exploring the “neighborhood” of larger
values for this knob, which seem more promising. Another example
is when the number of possible values for a hybrid knob is very
large; in this case, it is unlikely that the special value will be among
the initial set of random values used to bootstrap the optimizer. For
example, assuming an initial set of 10 uniformly sampled points,
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Figure 5: Applying bias to special
value “0” of a hybrid knob.

the probability of the special value being chosen at least once for
the aforementioned backend_flush_after knob is less than 4% 4.
Biasing Special Value Sampling Probability We propose a
methodology that enables the optimizer to observe the effect of
a special value early on in the tuning process. Our key idea is to
change the hybrid knobs values proposed, such that we bias the
probability of the special value being evaluated. To do this we asso-
ciate a fixed probability (𝑝) for sampling a special value before we
begin tuning. To simplify our design, we keep the same probability
𝑝 for all hybrid knobs we tune. Figure 5 illustrates this process for
a single hybrid knob that takes values in [0,𝑚𝑎𝑥] range, where
“0” is the special value. Initially, a value 𝑣 ∈ [0,𝑚𝑎𝑥] for this knob
is suggested by the optimizer, or through random search. Given
this value 𝑣 , we then uniformly scale it to the [0, 1] range (using
the scaling method described in Section 3.3). If this scaled value
is the range [0, 𝑝), then we set the resulting knob value 𝑣 to the
special value (i.e., 𝑣= 0), instead. Otherwise, we uniformly scale it
back to the original, minus the special value, range (i.e., [1,𝑚𝑎𝑥]).
Finally, the resulting value is used at the DBMS configuration to be
evaluated. Note that this methodology requires no modifications
to the underlying optimizer, as it only takes place after a certain
suggestion is made; thus it can be combined with any optimizer.
Furthermore, an extension for hybrid knobs with multiple special
values is straightforward: we can define multiple 𝑝𝑖 (possibly equal
with each other), where each one biases exactly one special value.
Choosing the Amount of Bias. Evaluating the impact of the
special value early on in the tuning session can help improve total
tuning time. Any existent performance anomalies caused by special
values can be discovered and the optimizer can then leverage this
knowledge. While it might be tempting to construct a configuration
consisting solely of special values, and evaluate its performance
immediately, this would not help, as all potential anomalies may
happen simultaneously. Thus, even if there exists a significant
performance improvement from one special value, the optimizer
might not be able to attribute this gain. Alternatively, allocating an
iteration to measure the effect of every special value independently,
may be sub-optimal, especially if the number of such knobs is large.

Suppose the initial set of random configurations consists of 𝑛𝑖𝑛𝑖𝑡
samples and we set the amount of bias as 𝑝 , the number of sam-
ples that evaluate the special value follows a binomial distribution
𝐵(𝑛𝑖𝑛𝑖𝑡 , 𝑝). By default, we choose this probability as 20% as it leads
to a ∼90% confidence level of evaluating the special value (at least
once) in the initial set of random configurations. A nice property of
this method is that it is invariant to the number of hybrid knobs that
are tuned. Users can also alter the value based on their preference.
410 independent Bernoulli trials, each with 1/(256 + 1) chance of success
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Table 2: Three examples of hybrid knobs found in PostgreSQL; Each special value performs a different action each time.

Knob name Range Short Description Special Value Action

backend_flush_after [0, 256] Number of pages after which previously performed
writes are flushed to disk.

If set to 0, the forced writeback is disabled.

geqo_pool_size [0, 232) Controls the pool size used by GEQO, that is the
number of individuals in the genetic population.

If set to 0, then a suitable value is chosen based on
geqo_effort and the number of tables in the query.

wal_buffers [−1, 218) Sets the number of disk-page buffers in shared
memory for WAL

If set to -1, a size equal to 1/32nd of shared_buffers is
selected (≥ 64kB, not more than one WAL segment).
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Figure 6: Best performance achieved for YCSB-A (left plot)
and YCSB-B (right plot) when applying special value biasing
to hybrid knobs (top-left is better).3

