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ABSTRACT
In many applications of Bloom filters, it is possible to exploit the pat-

terns present in the inserted and non-inserted keys to achieve more

compression than the standard Bloom filter. A new class of Bloom

filters called Learned Bloom filters use machine learning models to

exploit these patterns in the data. In practice, these methods and

their variants raise many questions: the choice of machine learn-

ing models, the training paradigm to achieve the desired results,

the choice of thresholds, the number of partitions in case multiple

partitions are used, and other such design decisions. In this paper,

we present a simple partitioned Bloom filter that works as follows:

we partition the Bloom filter into segments, each of which uses a

simple projection-based hash function computed using the data.

We also provide a theoretical analysis that provides a principled

way to select the design parameters of our method: number of hash

functions and number of bits per partition. We perform empirical

evaluations of our methods on various real-world datasets spanning

several applications. We show that it can achieve an improvement

in false positive rates of up to two orders of magnitude over stan-

dard Bloom filters for the same memory usage, and upto 50% better

compression (bytes used per key) for same FPR, and, consistently

beats the existing variants of learned Bloom filters.
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1 INTRODUCTION
In many applications of Bloom filters there is an opportunity to

exploit the patterns in the inserted set of keys that distinguishes

them from non-inserted keys, so that the performance of the filter

can be improved. Kraska et al. [16] proposed learned Bloom filters

which try to exploit this pattern using a machine learning model.

Given a set of keys𝑋 to be inserted and a set of keys 𝑌 representing

non-inserted keys, a learned Bloom filter uses a binary classifier

trained on 𝑋 and 𝑌 to answer set membership queries based on a

fixed threshold. They additionally have a backup Bloom filter to

ensure the structure returns no false negatives. These learned Bloom

filters achieve more compression than standard Bloom filters since

standard Bloom filters assume no information about patterns in the
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data. Several improvements over this method has been suggested

since then, such as pre-filtering using a Bloom filter [25], adapting

it for incremental workloads [4, 19], and partitioning the Bloom

filter using the model scores [9, 27].

While learned Bloom filters have shown significant performance

improvements over standard Bloom filters, they also have several

drawbacks:

• The need of a separate machine learning classifier requires

major implementation level changes to be made in order to replace

standard Bloom filters with their learned counterparts in applica-

tions such as Apache Cassandra [7]. Apart from software changes,

depending on the classifier employed, additional hardware such

as GPUs/TPUs may be required in order to efficiently train the

machine learning model.

• They require several design choices (in addition to Bloom

filter configuration choices) such as the suitable machine learning

model, thresholds and partitioning parameters, and so on, to be

made before their deployment.

• More importantly, out of the box machine learning models are

optimized for better generalization over unseen data rather than

for the task of replacing index structures. As a result, the model size

required to achieve requisite performance in a learned Bloom filter

is often quite large. Consider the use of a simple neural network

(NN) for MNIST dataset of handwritten digits each of which is

represented as a 28 × 28 image. A reasonable NN would have 784

input neurons, and 10 output neurons –one for each digit class– and

a two hidden layers of (say) 16 neurons each. This would result in

nearly 13, 000 floating point values for the entire model. A random

forest classifier, which has been shown to be a better fit for the

task [27], also requires a relatively large model (empirically we

found it be close to 92 KB – see Section 5).

In this paper, we propose Projection Hash Bloom Filter (PHBF), a
novel learning based method that works seamlessly with standard

Bloom filters by simply replacing standard hash functions (such as

Murmur3), with efficient and data-aware hash functions. The bit-

vector of the Bloom filter is partitioned into equally sized regions

and each region is associated with a hash function. Each hash

function projects keys to a selected set of𝑑-dimensional unit vectors

chosen so as to separate the sets 𝑋 and 𝑌 well. Note that our data-

aware hash functions are designed keeping in mind the need for

them to be computationally fast and lightweight in size. While

this method fails to generalize for use in broader machine learning

applications, it can distinguish the inserted keys from the non-keys

effectively.

We theoretically show that in order to maintain a desired false

positive rate (FPR) of the Bloomfilter, our data-aware hash functions

require memory that is proportional to the dimensionality of the

data rather than the number of keys inserted into the filter (under
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Figure 1: Performance of various models on Malicious URLs.

reasonable and natural assumptions regarding the separability of

keys in 𝑋 and 𝑌 – details in Section 4).

Finally, we experimentally demonstrate that for a given a fixed

space usage (bytes used by the index per key) in the range less than

0.2, that is when the index 0.2 bytes of storage per key, PHBF out-

perform standard and learned variants of Bloom filters significantly

in terms of FPR. This range of space usage covers many practical

applications ([11, 21]). For lower required FPR, the learned variants

start to gain advantage over our simple model, at the cost of higher

space usage. Figure 1 shows the relative memory requirement of

neural networks, random forests and our approach for detecting

Malicious URLs.

It is worth noting that the only parameters that are needed in a

PHBF deployment are the number of hash functions, bits used by

the Bloom filter bit-vector and the number of random vectors to be

sampled – just one more than those of standard Bloom filters. The

choice of each of these parameters is guided by theoretical analysis.

1.1 Contributions
In this paper, we present a novel learned Bloom filter called Pro-

jection Hash Bloom Filter (PHBF), and make the following key

contributions:

(1) We describe Projection Hash Bloom Filter (PHBF), a space-

efficient partitioned Bloom filter which uses random projection

based data-aware hash functions. Unlike other learned Bloom fil-

ters, the design parameters of PHBF are the number of hash func-

tions, bits used per partition, and number of vectors to be sampled.

Selection of each of these are guided by theoretical analysis. This

makes our method an easy plug-in replacement for standard Bloom

filters (Section 3).

(2) We provide a theoretical analysis bounding the false positive

rate in terms of the properties of the sets 𝑋 and 𝑌 . We analyze

the bounds for three increasingly restrictive scenarios: (i) data

with finite mean and variance, (ii) data with independent features

where each feature is drawn from a bounded range, and finally, (iii)

data drawn from Gaussian distribution. We show that, assuming

reasonable separation, the memory requirement no longer scales

with number of elements inserted but with the dimensionality of

the keys. Unlike other learned Bloom filter approaches, this gives

us an analytical basis to select the design parameters (Section 4).

(3) We perform extensive experiments to empirically compare

PHBF with other learned Bloom filter variants on a range of real

world datasets spanning a wide range of applications. We show

that PHBF can provide up to two orders of magnitude better FPR

for a given memory usage than the standard Bloom filter. It also

provides similar space usage for a given FPR as compared to state

of the art learned Bloom filter models while requiring an order of

magnitude less time for construction and queries. Section 5).

2 RELATEDWORK
A standard Bloom filter (SBF) is a memory-efficient data structure

that can check for the existence of an element in a set. It provides

a trade-off between memory efficiency and the false positive rate.

For a Bloom filter designed to store 𝑛 elements while achieving a

target false positive rate (FPR) of 𝜀, we need

𝑚 = − 𝑛 ln 𝜀

(ln 2)2

bits. We note that the number of bits required for maintaining a

certain FPR target increases linearly with the number of elements

inserted. This makes SBF infeasible for very large sets.

There have been investigations into making standard Bloom

filters more memory efficient, but at best, they provide a constant

factor improvement while still scaling linearly with 𝑛. The method

proposed in [6], which can be extended to standard Bloom filters,

uses d-left hashing, a hashing technique which uses 𝑑 hash tables.

