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Abstract

Erasure coding (EC) has been widely used in cloud
storage systems because it effectively reduces storage
redundancy while providing the same level of durability.
However, EC introduces significant overhead to small
write operations which perform partial write to an entire
EC group. This has been a major barrier for EC to
be widely adopted in small-write-intensive systems such
as virtual disk service. Parity logging (PL) appends
parity changes to a journal to accelerate partial writes.
However, since previous PL schemes have to perform a
time-consuming write-after-read for each partial write,
i.e., read the current value of the data and then compute
and write the parity delta, their write performance is still
much lower than that of replication-based storage.

This paper presents PARIX, a speculative partial write
scheme for fast parity logging. We transform the original
formula of parity calculation, so as to use the data deltas
(between the current/original data values), instead of
the parity deltas, to calculate the parities during journal
replay. For each partial write, this allows PARIX to
speculatively log only the current value of the data. The
original value is needed only once in a journal when
performing the first write to the data. For a series of
n partial writes to the same data, PARIX performs pure
write (instead of write-after-read) for the last n — 1 ones
while only introducing a small penalty of an extra net-
work RTT (round-trip time) to the first one. Evaluation
results show that PARIX remarkably outperforms state-
of-the-art PL schemes in partial write performance.

1 Introduction

Failures are common in large-scale cloud storage sys-
tems [22, 34, 35]. For example, more than 1000 server
failures occur in one year in Google’s 1800-server clus-
ters [5]. To maintain data durability against failures,
storage systems usually have two options, namely, repli-
cation [24] and erasure coding (EC) [25]. In replication,

the storage system uses multiple replicas for each piece
of data, while EC encodes the original data to generate
new parities such that the original data can be recovered
from a subset of the data and parities. EC has less storage
overhead than replication while providing the same or
even higher level of durability [32], and thus has been
widely adopted in not only RAID systems [10, 30, 28,

] but also modern cloud storage systems [13, 16, 27].

In cloud storage systems like Amazon Dynamo [!2]
and Windows Azure [7], small write operations [29]
(which perform partial write to an entire EC group) are
dominant for many real-world workloads. For erasure-
coded storage systems that frequently perform small
writes, it is important to efficiently support EC partial
writes. Usually there are two ways to perform writes [8],
namely, in-place update which directly updates the new
data, and log-based update which appends the writes to
a journal [26]. The logs are asynchronously replayed to
update the data with the latest values when the system is
idle.

Logging improves the write performance but degrades
the read performance [32]. Parity logging (PL) [29]
adopts a hybrid approach. Since normally only the data
is read and the parities will only be read when the data is
not available, PL respectively performs in-place update
and log-based update for writes of the data and of the
parities, so as to achieve a balance between reads and
writes. However, state-of-the-art PL schemes [29, 17, 8]
have to perform a time-consuming write-after-read for
each partial write to compute the parity delta (which will
be used to “patch” the parity during journal replay), and
thus their write performance is still significantly lower
than that of replication [32].

This paper presents PARIX, a speculative partial write
scheme for fast parity logging. We transform the original
formula of parity calculation, so as to use the data deltas
(between the current and original values), instead of the
parity deltas, to update the parities during journal replay.
For each partial write, this allows PARIX to speculatively

USENIX Association

2017 USENIX Annual Technical Conference 581



log only the new value of the data without reading its
original value, which is needed only once in a journal
when performing the first write to the data. For a series
of n partial writes to the same data, PARIX performs
pure write (instead of write-after-read) for the last n — 1
ones while only introducing a small penalty of an extra
network RTT (round-trip time) to the first one.

Based on PARIX, we have built a prototype of an
erasure-coded block store [ ] providing virtual disks that
can be mounted by cloud-oblivious applications with
strong consistency guarantees. Evaluation on the PARIX
block store shows that PARIX not only achieves similar
or even higher I/O performance compared to replication
(with much higher storage efficiency), but also remark-
ably outperforms state-of-the-art PL. schemes in partial
write performance by up to orders of magnitude.

This paper makes the following contributions.

e We propose a novel speculative partial write scheme
(PARIX) for fast parity logging in erasure-coded
storage systems.

e We apply PARIX and implement an erasure-coded
block store supporting efficient journal replay and
fast failure recovery.

e We report evaluation results of PARIX’s 1/O perfor-
mance from prototype measurement to demonstrate
the effectiveness of our designs.

The rest of this paper is organized as follows. §2
discusses the background and related work. §3 intro-
duces PARIX partial writes. §4 describes the prototype
of a block store using PARIX-backed EC. §5 presents the
evaluation results. And §6 concludes the paper.