Two things are worth noting before finishing our discussion
regarding hybrid knobs. First, even with a reasonably high con-
fidence level, it is possible that a special value for a knob may
not be evaluated during the initial iterations. However, random
configurations that are typically proposed by the optimizer peri-
odically (e.g., every 𝑛-th iterations) are also biased towards each
hybrid knobs’ special value and this also handles any undesirable
interactions across special values of different knobs. Second, the
special value bias does not obstruct the optimizer in any way when
it performs local search. Regardless of whether a special value im-
proves performance or not, the optimizer is still able to fine-tune
already-evaluated configurations to further improve performance.
Case Study.We conduct an experiment with two workloads, YCSB-
A, YCSB-B, in order to explore the impact of special value biasing
to the performance of the optimizer. We use the same setup used
in the case study of Section 3.4 (PostgreSQL v9.6, SMAC, 10 LHS-
generated initial samples), and we vary the bias percentage from
5% to 30%. Figure 6 shows the best throughput reached at each
iteration. We observe that while for YCSB-A special value biasing
does not provide any measurable gains, for YCSB-B the gains are
large and increase with the amount of biasing applied up to 20%.
For the rest of the paper we use a 20% bias percentage.

4.2 Configuration Space Bucketization
While biased sampling of special values can improve the exploration
phase of the optimizer, we next look at how discrete configuration
knobs in DBMS’ can affect the exploitation (or local search) phase.

Discrete configuration knobs exposed by the DBMS can have
very dissimilar ranges. Some knobs have 10 possible values while
others range in millions. A broader range of values gives more
fine-grained control of the underlying mechanism. Table 3 lists
some knobs in PostgreSQL that have a large number of unique
values. One example is shared_buffers, which specifies the size
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Figure 7: Best performance achieved for YCSB-A (left plot)
and YCSB-B (right plot) when tuning the bucketized space
vs. the original space (top-left is better).3

of in-memory shared buffers at the granularity of a single page.
Another example is commit_delay, which controls the delay before
a committed transaction is flushed to disk; this delay can be set at
microseconds granularity. Again, the existence of knobs with such
characteristics is not restricted to PostgreSQL [1, 24].

While having many different choices for knob values enables
fine-grained control, it greatly increases the size of the configura-
tion search space. We observe that for many configuration knobs
with large values ranges, small changes are unlikely to affect the
DBMS performance significantly. For instance, when tuning the
value of commit_delay, the performance is similar for 10, 000𝜇𝑠
and 10, 100𝜇𝑠 (i.e., adding 0.1𝑚𝑠). Based on this observation, we ex-
plore bucketizing the knob value space at fixed intervals. We can do
this by limiting the number of unique values that any configuration
knob can take to 𝐾 . Knobs with more than 𝐾 values are rounded
down to use only 𝐾 unique values; these new values are uniformly
spread across the entire range (i.e., if 𝐾 = 100 for commit_delay,
the new set of discrete values will be 0, 1000, 2000 ... 100000). Knobs
with less than 𝐾 values remain unaffected, and are tuned as before.
Case Study. We use a simple policy to set 𝐾 and explore the effect
of bucketizing. We chose the same 𝐾 for all knobs as it is hard to
know the ideal value without performing expensive offline profiling.
We set 𝐾 based on the distribution of the ranges of values such that
the number of knobs to be bucketized is 𝑃% of all knobs.

We run an experiment with YCSB-A, YCSB-B workloads and
compare SMAC’s performance when tuning a bucketized space
to tuning the original configuration space, for different values of
𝐾 (from 1, 000 to 20, 000). Figures 7 shows the best throughput
reached at each iteration. For YCSB-A, while the performance in
the first 20 iterations is similar, in later iterations the bucketized
(smaller) space reaches a better-performing configuration faster
(for most values of 𝐾). For YCSB-B we see larger benefits starting
at iteration 10 (especially for 𝐾 ≥ 5, 000). Thus, we see that the
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Table 3: Examples of discrete knobs with large value range for PostgreSQL v9.6

Knob name Value Range Step Short description

commit_delay [0, 100000] 1𝜇s Sets the delay in microseconds between
transaction commit and flushingWAL to disk

max_files_per_process [25, 50000∗] 1 Sets themaximumnumber of simultaneously
open files for each server process

shared_buffers [128kB, 16GB∗] 8kB Sets the amount of memory the database
server uses for shared memory buffers

wal_writer_flush_after [8kB, 16GB∗] 8kB Amount of WAL written out by WAL writer
that triggers a flush

∗The upper bound value for this knob is infinite, but we pruned it down to this more reasonable value.