While this approach scales linearly with the number of inserted

elements as well, it reduces the size of the Bloom filter by a factor

of around 2.5 for a target false positive rate of the order of 10−4.
Compressed Bloom filters [24] achieve a significant compression

over other Bloom filters, making them easier to transmit. However,

they still require decompression in memory to use and therefore do

not address the problem of memory requirement. Another approach

proposed in [29] to make standard Bloom filters more efficient is

to control the false positive rate by selecting hash functions that

produce the least number of false positives. It employs a two-step

process to first check which hash functions work best given the

inserted and query sets, and then to use the selected hash functions

to insert elements.

Chang et al. [8] propose a partitioned Bloom filter that works

by partitioning the𝑀 sized bit array into 𝑘 slices of size𝑚 = 𝑀/𝑘
bits using 𝑘 hash functions. Each hash function produces an index

over𝑚 for its respective slice. Thus, each element is described by

exactly 𝑘 bits, ensuring that the distribution of false positives is

uniform across all elements. The method we propose in this paper

is a variant of Chang et al.’s method, where each of the 𝑘 hash

functions are learned from the dataset.

Distance sensitive hashes, such as locality sensitive hashing

(LSH) [13] aim to map similar keys to the same hash value, thus

making it more likely that a collision of keys implies similarity of

keys based on some metric. These methods are designed to find

approximate nearest neighbors and are not a suitable replacement

for learned Bloom filters that learn the patterns specific to the

inserted and queried keys.
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None of the improvements mentioned so far attempt to find

and exploit any pattern in the data. But if the keys inserted into

the Bloom filter display some predictable pattern, new avenues

for memory efficiency open up. One approach is to replace the

Bloom filter with a machine learning model [16]. Other Bloom filter

variants have been proposed [4, 9] based on this approach. The

false positives for such learned Bloom filters (LBF) depend on the

false positive rates of the models. The model may become complex

and large depending on the target false positive rate requirement.

A backup Bloom filter of a much smaller size is also required to

ensure that LBF has no false negatives. A partitioned learned Bloom

filter [27] proposes an alternate usage of the model, using it to par-

tition the key space optimally. The idea is to formulate the problem

into a two-part optimization problem: (i) how to best partition the

scores from the model into a given number of regions, and (ii) how

to choose thresholds for the regions to minimize the overall space

consumption of Bloom filters. The authors use dynamic program-

ming and dual formulation to solve these optimization problems

respectively.

Another approach to exploit patterns in keys could be to use

specialized hash functions that are learned from the data. Data

dependent hashes utilize the distribution of the data to learn the

hash function. These methods include unsupervised approaches

based on simple optimization such as [14] and [28] that learn a

descriptor for the data and are independent of the label of the

data. Data dependent hashing can also be supervised, ranging from

simple models to generate hash codes [20] to complex supervised

deep models [18]. Using a supervised deep model for hashing was

also suggested in [16]. Data dependent approaches consist of a

training phase that adds to the construction time but are capable

of learning patterns in the data, allowing it to reach significantly

lower false positive rates for a given size. Our approach can be

categorized as a data dependent approach learned Bloom filters, but

unlike the machine learning based models, our random projection

based methods produce a smaller model, thus achieving a better

space usage in terms of bytes of memory used per key, which

providing a principled approach to select design parameters.

3 PROPOSED METHOD
In this section we propose a method for constructing a partitioned

Bloom filter with learned hashing called Projection Hash Bloom

Filter (PHBF). We describe our method for the same setting as that

of the other learned Bloom filter works [4, 16, 29]: we are given

the set of positive keys that are to be inserted, and a set of negative
keys sampled from a distribution generating negative query points.

We also contrast this with a few closely related methods.

3.1 Projection Hash Bloom Filter
Projection Hash Bloom Filter (PHBF) is based on the idea that the

keys can be projected on to a lower dimensional subspace and

that these projections can be used to distinguish between the keys

inserted into the structure from non-keys. Unlike other applications

of random projections that require distance preservation [1, 13],

PHBF works with fewer vectors, since preservation of distances is

not a required criterion for the application.

Vector Selector

Figure 2: Architecture of PHBF. Given 𝑋 and 𝑌 , Vector Selec-
tor selects 𝑘 random vectors. These are used to compute the
𝑘 hash functions, each populating their own partition of size
𝛿 in 𝐵.

PHBF works in two phases. Figure 2 shows the architecture of

PHBF. The first phase is the vector selection phase. In this phase, we

sample some vectors and use the sets 𝑋 and 𝑌 to select𝑤1, . . . ,𝑤𝑘 ,

the 𝑘 best vectors among them. We explain what this means math-

ematically in following paragraphs, but simply put, the selection

phase can be seen as training phase, where we use 𝑋 and 𝑌 as

positive and negative training examples to train 𝑘 weak 𝛿-class

classifiers, each returning a label from {1, . . . , 𝛿}. In the second

phase we populate the bit array. Figure 3 demonstrates the working

of this phase. The set 𝑋 is projected on to the vectors selected in

the previous phase (𝑤1 and𝑤2 in the example shown in the figure),

each of which acts as a hash function mapping the points to bins

labelled {1, . . . , 𝛿}. The bins in which the projected points fall are

set to 1. Each of these hash functions then populate a disjoint seg-

ment of the bit array 𝐵, which avoids inter-hash collisions. During

a query, the point is evaluated by each of the hash functions and is

assigned a bin. If all of the assigned bins are set to 1, PHBF returns

𝑡𝑟𝑢𝑒 , that is, the queried point has been inserted into the index.

This construction is different from distance sensitive Bloom

filters (DSBF) proposed in [15], which are designed for the task of

identifying approximate nearest neighbors. Since DSBF does not

train using the data, it fails to capture pattern specific to the data.

In Section 5, we demonstrate the unsuitability of this method for

the task of set membership queries.

We now formally define PHBF. Assume that we are given a set

of 𝑑 dimensional keys 𝑋 ⊆ R𝑑 to be inserted into a Bloom filter,

and a set of keys 𝑌 sampled from R𝑑 \ 𝑋 . Then, given the size of

bit array,𝑚, and number of partitions, 𝑘 , a PHBF consists of the

following elements:

(1) a bit array 𝐵 [1, . . . ,𝑚] of size𝑚, partitioned in 𝑘 segments

of size 𝛿 =𝑚/𝑘 ,
(2) projection vectors 𝑤𝑖 , for 𝑖 ∈ {1, . . . , 𝑘}, chosen from the

space of 𝑑 dimensional unit vectors, 1𝑑 , and,
(3) 𝑘 hash functions ℎ (𝑤𝑖 )

: R𝑑 → I (𝑖 ) that maps R𝑑 to I (𝑖 ) =
[(𝑖 − 1)𝛿, 𝑖𝛿 − 1].

We now provide a detailed explanation of the two phases of

construction of PHBF.
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Figure 3: Hash computation and Bit Array population. The
set 𝑋 is represented by the green points. The figure shows 2
out of 𝑘 random vectors. 𝑋 is projected on to𝑤1 and𝑤2. The
range of the projection is divided into 𝛿 bins, and the bins
occupied by 𝑥 ∈ 𝑋 is set as 1 in 𝐵.

Projection Vector Selection. Given a sampling factor 𝑠 , we first

sample 𝑠 · 𝑘 vectors 𝑣1, . . . , 𝑣𝑠𝑘 uniformly at random from the space

of 𝑑 dimensional unit vectors, 1𝑑 . Then we compute the hash values

of the elements of 𝑋 and 𝑌 for each of the 𝑠𝑘 hash functions. The

method of computation will be explained in the next paragraph.

Once we have the hash values, we compute the number of positions

where there is at least one collision between the elements of 𝑋 and

𝑌 . For each vector 𝑣 𝑗 , 𝑗 ∈ {1, . . . , 𝑠𝑘},

𝑐 𝑗 =

𝑚∑︁
𝑖=1

1{𝐸𝑖, 𝑗 }

where 𝐸𝑖, 𝑗 := ∃𝑥 ∈ 𝑋,𝑦 ∈ 𝑌, 𝑠.𝑡 . ℎ (𝑣𝑗 ) (𝑥) = ℎ (𝑣𝑗 ) (𝑦) = 𝑖 , and𝑚

is the size of the bit array.

Then, the 𝑘 projection vectors,𝑤1, . . . ,𝑤𝑘 , are selected as:

𝑤𝑖 = 𝑣 𝑗 : 𝑟𝑎𝑛𝑘 (𝑐 𝑗 ) = 𝑖,

for 𝑖 ∈ {1, . . . , 𝑘} and 𝑗 ∈ {1, . . . , 𝑠𝑘}, where 𝑟𝑎𝑛𝑘 (𝑐 𝑗 ) gives the
position of 𝑐 𝑗 in the sequence {𝑐1, . . . , 𝑐𝑠𝑘 } sorted in ascending order.
Algorithm 2 (SelectVectors) shows the details of vector selection

phase.

Populating the bit array. Once we have selected the projection

vectors, we shift and scale the projections to the range [0, 1], and
compute the hash values for all 𝑥 ∈ 𝑋 as follows:

ℎ (𝑤𝑖 ) (𝑥) =
⌊
|⟨𝑤, 𝑥⟩|
| |𝑥 | | · 𝛿

⌋
. (1)

Then, for all 𝑥 ∈ 𝑋 and 𝑖 ∈ {1, . . . , 𝑘}, we populate an empty bit

array 𝐵 of size𝑚 as:

𝐵 [(𝑖 − 1)𝛿 + ℎ (𝑤𝑖 ) (𝑥)] = 1.

Once PHBF is constructed, it is queried as follows. Given a key

𝑧 ∈ R𝑑 , we compute the 𝑘 hash function ℎ (𝑤1 ) , . . . , ℎ (𝑤𝑘 )
. Then,

PHBF returns 𝑡𝑟𝑢𝑒 to the question is 𝑧 ∈ 𝑋 only if 𝐵 [(𝑖 − 1)𝛿 +

Algorithm 1: Construction of PHBF

Data: 𝑋 , 𝑌

input :𝑚, 𝑘 , 𝑠

output :PHBF

1 Initialize 𝐵 [0, . . . ,𝑚 − 1] to 0

2 𝑤1, . . . ,𝑤𝑘 ← 𝑆𝑒𝑙𝑒𝑐𝑡𝑉𝑒𝑐𝑡𝑜𝑟𝑠 (𝑋,𝑌, 𝑠,𝑚, 𝑘)
3 𝛿 ← 𝑚

𝑘

4 foreach 𝑥 ∈ 𝑋 do
5 for 𝑖 ← 1 to 𝑘 do
6 // Compute hash using Equation 1

7 𝑙𝑜𝑐 ← (𝑖 − 1)𝛿 + ℎ (𝑤𝑖 ) (𝑥)
8 𝐵 [𝑙𝑜𝑐] ← 1

9 𝑃𝐻𝐵𝐹 ← (𝑤1, . . . ,𝑤𝑘 , 𝐵)
10 return PHBF

Algorithm 2: SelectVectors subroutine
Data: 𝑋 , 𝑌

input :𝑚, 𝑘 , 𝑠

output :𝑤1, . . . ,𝑤𝑘

1 for 𝑗 ← 1 to 𝑠𝑘 do
2 𝑣 𝑗 ∼ 𝑈𝑛𝑖 𝑓 𝑜𝑟𝑚(1𝑑 )
3 𝑐 𝑗 ← 0

4 for 𝑖 ← 1 to𝑚 do
5 if ∃𝑥 ∈ 𝑋,𝑦 ∈ 𝑌, 𝑠.𝑡 . ℎ (𝑣𝑗 ) (𝑥) = ℎ (𝑣𝑗 ) (𝑦) = 𝑖 then
6 𝑐 𝑗 = 𝑐 𝑗 + 1

7 for 𝑖 ← 1 to 𝑘 do
8 𝑤𝑖 ← 𝑣 𝑗 : 𝑟𝑎𝑛𝑘 (𝑐 𝑗 ) = 𝑖

9 return𝑤1, . . . ,𝑤𝑘

Algorithm 3: Query on PHBF

input :PHBF, 𝑧
output :𝑡𝑟𝑢𝑒 if likely that 𝑧 ∈ 𝑋 . Else 𝑓 𝑎𝑙𝑠𝑒 .

1 𝛿 ← 𝑚
𝑘

2 for 𝑖 ← 1 to 𝑘 do
3 // Compute hash using Equation 1

4 𝑙𝑜𝑐 ← (𝑖 − 1)𝛿 + ℎ (𝑤𝑖 )
𝑋
(𝑥)

5 if 𝐵 [𝑙𝑜𝑐] = 0 then
6 return 𝑓 𝑎𝑙𝑠𝑒

7 return 𝑡𝑟𝑢𝑒

ℎ (𝑤𝑖 ) ] is 1 for all 𝑖 ∈ {1, . . . , 𝑘}. Algorithm 3 shows the steps when

querying PHBF.

Time complexity. PHBF is extremely efficient. For 𝑑 dimensional

keys, the time to compute a single hash value is Θ(𝑑), which is

same as a standard uniform hash function such as Murmur3 on

a byte string key of length 𝑑 . The total construction phase takes

Θ((𝑠 + 1)𝑛𝑘𝑑) time, compared to Θ(𝑛𝑘𝑑) of SBF. The query time,
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Θ(𝑘𝑑), is same as the query time of SBF. In addition to this, the dis-

joint regions and the independence of hash functions allow simple

parallelization of both the construction and the query process. The

process of discretization and parallelization, and the advantages

gained from them are discussed in detail in [5].

Space complexity. The total memory consumption of PHBF is the

size of the bit array 𝐵 and the total size of the hash functions. Each

hash function ℎ (𝑤𝑖 )
is defined by 𝑤𝑖 ∈ R𝑑 , and takes Θ(𝑑) space.

The total space consumed by PHBF then is Θ(𝑘𝑑 +𝑚).

4 THEORETICAL BOUNDS ON FPR
In this section, we analyze the behavior of PHBF when the inserted

set of points 𝑋 and the queried set of points 𝑌 are drawn from

particular distributions. We will denote these distributions as D+
and D− respectively, since for FPR calculation we are assuming

that the query point is from outside the distribution of the inserted

points. We will assume we know the mean and variance of both

these distributions, denoted 𝜇𝑋 and 𝜇𝑌 respectively for D+ and
D− . We will analyze the FPR for three different assumptions of

what we know about these distributions.

• A1: We know the variances, 𝜎2
𝑋
and 𝜎2

𝑌
ofD+ andD− and

we know nothing else.

• A2: D+ and D− are 𝑑-variate distributions such that for

𝑋 ∼ D+ = 𝑥1, . . . , 𝑥𝑑 , 𝑎
+
𝑖
≤ 𝑥𝑖 ≤ 𝑏+

𝑖
and 𝑌 ∼ D− =

𝑦1, . . . , 𝑦𝑑 , 𝑎
−
𝑖
≤ 𝑦𝑖 ≤ 𝑏−

𝑖
for 1 ≤ 𝑖 ≤ 𝑑 and, the dimensions

are independent of each other.