Table 4: Workload Properties

Workload # Tables
(# Columns)

RO
Txns

YCSB-A 1 (11) 50%
YCSB-B 1 (11) 95%
TPC-C 9 (92) 8%
SEATS 10 (189) 45%
Twitter 5 (18) 1%

RS 4 (23) 33%

benefits from bucketization varies across workloads. In the future,
we plan to better understand when BO methods benefit from using
bucketization, especially given prior work in ML [2] has shown the
pitfalls of using a fixed grid for hyperparameter optimization. For
the rest of this paper we set 𝐾 = 10, 000 (i.e., from 𝑃% = 50%).

5 LLAMATUNE DESIGN
So far, we have presented three DBMS specific observations that can
improve the configuration optimizer: (i) random low-dimensional
projections, (ii) biasing the special value of hybrid knobs, and (iii)
bucketization for knobs with many unique values. We next present
LlamaTune, a unified design that incorporates these approaches.

A unified design should satisfy three main requirements. First,
the optimizer should always operate on the low-dimensional space,
and not in the original DBMS knob configuration one. Second,
the special value biasing should be performed only over the set of
hybrid knobs. Otherwise, we might unnecessarily skew the values
of other knobs towards non-existent special value(s). Finally, the
bucketized value space for the set of knobs should be exposed to the
optimizer, so it is aware of the larger sampling intervals; otherwise
it will still continue to sample at finer granularities.

In our attempt to meet the above design requirements, we devise
a unified tuning pipeline (LlamaTune) that employs a bucketized
version of the low-dimensional search space, and applies the special
value biasing only after a point has been suggested. Instead of the
original low-dimensional continuous space 𝑋𝐷 = [−1, 1]𝐷 , we
define a bucketized search space 𝑋 ′

𝐷
, similar to 𝑋𝐷 , but with the

ability to sample values only at fixed intervals, as defined by the
number of maximum unique values (i.e., 𝐾). Exposing the space
𝑋 ′
𝐷

to the optimizer satisfies the first, but only partly the third
requirement (we explain more below). The second requirement is
satisfied by applying the special value bias after the point has been
projected to the original space, but before the values are re-scaled.
This way, the biasing approach does not interfere with the internals
of the random projection method. The main limitation of this design
is that bucketizing the entire search space may affect fine tuning
of continuous knobs. However, we believe that the performance
gains of optimizing a smaller space outweighs this drawback in
most cases, especially when we use a conservative value for 𝐾 .
Example: In Figure 8, we present an example of our design. We
consider a scenario where we tune five DBMS knobs using a 2-
dimensional random projection derived by HeSBO. We set the spe-
cial value bias to 20%, and bucketize the low-dimensional space to
𝐾 = 10, 000. Among these knobs, commit_delay is a discrete knob,
geqo_selection_bias is continuous knob, and enable_seqscan

is a binary categorical knob. The remaining two knobs are hy-
brid knobs: backend_flush_after has a special value of “0”; for
wal_buffers it is “−1”.

Initially, the optimizer suggests a point [−0.8, 0.4] that belongs
to the low-dim [−1, 1]𝑑 bucketized space. The value 𝑄 denotes the
size of the fixed interval (i.e., 2/𝐾 ). This point is then projected to a
high-dimensional point in [−1, 1]𝐷 (i.e., 𝐷 = 5). The first synthetic
knob is mapped to both hybrid knobs (but with opposite ± signs),
while the second one maps to the remaining three. The projected
point now corresponds to a real DBMS knob configuration. Next, we
normalize all knob values to [0, 1], and apply special value biasing
only for the two hybrid knob values. Here, backend_flush_after’s
original value of 0.1 has been biased towards its special value 0 (i.e.,
inside the [0, 0.2) range), while wal_buffers has been scaled (i.e.,
inside the [0.2, 1] range) to compensate for the 20% special value
bias. Finally, all normalized values are converted to the correspond-
ing physical knob values. These values now comprise the DBMS
configuration that is evaluated on the real system.

6 EVALUATION
In this section, we evaluate LlamaTune on various workloads and
show that it can improve the time taken for tuning PostgreSQL on
six different workloads by 1.96× up to 11.0× when using SMAC.