• A3: D+ = N(𝜇𝑋 , 𝜎2𝑋 ) and D
− = N(𝜇𝑌 , 𝜎2𝑌 ).

We show that if the distance between the centers of the distri-

butions ℓ increases with the number of inserted elements 𝑛, we

need to neither increase the size of the Bloom filter nor increase

the number of selections in 2 (SelectVectors subroutine) in order

to maintain some given FPR. This is unlike the traditional Bloom

filter which requires the size𝑚 to scale linearly with the number

of inserted elements to maintain a given FPR. Table 1 summarizes

the notations used in this section.

Note that we assume that 𝛿 = 1 throughout this section in order

to simplify our analysis. Because we shift and scale our projections

to the range [0, 1], using 𝛿 = 1 means that every point 𝑦 which

satisfiesmin𝑋 ℎ (𝑤𝑖 ) (𝑥) ≤ ℎ (𝑤𝑖 ) (𝑦) ≤ max𝑋 ℎ (𝑤𝑖 ) (𝑥) is considered
to be a positive by the partition corresponding to hash function

ℎ (𝑤𝑖 )
.

Theorem 4.1. Let 𝑋 ⊂ R𝑑 be a set of 𝑛 points that were drawn
independently at random from a distribution D+ with mean 𝜇𝑋 and
are inserted into an PHBF with parameter 𝛿 = 1. Let𝑌 be a set of query
points drawn fromD− with mean 𝜇𝑋 such that |𝜇𝑋 −𝜇𝑌 | = ℓ . We can
then say for 𝑖 ∈ {1, 2, 3} that if the distributions follow assumption
A𝑖 then we can achieve expected FPR 𝜀 using 𝑘 = −𝑐𝑖,1 ln(𝜀) + 𝑐𝑖,2
hash functions chosen by sampling −𝑐𝑖,3𝑑 ln (𝜀) + 𝑐𝑖,4𝑑 vectors in
our SelectVectors subroutine, where 𝑐𝑖,1, 𝑐𝑖,2, 𝑐𝑖,3 and 𝑐𝑖,4 are some
constants, under the conditions that

(1) A1: There exists a constant 𝐶1 such that ℓ > 𝐶1𝑑
√
𝑛.

(2) A2: There exists a constant 𝐶2 such that ℓ > 𝐶2𝑑
∑𝑑
𝑖=1 (𝑏𝑖 −

𝑎𝑖 )2 ln(𝑛) .
(3) A3: There exists a constant 𝐶3 such that ℓ > 𝐶3𝑑 ln(𝑛) .

Table 1: Summary of notations used

Notation Definition

𝑋 Set of keys to be inserted, drawn from a distribution with mean 𝜇𝑋
𝑌 Query points, drawn from a distribution with mean 𝜇𝑌
𝑑 Dimensions of inserted and queried data

ℓ Distance between 𝜇𝑋 and 𝜇𝑌
𝑛 Size of 𝑋

𝑚 Size of bit array

𝑘 Number of hash functions

𝑠 Sampling factor; we sample a total of 𝑠𝑘 vectors

𝜀 False positive rate

𝛿 Bits assigned per partition (𝑚/𝑘)
𝑤 A sampled vector

ℎ (𝑤𝑖 )
Hash function which uses vector𝑤𝑖 for computing projections

𝜃 Angle between𝑤 and 𝜇𝑋 − 𝜇𝑌
𝜙 (𝑥) 1√

2𝜋
𝑒−

𝑥2

2

Φ(𝑥)
∫ 𝑥

−∞
1√
2𝜋

𝑒−
𝑥2

2

In the case ofA2 if we assume that the𝑏𝑖s and 𝑎𝑖 are all equal and

independent of 𝑑 , the condition on ℓ becomes ℓ > 𝐶4𝑑
2
ln(𝑛). Note

that as we make stronger assumptions, the separation between the

positive and negative keys that is required to achieve a target FPR

𝜀 when using 𝑘 = 𝑂 (ln( 1𝜀 )) hash functions decreases.

Before we proceed with our proof, we make the following two

calculations. Calculations 4.2, 4.3, and, 4.4 bounds the expected FPR

of a PHBF with parameters 𝑘 = 1 and 𝛿 = 1 for each of the three

cases mentioned above assuming that the vector𝑤 used by the hash

function forms an angle 𝜃 with the vector 𝜇𝑋 − 𝜇𝑌 . Calculation 4.5

computes the probability that a randomly selected vector forms a

small angle with the vector 𝜇𝑋 − 𝜇𝑌 .

Calculation 4.2 (FPR bound for assumption A1). The ex-
pected FPR 𝜀 of a PHBF with parameters 𝛿 = 1 and 𝑘 = 1 can be
bounded as

𝜀 ≤
4𝑛𝑑 (𝜎2

𝑋
+ 𝜎2

𝑌
)

ℓ2 cos2 𝜃

where 𝜃 is the angle between the vector 𝜇𝑋 − 𝜇𝑌 and the unit vector
𝑤 used by the hash function.

Proof. Without loss of generality, we can shift our coordinates

such that 𝜇𝑋 = 0. After projecting onto the unit vector𝑤 associated

with hash function ℎ (𝑤 ) , the distance between the centers is ℓ′ =
| |𝜇𝑌 | |

⟨𝜇𝑌 ,𝑤⟩
| |𝜇𝑌 | | = ℓ cos𝜃 , where 𝜃 is the angle between the vectors 𝜇𝑌

and𝑤 . Let 𝑥𝑚 = max

𝑥∈𝑋
⟨𝑥,𝑤⟩ and let 𝑦 = ⟨𝑦,𝑤⟩.

Then, the FPR 𝜀 can be bounded as

𝜀 ≤
∫ ∞

−∞
Pr {𝑥𝑚 = 𝑟 } Pr {𝑦 ≤ 𝑟 }𝑑𝑟 (2)

≤
∫ 𝑟0

−∞
𝑛𝑝𝑋 (𝑟 )Pr {𝑦 ≥ (ℓ − 𝑟0)} +

∫ ∞

𝑟0

𝑛𝑝𝑋 (𝑟 )Pr {𝑦 ≥ (ℓ − 𝑟 )}

For 𝑟0 = ℓ
2
, and using Chebyshev’s inequality to bound the RHS,

we get:

𝜀 ≤
4𝑛(𝜎2

𝑋
+ 𝜎2

𝑌
)

ℓ2 cos2 𝜃
□
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Calculation 4.3 (FPR bound for assumption A2). The ex-
pected FPR 𝜀 of a PHBF with parameters 𝛿 = 1 and 𝑘 = 1 can be
bounded as

𝜀 ≤ 4𝑛
√
𝜋

2

𝑒−
ℓ2 cos2 𝜃

𝑐𝑑

where 𝜃 is the angle between the vector 𝜇𝑋 − 𝜇𝑌 and the unit vector
𝑤 used by the hash function, and 𝑐 ≥ (𝑏𝑖 − 𝑎𝑖 )2 for all 𝑖 ∈ [1, 𝑑] is
some constant.

Proof. Then, the FPR 𝜀 can be bounded as

𝜀 ≤
∫ ∞

−∞
Pr {𝑥𝑚 = 𝑟 } Pr {𝑦 ≤ 𝑟 }𝑑𝑟 (3)

Using Hoeffding’s lemma to bound the RHS, we get:

𝜀 ≤ 4𝑛
√
𝜋

2

𝑒
− ℓ2 cos2 𝜃∑𝑑

𝑖=1
(𝑏𝑖 −𝑎𝑖 )2 .

Let (𝑏𝑖 − 𝑎𝑖 )2 be upper bounded by the constant 𝑐 . Replacing it in

the equation gives us the result. □

Calculation 4.4 (FPR bound for assumption A3). The ex-
pected FPR 𝜀 of a PHBF with parameters 𝛿 = 1 and 𝑘 = 1 can be
bounded as

𝜀 ≤ 𝑛

ℓ cos𝜃

√︄
𝜎2
𝑋
+ 𝜎2

𝑌

2𝜋
𝑒
− ℓ2 cos2 𝜃

2(𝜎2

𝑋
+𝜎2

𝑌
)

where 𝜃 is the angle between the vector 𝜇𝑋 − 𝜇𝑌 and the unit vector
𝑤 used by the hash function.

Proof. We denote Φ(𝑥) as the Gaussian distribution function

and 𝜙 (𝑥) as the Gaussian density function.

Then, the FPR 𝜀 can be bounded as

𝜀 ≤
∫ ∞

−∞
Pr {𝑥𝑚 = 𝑟 } Pr {𝑦 ≤ 𝑟 }𝑑𝑟 (4)

≤ 𝑛

ℓ cos𝜃

√︄
𝜎2
𝑋
+ 𝜎2

𝑌

2𝜋
𝑒
− ℓ2 cos2 𝜃

2(𝜎2

𝑋
+𝜎2

𝑌
)

(5)

We used the result

∫ ∞
−∞ 𝜙 (𝑥)Φ(𝑎 +𝑏𝑥)𝑑𝑥 = Φ

(
𝑎√
1+𝑏2

)
and Mill’s

inequality which states that 1−Φ(𝑥) ≤ 1

𝑥
√
2𝜋

𝑒−
𝑥2

2 to get the above

result. □

The result of the calculations above shows the usual increase

in FPR that when 𝑛 is increased can be offset by increasing the

distance ℓ between the inserted and queried distributions.

Calculation 4.5. Let 𝑣 ∈ R𝑑 be a given vector. Suppose we sample
a set of 𝑠 vectors {𝑤1, . . . ,𝑤𝑠 } uniformly at random from 1𝑑 . If 𝜃𝑖 is
the angle formed between𝑤𝑖 and 𝑣 , then

(1) with a probability at least 1 − 𝑓1 (𝑑, 𝑙)𝑠 , we will have

max

𝑖
{cos(𝜃𝑖 )} ≥

1

√
𝑑ℓ

, where 𝑓1 (𝑑, 𝑙) =
(
1 − 1

𝑑

(
1 − 1

𝑑ℓ

) 𝑑
2

)
, and

(2) with a probability at least 1 − 𝑓2 (𝑑, 𝑙)𝑠 , we will have

max

𝑖
{cos(𝜃𝑖 )} ≥

√︂
𝑑

ℓ

, where 𝑓2 (𝑑, 𝑙) =
(
1 − 1

𝑑

(
1 − 𝑑

ℓ

) 𝑑
2

)
.

Proof. If 𝑤 is a unit vector randomly sampled from 1𝑑 , then
the distribution of𝑤 (1) , the first dimension of𝑤 , can be given by

𝑓𝑤 (1) (𝑤) = (1−𝑥
2 )

𝑑
2
−1

𝐵 ( 𝑑
2
, 1
2
) , where 𝐵(𝑝, 𝑞) =

∫
1

0
𝑡 (𝑝−1) (1 − 𝑡) (𝑞−1) is the

Beta function. If we rotate our axis such that the vector 𝜇𝑋 − 𝜇𝑌 is

aligned along the first dimension, then note that𝑤1 = cos𝜃 , where

𝜃 is the angle between the vectors𝑤 and 𝜇𝑋 − 𝜇𝑌 . Therefore,
(1) when max𝑖 {cos(𝜃𝑖 )},

I = Pr

{
cos𝜃 ≥ 1

√
𝑑ℓ

}
= 2

∫
1

1√
𝑑ℓ

(1 − 𝑥2)
𝑑
2
−1

𝐵( 𝑑
2
, 1
2
)

𝑑𝑥

We then use the fact that 𝐵( 𝑑
2
, 1
2
) ≤ 2 whenever 𝑑 ≥ 2 to get

I ≥
∫

1

1√
𝑑ℓ

(1− 𝑥2)
𝑑
2
−1𝑑𝑥 ≥

∫
1

1√
𝑑ℓ

𝑥 (1− 𝑥2)
𝑑
2
−1𝑑𝑥 =

1

𝑑

(
1 − 1

𝑑ℓ

) 𝑑
2

.

If we sample 𝑠 vectors, then the probability that

max

𝑖
{cos(𝜃𝑖 )} ≥

1

√
𝑑ℓ

is at least 1 − 𝑓1 (𝑑, 𝑙)𝑠 .
(2) And when max𝑖 {cos(𝜃𝑖 )} ≥

√︃
𝑑
ℓ ,

I ≥
∫

1√︃
𝑑
ℓ

𝑥 (1 − 𝑥2)
𝑑
2
−1𝑑𝑥 =

1

𝑑

(
1 − 𝑑

ℓ

) 𝑑
2

.

If we sample 𝑠 vectors, then the probability that

max

𝑖
{cos(𝜃𝑖 )} ≥

√︂
𝑑

ℓ

is at least 1 − 𝑓2 (𝑑, 𝑙)𝑠 .
□

The result of calculation 4.5 shows that the probability that a

random vector will form a small angle with 𝜇𝑋 − 𝜇𝑌 increases

rapidly as 𝑠 increases. Equipped with the results from the preceding

calculations, we proceed with the proof our theorem as follows.

Proof of Theorem 4.1. Suppose we use 𝑘0 hash functions for

our Bloom filter. We may treat this PHBF as 𝑘0 independent PHBFs

with parameters 𝛿 = 1 and 𝑘 = 1 and sample 𝑠0 vectors per hash

function, where 𝑠0 = 2𝑑

(
ln (𝑘0) + ln

(
2

𝜀

))
. We show the bound for

each case below:

(1) A1. Using our results from calculations 4.2 and 4.5, we can say

that with a probability at least 1− 𝑓2 (𝑑, 𝑙)𝑠0 , the expected FPR of the

𝑖𝑡ℎ filter is upper bounded as 𝜀 (𝑖 ) ≤ 4𝑛 (𝜎2

𝑋
+𝜎2

𝑌
)

ℓ2
. Since each of the

𝑘0 filters would behave independently of each other, the expected

FPR of the overall PHBF is upper bounded as

(
4𝑛𝑑 (𝜎2

𝑋
+𝜎2

𝑌
)

ℓ

)𝑘0
= 𝜀

2

with a probability at least (1 − 𝑓2 (𝑑, 𝑙)𝑠0 )𝑘0 ≥ 1 − 𝑘0𝑒
𝑠
0

2𝑑 = 1 − 𝜀
2
.
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Also, with a probability at most
𝜀
2
, the expected FPR of the PHBF is

trivially upper bounded by 1. It follows from this that the expected

FPR is at most (1 − 𝜀
2
) 𝜀
2
+ 𝜀

2
≤ 𝜀.

We have therefore shown that if we use 𝑘0 hash functions and

select 𝑠0 vectors in our SelectVectors subroutine, we can achieve

an expected FPR of 𝜀.

We can now proceed to show the bounds on 𝑘0 and 𝑠0. We may

write 𝑘0 ≤ −
ln

𝜀
2

ln 𝑙−ln𝑛𝑑−(𝜎2

𝑋
+𝜎2

𝑌
) . Since there exists a constant 𝐶

such that ℓ > 𝐶𝑑
√
𝑛, we may further write 𝑘0 ≤ −𝑐1 ln(𝜀) + 𝑐2, for

some constants 𝑐1 and 𝑐2.