6.1 Experiment Setup
Hardware.We conduct our experiments on CloudLab [12]. Each
tuning session runs on a single c220g5 node located at the Wiscon-
sin cluster. The DBMS runs on top of a 10-core Intel Xeon Silver
4114 CPU with 16 GB of RAM and uses a 480 GB SATA SSD. The
workload clients and the optimizer algorithm are isolated from the
DBMS, and run on a separate CPU (each node has two sockets).
Tuning Settings. We run most experiments with PostgreSQL v9.6,
but also use PostgreSQL v13.6. We select a set of tunable 90 knobs
that could affect DBMS performance; we exclude from this set all
knobs related to debugging, security, and path-setting. We repeat
each experiment five times using different random seeds as input to
our optimizer; we report the mean best performance from all runs.
Each tuning session consists of 100 iterations , and each run consists
of five minutes of running the workload. For most experiments we
optimize for overall system throughput (i.e., higher is better); we
also show that our approach can yield gains when optimizing for
95-th percentile latency. The configurations of the first 10 iterations
are generated randomly using LHS [23]. For those configurations
that cause the DBMS to crash, we assign one fourth of the worst
throughput we have seen so far to that iteration; initially this value
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Figure 8: LlamaTune: Tuning example that highlights the unified end-to-end pipeline.

Table 5: Perf. gains of LlamaTune when coupled with SMAC.
We report average and [5%, 95%] confidence interval numbers.

Workload
Final Throughput
Improvement

Time-to-Optimal
Speedup

Average [5%, 95%] CI Average [5%, 95%] CI

YCSB-A 2.74% [0.9%, 4.5%] 1.96x [51 iter] [1.1x, 3.3x]
YCSB-B 20.85% [10.2%, 27.9%] 5.5x [18 iter] [1.2x, 33.0x]
TPC-C 6.30% [-0.3%, 12.4%] 11.0x [9 iter] [1.0x, 14.1x]
SEATS 7.45% [2.4%, 11.7%] 6.67x [15 iter] [1.8x, 12.5x]
Twitter 4.38% [1.7%, 6.8%] 6.62x [13 iter] [5.4x, 8.6x]

RS 1.08% [0.2%, 1.9%] 1.98x [49 iter] [1.1x, 3.1x]

is set to the performance of the default configuration. The above
tuning configuration is similar to prior works [32, 33, 38].
Workloads. For our experiments, we use six OLTP workloads with
different characteristics (shown in Table 4). We use the official YCSB
suite [6], and BenchBase (formerly OLTP-Bench [8]). We use two
workloads variants from the YCSB suite: the read-write (50%-50%)
balanced YCSB-A, and the read-heavy (95% read, 5%write), YCSB-B.
YCSB workloads perform simple random access key queries, on a
single 10-column table, based on a Zipfian distribution. From Bench-
Base, we use the TPC-C, SEATS, Twitter, and ResourceStresser (RS)
workloads. Both TPC-C and SEATS are traditional OLTP work-
loads with multiple tables, and complex relations. TPC-C consists
of five (mostly write-heavy) transactions that operate on nine ta-
bles, and simulates an order processing system for a warehouse.
SEATS resembles the back-end system of an airline ticketing service
using ten tables and six transaction types. Twitter is a web-oriented
workload that uses public traces to simulate the core functional-
ity of a micro-blogging application; it consists of five tables and
five heavily-skewed transaction types. RS is a synthetic workload
with the intention to introduce independent contention on differ-
ent resources (i.e., CPU, disk I/O and locks) [8]. We employ 40
clients, and select the scale factor of all workloads accordingly, so
that all databases are 20GB. In the future, we also plan to evaluate
LlamaTune’s set of techniques with OLAP workloads.
Optimizers. For our experiments we use three state-of-the-art
optimizers: SMAC, GP-BO, and DDPG. All three are shown to out-
perform alternative methods in most cases [38]. For SMAC we use
the implementation provided by the authors [21], while for the GP-
BO we leverage OpenBox’s [19] implementation, also used in prior
work [38]. For DDPG, we implement the original neural network
architecture used in CDBTune [37] with PyTorch [26].

Table 6: Perf. gains of LlamaTune when coupled with SMAC,
and tuning for 95-th percentile tail latency.

Workload
Final 95th %-tile
Latency Reduction

Time-to-Optimal
Speedup

Average [5%, 95%] CI Average [5%, 95%] CI

TPC-C 14.56% [-1.1%, 30.8%] 2.14x [43 iter] [0.9x, 18.4x]
SEATS 11.16% [1.3%, 21.2%] 2.35x [34 iter] [1.2x, 4.7x]
Twitter 3.33% [-3.9%, 10.9%] 1.38x [68 iter] [0.9x, 3.4x,]

Table 7: Perf. gains of LlamaTune when coupled with SMAC,
and tuning the newer DBMS, PostgreSQL v13.6.

Workload
Final Throughput
Improvement

Time-to-Optimal
Speedup

Average [5%, 95%] CI Average [5%, 95%] CI

YCSB-A 10.73% [8.9%, 13.0%] 2.69x [36 iter] [2.1x, 7.5x]
YCSB-B 3.63% [2.3%, 4.9%] 2.54x [37 iter] [1.4x, 3.9x]
TPC-C 2.91% [1.1%, 4.2%] 1.56x [63 iter] [1.4x, 4.3x]
SEATS 20.25% [16.7%, 23.5%] 6.0x [16 iter] [3.4x, 16.0x]
Twitter 2.61% [0.8%, 4.3%] 8.25x [12 iter] [5.2x, 12.4x]

RS 0.69% [0.0%, 1.4%] 2.12x [42 iter] [0.9x, 4.1x]

LlamaTune Implementation. Since LlamaTune is agnostic to the
underlying optimizer, we implement it in Python3 with 800 LOCs
on top of all three optimizers. In the experiments, LlamaTune uses
HeSBO random projections with 𝑑 = 16 dimensions, sets the special
value biasing to 20%, and bucketizes the search space to limit the
number of unique values of each dimension to 𝐾 = 10, 000.
Evaluation Metrics.We use two metrics to evaluate the perfor-
mance of LlamaTune: final DBMS throughput (latency) improve-
ment, and time-to-optimal throughput (latency). The former is
related to the difference in performance (e.g., throughput, 95th %-
tile latency) of the best-performing configurations found at the end
of tuning (i.e., after 100 iterations). We compare the performance
improvement (in %) realized by LlamaTune compared to the base-
line. The latter is inspired from a popular metric used in ML (i.e.,
time-to-accuracy) that quantifies the time taken by ML algorithms
to reach a certain accuracy level [5]. We report the earliest iteration
at which LlamaTune has found a better-performing configuration
compared to the baseline optimal, as well as the relative speedup.

6.2 Efficiency Evaluation
In this section, we evaluate the tuning efficiency of LlamaTune
while using the vanilla SMAC optimizer as our baseline.
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Figure 9: Best throughput achieved by LlamaTune. Time-to-optimal also shown.3
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Figure 10: LlamaTune con-
vergence gains vs. SMAC.

Optimizing for Throughput. We set the optimizer target to
throughput; Table 5 shows the results for all six workloads. We
make two observations. First, LlamaTune reaches the performance
of the baseline SMAC optimum configuration by ∼ 5.62× faster
on average. For four of the total six workloads, it reaches that
performance before iteration 20, which highlights its increased
sample-efficiency. Second, LlamaTune can improve the average
final throughput (after 100 iterations) on all workloads, by ∼ 7.13%
on average, compared to vanilla SMAC (from 1.08% better on RS
to 20.85% better on YCSB-B). Both TPC-C, SEATS, which are com-
plex OLTP workloads show consistent gains of 6-7%, while Twitter
which has vastly different characteristics, also performs well. The
synthetic RS workload is particularly hard to optimize, as the over-
all performance gains compared to the default configuration is only
around 10%; this explains why LlamaTune’s improvement is small,
compared to the other workloads.

Figure 9 shows the best performance convergence curve for
three workloads: YCSB-A, TPC-C, and Twitter. The red line in-
dicates the earliest iteration of LlamaTune that results in better
performance compared to the baseline (i.e., time-to-optimal). The
contributing factors for the improvement include projection to a
low-dimensional space, as well as special value biasing, which ac-
celerates exploring their effect on performance. We also observe
that for YCSB-A, LlamaTune reduces the variance across different
runs, making it more likely for any run to realize the highest gains.

Figure 10 shows the mean improvement of LlamaTune over the
baseline (SMAC) during the entire tuning session. For every itera-
tion of LlamaTune (x-axis), we plot the earliest iteration at which
SMAC achieves the same (or better) performance on the (y-axis); the
point at which LlamaTune surpasses the best SMAC performance is
indicated by a diamond. We see that for all workloads other than RS,
LlamaTune provides improvements over SMAC across all iterations.
For RS, we see that LlamaTune performs better from around itera-
tion 30. Overall, we can see that given any fixed iteration budget,
LlamaTune can provide meaningful speedups across workloads.