Similarly, we can bound 𝑠 = 2𝑑

(
ln(𝑘) + ln

(
2

𝜀

))
≤ −𝑐3𝑑 ln (𝜀) +𝑐4𝑑

for some constants 𝑐3 and 𝑐4.

(2) A2. Using our results from calculations 4.3 and 4.5, we can

say that with a probability at least 1 − 𝑓1 (𝑑, 𝑙)𝑠0 , the expected FPR

of the 𝑖𝑡ℎ filter is upper bounded as 𝜀 ≤ 4𝑛
√
𝜋

2
𝑒−

ℓ2 cos2 𝜃
𝑐𝑑 .

Since each of the 𝑘0 filters would behave independently of each

other, the expected FPR of the overall PHBF is upper bounded as(
4𝑛
√
𝜋

2
𝑒−

ℓ2 cos2 𝜃
𝑐𝑑

)𝑘0
= 𝜀

2
with a probability at least(

1 − 𝑓1 (𝑑, 𝑙)𝑠0
)𝑘0 ≥ 1 − 𝑘0𝑒

𝑠
0

2𝑑 = 1 − 𝜀

2

.

Also, with a probability at most
𝜀
2
, the expected FPR of the PHBF is

trivially upper bounded by 1. It follows from this that the expected

FPR is at most (1 − 𝜀
2
) 𝜀
2
+ 𝜀

2
≤ 𝜀.

We have therefore shown that if we use 𝑘0 hash functions and

select 𝑠0 vectors in our SelectVectors subroutine, we can achieve

an expected FPR of 𝜀.

We can now proceed to show the bounds on 𝑘0 and 𝑠0. If we treat

𝜎𝑋 and 𝜎𝑌 as constants, we may write 𝑘0 ≤ −
2𝑐1𝑑 ln( 𝜀

2
)

ℓ−𝑑𝑐2 (ln(𝑛)+𝑐3 ) . Since
there exists a constant 𝐶 such that ℓ > 𝐶𝑑 ln(𝑛), we may further

write 𝑘0 ≤ −𝑐1
𝑑 ln( 𝜀

2
)

ℓ ≤ −𝑐1 ln(𝜀) + 𝑐2, for some constants 𝑐1 and

𝑐2.

Similarly, we can bound 𝑠 = 2𝑑

(
ln(𝑘) + ln

(
2

𝜀

))
≤ −𝑐3𝑑 ln (𝜀) +𝑐4𝑑

for some constants 𝑐3 and 𝑐4.

(3) A3. Using our results from calculations 4.4 and 4.5, we can say

that with a probability at least 1− 𝑓1 (𝑑, 𝑙)𝑠0 , the expected FPR of the

𝑖𝑡ℎ filter is upper bounded as 𝜀 (𝑖 ) ≤ 𝑛

√︂
𝑑
2𝜋ℓ

(
𝜎2
𝑋
+ 𝜎2

𝑌

)
𝑒
− ℓ

2𝑑 (𝜎2

𝑋
+𝜎2

𝑌
)
.

Since each of the 𝑘0 filters would behave independently of each

other, the expected FPR of the overall PHBF is upper bounded as(
𝑛

√︂
𝑑
2𝜋ℓ

(
𝜎2
𝑋
+ 𝜎2

𝑌

)
𝑒
− ℓ

2𝑑 (𝜎2

𝑋
+𝜎2

𝑌
)
)𝑘0

= 𝜀
2
with a probability at least(

1 − 𝑓1 (𝑑, 𝑙)𝑠0
)𝑘0 ≥ 1 − 𝑘0𝑒

𝑠
0

2𝑑 = 1 − 𝜀

2

.

Then, proceeding as above, we get the result.

□

Theorem 4.1 tells us that the number of hash functions 𝑘 , and

thus the number of bits 𝑚 since 𝑘 = 𝑚 for 𝛿 = 1, required to

maintain an expected FPR of 𝜀 remains constant even as 𝑛 increases,

given that the separation between the distributions increases as well.

This is unlike the traditional Bloom filter whose size must increase

linearly with 𝑛 in order to maintain a constant FPR. Furthermore,

Figure 4: Role of 𝛿 in discriminating 𝑦 ∈ 𝑌 from the points
from 𝑋 : The hash function ℎ (𝑤2 ) cannot separate 𝑦 with 𝛿 = 1,
and generates a false positive. The hash function ℎ (𝑤1 ) with
𝛿 = 6 can successfully separate 𝑦 from 𝑋 .

the number of required vector selections 𝑠 also does not have a

dependence on 𝑛.

Here, we note that this analysis is different from the analysis

of FPR performed in [27]. The purpose of our analysis is to ex-

press the false positive rate in terms of the design parameters of

PHBF and thus guide the selection of design parameters. To do this,

we need to quantify the classifier’s performance, which requires

making assumptions of varying degrees about the data. To demon-

strate these, we perform three analyses. By making no assumptions

on the data, we get looser bounds on the FPR. By assuming that

the features are independent and are bounded, we get a tighter

bound. Finally, by assuming that the data comes from a particular

distribution, we achieve even tighter bounds. On the other hand,

the goal of the analysis performed in [27] is to compare it with

other learned Bloom filters using similar models and therefore do

not need to quantify the classifier’s performance. They make the

assumption that the model learned the distribution of scores of

non-keys perfectly, which leads to the implicit assumption that the

data distribution is simple enough for the model to learn or that

enough training data is provided for the model.

4.1 Practical Considerations
As mentioned, this analysis makes the simplifying assumption of

𝛿 = 1. This is a worst-case analysis that gives us an upper bound on

the number of hash functions. To see this, we consider the situation

in Figure 4. The negative key 𝑦 cannot be discriminated by using

𝛿 = 1, but can be separated by using 𝛿 = 6. Section 5.3 talks about

the choice of 𝛿 for real world datasets.

The analysis in this section is intended to provide a general

guideline for selection of design parameters for PHBF. A typical

workflow to incorporate PHBF is

(1) Given 𝑋 and 𝑌 , determine the empirical means 𝜇𝑋 and 𝜇𝑌
and the variances 𝜎𝑋 and 𝜎𝑌 .

(2) Compute the 𝜀 using Equation 2. Select 𝑘 such that 𝜀𝑘 gives

the desired target FPR.
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(3) Select 𝑘 vectors by sampling 𝑠𝑘 random vectors, where 𝑠 =

Θ(𝑑 ln𝑑) using Algorithm 2.

(4) Select an appropriate 𝛿 and create a Bloom filter with bit-

vector of size𝑚 = 𝛿𝑘 , and use the 𝑘 vectors to compute the hash

functions to populate the Bloom filter according to Algorithm 1.

The choice of 𝛿 = 32 is determined empirically to work best across

all datasets. See Section 5.3 for more details on the choice of 𝛿 .

We demonstrate these steps for designing PHBF using the exam-

ple of Facebook Check-in data.

(1) The means and variances of the positive and negative points

of the dataset are 𝜇𝑋 = 0, 𝜇𝑌 = 8.64, 𝜎𝑋 = 1, 𝜎𝑌 = 2.56.

(2) The FPR by evaluating Equation 2 numerically yields 𝜀 ≈
5 × 10−1. For a target FPR of 10

−3
, we get 𝑘 = 6.

(3) We calculate 𝑠 = 5 ln 5 ≈ 8.