Optimizing for Tail Latency.Now,we experiment with a different
tuning scenario, where we aim to reduce the 95-th percentile la-
tency, at a fixed rate of incoming requests.We experimentwith three
workloads from the BenchBase suite: TPC-C, SEATS, and Twitter.
We set the rate of incoming requests to half of the best throughput
achieved from the previous experiments: 2, 000 requests per sec-
ond for TPC-C, 8, 000 for SEATS, and 60, 000 for Twitter. Table 6

summarizes the results. We observe that LlamaTune outperforms
the baseline SMAC on all three workloads. On average LlamaTune
yields a ∼ 1.96× time-to-optimal speedup, and ∼ 9.68% better final
tail latency. These results indicate that our tuning pipeline is still
effective in more complicated tuning targets.

6.3 Effectiveness on Different DBMS Version
We next experiment with a newer version of PostgreSQL, v13.6, to
evaluate LlamaTune’s effectiveness and robustness when the under-
lying DBMS characteristics change. Compared to the version used
throughout the paper (v9.6), this newer version includes several
major improvements from just-in-time compilation to better paral-
lel query execution; this is also reflected in the increased number of
configuration knobs [28]. Porting LlamaTune to the new version re-
quires characterizing which of the newly-introduced knobs should
be included in the set of tunable knobs, and identifying new hybrid
knobs (along with their special value). Overall it took us ∼ 4 hours
to fully integrate LlamaTune with this version. We now tune 112
knobs (23 of which are hybrid ones) using the same hyperparameters
for LlamaTune, as before, and we compare against vanilla SMAC;
the rest of the setup is identical to section 6.2. Table 7 shows the
results. On average, LlamaTune achieves ∼ 3.86× time-to-optimal
speedup, and manages to match or outperform the vanilla SMAC in
all cases. Interestingly, we also observe that the recent PostgreSQL
improvements affect the gains realized by LlamaTune. For example,
with YCSB-B, while LlamaTune achieves similar throughput across
Postgres versions, we find that SMAC achieves better throughput
with v13.6, narrowing the throughput improvement of LlamaTune
over SMAC from 20.8% to 3.6%. On the other hand, we see better
throughput improvements with LlamaTune for SEATS and YCSB-A.

6.4 Generalizing across Optimizers
GP-BO.We now change the underlying optimizer of LlamaTune to
GP-BO, which uses Gaussian Processes as surrogate model, instead
of SMAC’s random forests. We conduct the same set of experiments
as section 6.2, optimizing for maximum throughput. Table 8 shows
the results. We observe that LlamaTune again outperforms the
vanilla GP-BO optimizer on all six workloads. Across all workloads,
the mean time-to-optimal speedup is ∼ 8.4×, while LlamaTune also
finds better-performing configurations. In particular, we see much
faster convergence-to-baseline optimal for YCSB-B (19.4×), TPC-C
(10.38×), and Twitter (14.83×) where less than 10 iterations are
required. RS still remains a challenging workload to optimize, as
LlamaTune could not improve much over the baseline GP-BO.
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Figure 11: Ablation study for the three components of LlamaTune.3

Table 8: Performance gains of LlamaTune when
coupled with a different BO-based method, GP-BO.

Workload
Final Throughput
Improvement

Time-to-Optimal
Speedup

Average [5%, 95%] CI Average [5%, 95%] CI

YCSB-A 1.10% [-3.1%, 6.1%] 1.11x [90 iter] [0.8x, 3.1x]
YCSB-B 21.54% [10.9%, 33.3%] 19.4x [5 iter] [8.8x, 32.3x]
TPC-C 18.57% [10.8%, 26.3%] 10.38x [8 iter] [4.9x, 16.6x]
SEATS 10.06% [8.1%, 11.9%] 3.5x [28 iter] [1.3x, 19.6x]
Twitter 4.28% [1.4%, 7.1%] 14.83x [6 iter] [3.4x, 17.8x]

RS 0.50% [-0.9%, 1.6%] 1.43x [70 iter] [0.8x, 7.1x]

Table 9: Perf. gains of LlamaTune when coupled with DDPG.

Workload
Final Throughput
Improvement

Time-to-Optimal
Speedup

Average [5%, 95%] CI Average [5%, 95%] CI

YCSB-B 24.95% [15.85%, 32.69%] 5.17x [18 iter] [2.38x, 6.64x]
TPC-C 12.24% [-1.77%, 30.27%] 8.40x [ 5 iter] [0.82x, 21.0x]
Twitter 2.34% [-0.60%, 5.14%] 1.18x [66 iter] [0.75x, 13.0x]
RS 0.71% [-1.16%, 2.47%] 1.79x [34 iter] [0.74x, 3.39x]

DDPG.Wenext evaluate LlamaTunewhen it is coupled with DDPG,
a reinforcement learning-based optimizer (used in CDBTune [37]
and QTune [18]). DDPG leverages two neural networks: the actor
that recommends a configuration when given the internal DBMS
state (metrics) as input, and the critic that assesses how good each
configuration is, based on its resulting performance (reward). We
use a similar setup as in 6.2 and maximize throughput. To represent
the internal DBMS state, we sample 27 system-wide PostgreSQL
metrics every 5 seconds, and feed their average into the neural
network at the end of each iteration. Table 9 presents the results
for four workloads. On average, LlamaTune achieves a time-to-
optimal speedup of 4.14×, while also finding better-performing
configurations (up to 25% for YCSB-B). Thus, overall we can see
that our benefits extend across optimizers.

6.5 Ablation Study
We next conduct an ablation study to better understand the benefits
from each of LlamaTune’s components. We compare using only the
HeSBO-16 low-dimensional projection, with HeSBO-16 plus special
value biasing (SVB), and with the entire LlamaTune pipeline (i.e.
with configuration space bucketization). We compare LlamaTune
to SMAC on three workloads: YCSB-A, YCSB-B, and TPC-C (Fig-
ure 11). We observe that all three combinations perform as well or
better compared to the SMAC baseline, for all three workloads. For
YCSB-B we see that only using HeSBO-16 achieves ∼ 2× time-to-
optimal speedup, while using the other techniques this speedup is
improved to ∼ 5.5×. For YCSB-A, the plain HeSBO-16 projection
performs the best, while it seems that the special value biasing
hinders LlamaTune’s convergence; the final throughput is not af-
fected though. This is because special knobs values do not improve
the YCSB-A performance, and thus biasing the optimizer sampling
towards those, slightly delays exploring other better-performing
regions. For TPC-C, we observe that HeSBO-16 and special value
biasing have a positive effect on optimization performance. We
note a small performance degradation when applying the search
space bucketization and believe that this is because of LlamaTune
imposing a bucketized space for all knobs, not just for the ones with

Table 10: Optimizer overhead & LlamaTune improvements

Optimizer Time Overhead (minutes) Time
Reduction (%)Baseline LlamaTune

SMAC 26.75 3.83 86
GP-BO 256.57 62.95 75
DDPG 0.075 0.066 12

a large number of unique values. Finally, we note that even though
the integration of special value biasing and space bucketization do
not always help, their (negative) impact on performance is very
limited; when they do, we can realize significant gains.

6.6 Optimizer Overhead
Wemeasure the time taken by the optimizer to suggest the next con-
figuration across the entire tuning session (i.e., 100 iterations). This
time includes updating the underlying surrogate models, as well as
comparing the set of possible configuration candidates; it does not
include the time for a configuration to be evaluated on the DBMS.
Table 10 summarizes the time overhead of LlamaTune compared
to the vanilla optimizers. LlamaTune reduces the time overhead
by 86%, 75%, 12% when being integrated with SMAC, GP-BO, and
DDPG, respectively. The reduced number of dimensions, resulting
from the low-dimensional projection is the primary reason, as the
optimizers have to model a much smaller space. This is especially
important for the GP-BO optimizer, due to the non-linear sampling
behavior of GPs [30]. The time overhead of special values biasing,
and knob values bucketization are negligible.

7 CONCLUSION
In this paper, we studied techniques to improve the sample effi-
ciency of optimizers used in DBMS tuning and showed how we can
leverage domain knowledge to perform low dimensional tuning
while handling special knob values and large knob value ranges. We
empirically showed that our techniques can find good performing
configurations up to 11× faster compared to the state-of-the-art op-
timizer (SMAC), and that our tuning pipeline is robust when tuning
for different performance targets, optimizers, and DBMS versions.
In the future, we plan to extend our work to other contexts, such
as tuning Linux or dataflow engines like Apache Spark.
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