(4) With this configuration, and setting 𝛿 = 32, we get 𝑚 =

8 ∗ 32 = 256.

Experimentally, this configuration gives us an FPR of 7.5 × 10−4.
This means that we over provisioned the memory slightly, showing

that the theory gives us the upper bound.

Section 5.6 further shows that these bounds are pessimistic and

provides an upper bound for FPR. Section 5.6 verifies the theory

empirically.

5 EXPERIMENTS
In this section we present the empirical comparison of the false

positive rates and memory utilization of PHBF with the baseline

methods on various datasets, and analyze the sensitivity of PHBF

to its design parameters. We also perform a series of experiments

on synthetic data generated from Gaussian distribution to confirm

the theoretical results from Section 4.

5.1 Datasets
We evaluate PHBF on various well known benchmark datasets,

whose details are summarized in Table 2. The datasets span a

wide spectrum of applications including detection of network at-

tacks (Kitsune [23]), identifying malicious files and URLs (Malicious

URLs [22], EMBER [2]), particle detection (HIGGS [3]), detecting

check-in location (Facebook Check-in [10]) and image identification

(MNIST [17]).

Data preparation. We preprocessed the data to have two labels:

1 if it is inserted into the index structure, and 0 if it is not inserted.

For binary datasets, we retain the labels. For example, for EMBER

dataset, we insert the malicious files (labelled 1). For MNIST, which

is a non-binary dataset, for each run we randomly select a class

from 0, 1 and 4 as the positive class (labelled 1), and the rest as

negative class (labelled 0). The result is reported on the average of

five runs.

5.2 Baselines
We compared PHBF against the following methods.

Standard Bloom filter (BF). Acts as a baseline for the methods.

We use Murmur3 hash, which is widely used in Bloom filters [7].

Murmur3 serializes the key to a byte stream and process it by

chunking into fixed sizes. Larger keys meanmore chunks to process.

Table 2: Statistics of the datasets used for comparison. Set 𝑋
is inserted and set 𝑌 is queried on.

Dataset Size of X Size of Y Dimensions

Kitsune 642516 121620 116

EMBER 400000 400000 2381

Higgs 56540 54323 28

Facebook Check-in 50000 50000 5

Malicious URLs 16273 2709 79

MNIST 6000 6000 784

Distance Sensitive Bloom Filter (DSBF). This is an implementation

of Distance Sensitive Bloom filter using random projection based

LSH [8]. We use this as a baseline because the approach seems

similar to us at the surface, but as we demonstrate here, it is not

suitable for the task.

Hash Adaptive Bloom Filter (HABF). Hash adaptive Bloom fil-

ters [29] uses the positive and negative keys differently that other

learned Bloom filters. A data structure called HashExpressor se-

lects the appropriate hash functions that causes the least number

of collisions among the keys. They do not use a machine learning

model.

Bloom Filter with Learned Hash Model (LHBF). This is an im-

plementation of learned Bloom filters using classifier as the hash

function [16]. We tried SVM, neural networks and random forests

as the model and chose random forest as it performed best across

all datasets.

Learned Bloom Filter (LBF). We use the implementation of LBF

using sandwiching [25], which is shown to outperform the original

LBF [16] consistently.We use a random forest classifier as themodel.

The variation in model sizes for the experiments were achieved by

varying the number of trees used by the model.

Adaptive Learned Bloom Filter (Ada-BF). Adaptive Bloomfilter [9]

generalizes the LBF by partitioning the range of the classifier scores

and assigning different Bloom filters to different ranges. This allows

them to use smaller Bloom filters in regions of high confidence and

larger ones where there are significant overlaps between the keys.

Partitioned Learned Bloom Filter (PLBF). Partitioned Learned

Bloom filter [27] uses the idea of partitioning the space like Ada-BF.

PLBF formulates the model utilization as optimization problem

and selects the optimal thresholds and false positive rates for each

partition.

5.3 Implementation Details
We implemented PHBF using Python 3.9 with numpy library. We

used dask library for the parallelized execution of both vector

selection algorithm and population of the Bloom filter partitions.

All experiments were conducted on a server with Intel Xeon Gold

6248 at 2.50GHz, with 400GB of RAM.

The random vector selection was parallelized to utilize 8 cores,

which gave the optimal speedup. The computation of projections

and computing overlaps was vectorized using numpy. The hash
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Figure 5: Comparison of FPR. The horizontal axis represents the memory usage as bytes used per key of the data. The two
vertical lines indicate space usage of 0.1 and 0.2 bytes per key.
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Figure 6: Comparison of bit array size and model size. The light (bottom) bar shows the bit array size and the dark (top) bar
shows the model size. Note that some baselines do not use a model, and the size is entirely due to the bit array.
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computation for both construction and query is parallelized using

8 cores as well.

The parameter 𝛿 was selected using grid search. The conceptual

effect of 𝛿 was discussed in Section 4. In practice, we found that

the value of 𝛿 = 32 produces the best result across all datasets.

5.4 Results and Discussion
Figure 5 shows the comparison of PHBF in terms of memory utiliza-

tion and corresponding FPR with the benchmark methods for all

six datasets. PHBF outperforms all the other methods by achieving

lower FPR for a given fixed space usage when the desired space

usage is less than 0.2 bytes per key. The gain in performance is

more pronounced in relatively higher FPR range (10
−2
–10
−3
). For

some datasets like MNIST and Facebook Check-In, PHBF shows up

to 2 orders between FPR score compared the standard Bloom filter

using similar memory.

For some datasets, like Kitsune and Facebook Check-In and ma-

licious URLs, the gap in FPR for a given memory usage is large

between the learned methods and the standard Bloom filter. This

shows that the pattern in the data can be exploited by thesemethods.

In some datasets, such as EMBER, the gap between BF and LBF is

quite small while PHBF outperforms LBF significantly. This shows

that PHBF can distinguish between the inserted and non-inserted

keys for these datasets using less memory, while the other models

cannot achieve that.

We notice that PHBF performs significantly better than the base-

lines when operating with low memory (that is, achieving a higher

compression). When achieving a space usage of 0.1 bytes per key,

PHBF beats all the other baselines. At a space usage of 0.2 bytes

per key, PHBF has superior performance on 5 out of 6 datasets.

When more memory is used, we notice that PLBF and Ada-BF start

to catch up, or even outperform PHBF. This trend holds for LBF

as well. This is because given enough space, the random forest

learns the data with high accuracy and thus achieve low FPR. The

gain, of course, comes at the cost of high memory usage. This point

confirms our assertion that PHBF is the ideal method when the

application demands low memory usage.

We also note that the random projection based LSH is not a suit-

able hash function to exploit the complex patterns in these datasets.

It only provides significant benefits over standard BF when the data

is easily distinguishable, such as Facebook Check-In and MNIST.

PHBF takes advantage of the multiple partitions to get independent

projections, and, discretization which allows it to handle datasets

with multiple modes, to consistently outperform DSBF using LSH.

Similarly, while HABF outperforms standard Bloom filters, it cannot

compete with methods that use the data to learn a model, rather

than selecting proper hash functions.

Finally, we notice that for HIGGS, the performance of all the

methods are very close. This shows that the dataset does not have

enough information for the learned methods to exploit the pattern.

Figure 6 shows the memory usage of model and bit array sepa-

rately. The values are selected at the FPR where PHBF achieves a

space usage of 0.1 bytes per key. PHBF uses a small fraction of the

total memory to store the model, thus allowing larger bit arrays.

Partitioned based methods, on the other hand, uses a larger fraction

of the memory to store the model. For the methods that do not use

a model, the entire size is due to the bit array.

5.5 Comparison of Construction, Training, and
Query Times

Figure 7 compares the construction, training and query times of

PHBF with the baselines. We notice that the construction of PHBF

is much faster than other learned methods, although, as expected,

it is slower than the methods that do not have a learning phase.
The training overhead for learned methods is shown in Figure 7.

The training phase of PHBF, that is, the vector selection phase, is

an order of magnitude faster than the machine learning models

used in learned Bloom filters. HABF is faster in selection of hash

functions using HashExpresssor [29], but it is not designed to learn

the specific patterns of the data but rather to choose the desirable

hash functions from a given set. More importantly, with paralleliza-

tion, the query time per 1000 queries of PHBF is comparable to

the standard Bloom filters, and order of magnitude faster than the

methods using learned models. In particular, note that the query

time of standard Bloom filters suffer when the dimensionality (key

size) increases because this causes the Murmur3 hash function to

slow down. This is because Murmur3 has to serialize the large key

and break it into larger number of chunks.

5.6 Confirmation of Theoretical Results
In this section we validate our theoretical results empirically. To

test the theory, we generate three datasets:

Synthetic 1 This dataset is generated by sampling points from

bivariate 𝛽 distribution. The reason for this choice is to make the

two dimensions dependent on each other. The positive points were

centered at 0 and the negatives we shifted to vary ℓ .

Synthetic 2 To generate this dataset, we sampled each dimen-

sion independently for uniform distribution with the bound of[
0, 1√

𝑑

]
. The negative points are generated by shifting each of the

intervals, as well as changing the bounds to vary ℓ .

Synthetic 3 This dataset uses points generated from Gaussian

distribution. Positive points were generated from N(0, 1), and the

mean and variance of negative distributions were adjusted to vary

ℓ .

We construct the PHBF for each of these datasets and use the

theorem corresponding to the assumptionsA1,A2, andA3 described

in Section 4.

Figure 8 shows the relationship between the number of hash func-

tions 𝑘 and the FPR for each of the three datasets and corresponding

assumption. We notice that with each stronger assumption, the

theoretical bound becomes tighter, while still being pessimistic.

Comparison of FPR with the separation ℓ in Figure 9 displays sim-

ilar trend. The theoretical value remains as upper bound and the

gap between theoretical and empirical results decreases as the as-

sumptions get stronger.

5.7 Sensitivity to Hyperparameters
We now analyze the sensitivity of the performance of PHBF with

changes in various parameters.
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Figure 7: Comparison of construction time and time per 1000 queries. The set of first 5 methods utilizes the sets 𝑋 and 𝑌 to
train a model, leading to higher construction time compared to the last two, which do not use them.
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Sensitivity to sizes and number of hash functions. Figure 10 shows
the variation in false positive rate with changing the size of the bit

array,𝑚 and the number of bits per partition, 𝛿 for EMBER and

MNIST. Other datasets follow a similar trend. The small values of 𝛿

doesn’t allow enough discriminative power to each Bloom filter. But

for a fixed bit array size, increasing 𝛿 beyond a certain value leaves

room for fewer hash functions. We notice that 𝛿 = 32 produces the

optimal results across datasets. For a given size of the bit array, the

false positive rate of PHBF doesn’t change significantly when the
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Figure 10: Sensitivity of FPR to the changes in the size of the
bit array (𝑚) and number of bits per partition (𝛿).

size of the bit array is small. This is because PHBF gets to work

with few hash functions. As we increase the size of the bit array,

increasing the size of bits per partition provides a larger gain in

FPR, because the number of hash functions are large. For some

datasets, like EMBER and HIGGS, the FPR changes by an order of

magnitude by increasing 𝛿 from 16 to 32. This shows the clusters

in data demanded a range greater than 16 for the hash functions.

When increasing to 64, the lack of hash functions more than offsets

the gain from greater range. For some datasets, such as MNIST

and Facebook Check-In, the changes in 𝛿 doesn’t affect the FPR as

much. This means that the data is clustered close together and can

be discriminated using hash functions of smaller range.

Sensitivity to training size. Figure 11 shows the relation between

FPR and the fraction of training samples used. We see that the

training time scales linearly with increase in training size. The

decrease in FPR is not linear. For Kitsune and Ember, which are

relatively large dataset, initially the FPR drops linearly, but the gain
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in FPR diminishes with more training points. For relative smaller

dataset, MNIST, all the data points are crucial and the FPR decreases

almost linearly with increase in training samples.
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Figure 11: Sensitivity of FPR and training time with varying
training data size.
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Figure 12: Sensitivity of FPR for varying sampling factor 𝑠.

Sensitivity to sampling factor. The sampling factor determines

the quality of the random vectors used for the hash functions. As

Figure 12 shows, the false positive rate improves as we sample

more vectors. The gain, however, depends on the distribution of the

data. Some datasets, such as EMBER and HIGGS gain significant

advantage with sampling more vectors. Some datasets like URL

doesn’t show major improvements. This shows that these datasets

has low effective dimensionality, beyond which additional vectors

don’t contribute much to distinguish the data.

5.8 Impact of Projection Hash Bloom Filter on
end-to-end application

We have demonstrated the performance advantage of PHBF over

other methods by comparing the false positive rates and memory

usage. In this section, we consider the impact this can have on a

real world application.

We demonstrate this using the example of a database system.

Databases are known to use complex keys which can be used as fea-

ture vectors formachine learning. One such example is RAMBO [12]

that uses sequences as keys. The cost of false positives for a database

system is a false disk access when the index structure mistakenly

says that a key exists in a disk.

Let us consider the scenario where the database system stores

keys from Kitsune network attack dataset. We also assume that the

system is designed for space usage of 0.1 bytes per key. For this

configuration, from Figure 5, we see that PHBF provides a false

positive rate of 0.0048, and PLBF, the next best structure provides an

FPR of 0.0072. We also see from Figure 7 that PHBF takes 0.2𝑚𝑠 and

PLBF takes 0.6𝑚𝑠 to perform a query. Additionally, a disk access for

a standard 600MB/s SATA-III disk using the standard LRU caching

takes 43ms per read operation [26]. This is ignoring the seek time,

which can vary depending on the load.With this setup, the expected

access time per key of PLBF is: (1 - 0.0072) * 0.6 + 0.0072 * (0.6 + 43)

= 0.9096 ms. In contrast, PHBF takes (1 - 0.0048) * 0.2 + 0.0048 * (0.2

+ 43) = 0.4064 ms, which is almost twice as fast as PLBF.

6 CONCLUSIONS
In this paper we presented a novel way to partition the Bloom filter

where each partition uses a single data dependent hash function.

Each hash function is derived by sampling vectors uniformly at

random from 1𝑑 and projecting the given keys onto it. During the

learning phase, PHBF selects a set of 𝑘 vectors that best serve the

purpose of distinguishing inserted and non-inserted keys. Then

each of the hash functions populates the corresponding partition

of the bit array of size𝑚. During a query, the 𝑘 hash functions are

evaluated, and the corresponding bins are checked. We presented a

theoretical analysis which provides a bound on false positive rate

and guides the selection of design parameters.

We demonstrate the superior performance of PHBF over state

of the art learned Bloom filter methods on a variety of benchmark

datasets spanning a wide range of applications. We show that when

the data is distinguishable, PHBF achieves 2 orders of magnitude

better performance in terms of FPR for a given fixed space usage

compared to the standard Bloom filter. Even when the data distri-

bution is less favorable, PHBF can extract information better than

the models used in LBF for a given memory cost.
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