2 Background

Erasure coding (EC) introduces less storage overhead
than replication while providing the same level of dura-
bility [8]. Essentially, EC calculates linear combinations
of the original data in the Galois Field [25] GF (2"\w),
where encoding is performed in the unit of w-bit words
(usually w = 8). For EC(m, k), we have k parity stripes
pj,j = 1,2,---,k, for m original data stripes d;,i =
1,2,---,m, and the m + k stripes are called an EC group
which ensures durability under any k failures. The parity
stripes pj,j=1,2,--- ,k, is calculated by

7pk)T:AX(dlad2a"'adm)T7 (1)

where A = [a;j]mx is the encoding coefficient matrix.
Small writes are dominant for many real-world work-
loads in cloud storage systems, so it is important to
efficiently support EC partial writes, i.e., writes on some
part of an entire EC group. Early EC storage systems
applies in-place update [6] to both data and parity, which
leads to frequent disk seeks on hard-disk drives (HDDs).
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Figure 1: EC vs. replication in (cached) write latency
and IOPS. R3: 3 x replication with backup logging. EC:
erasure coding with in-place update (no logging). EC-
PLog: erasure coding with parity logging.

We compare EC (using in-place update) to replication
in a small testbed of three machines, demonstrating EC
suffers from poor write performance (Fig. 1).

Log-based EC storage systems [16, 14, 8] improve s-
mall writes by appending the writes to a journal. Logging
transforms random small writes into sequential writes to
the journal, and thus (for HDDs) it avoids frequent disk
seeks and boosts the write performance compared with
in-place update. However, log-based approach suffers
from poor read performance since the data is scattered
in the journal. Parity logging (PL) [29] adopts a hybrid
approach to alleviate this problem. It adopts in-place
update to write the data and uses logging to write the
parities. Since the parities will be read only when some
data is unavailable, it improves small write performance
without affecting normal reads.

State-of-the-art PL schemes [29, 17, 8] log the parity
delta for each partial write, which will be used to “patch”
the parity during journal replay. When updating a data
stripe d;, the delta Ap; of parity stripe p;,j=1,2,--- ,k,
is calculated by

Apj = aij XAdh (2)

where Ad,; is the delta of data stripe d; and a;; € A is the
encoding coefficient.
According to Eq. (2), for the " write on a data stripe

d; (denoted as dl-(r)), we first have to read di(rfw, the
current value of d; before this write, and we have Ap; =

ai; x (d"” —d"™V),j=1,2,--- k. Then we write the
new data on the data server and send the k parity deltas
to the parity servers. The entire procedure is illustrated
in Fig. 2a. Our test shows that the latency of the write-
after-read operation on 7,200 RPM HDDs is about 8.3
milliseconds, which is higher than that of pure write
(due to one more disk seek). This contributes most to
the performance degradation of partial writes in current
PL schemes and results in significantly lower small
write performance compared to replication (especially
for cached writes), as shown in Fig. 1.
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write Ap;
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(a) Traditional partial writes in previous parity-logging read
dV to compute Ap ;, which is appended to the parity journal.

‘ client | ‘ data | ‘ parity1 | ‘ parity2 | ‘ paritys |

|

write d©
to journal

successful speculation

write d®)|

failed speculation

write d©

i (1) .
write d to journal

-

(b) Speculative partial writes append d 1) and d© to the parity
journal for the 1% write, and d) for the M writes (r # 1), so
as to avoid disk reads for overwrites.

Figure 2: Parity-logging vs. PARIX (in partial writes).

3 Speculative Partial Write

As discussed in §2, previous PL schemes have to perform
disk reads for partial writes to compute the parity deltas,
which will be used to update the parities during journal
replay. Clearly, the key to improve the performance of
partial writes is to reduce the number of reads.

Consider a series of r writes to the same data stripe

dis say, di(l)vd'(Z)v e

1

7di(’), the parity stripes (pj,j =

1,2,--- k) of which have not yet been replayed. Let dl-(o)
and pE.O) be the original values of the data d; and parity

pj. respectively. By Eq. (2), we could update a parity

stripe p; by Ap‘(jl) =a;j X Adi(l), Aplg-z) =a;j X Ad;z), R

Apy) = ajj X Adim , and thus we have
PV =p"+ Y A =pP+ ¥ ay(al? —af )
x=1 x=1

=¥+ ayx () —d"). 3)

By Eq. (3), the current parity stripes py), Jj=

© d(0> and dm.

1,2,---  k, could be calculated by p; -4

This enables us not to use the delta of the parity, but to
use the delta of the data itself, i.e., the difference between
the data’s latest and original values (d (") and d(©), where
for conciseness we omit the subscripts), to calculate the
parities. Consequently, d(®) only needs to be read once
when writing d1). As shown in Fig. 2b, for each write
the data server speculatively sends the latest value (d")
to the parity servers without reading d (9), The data server
reads d©) only when the parity servers explicitly request
it by returning an error code NEED_DO.

Note that in Fig. 2b the data server does not know
whether d(©) is needed before receiving responses from
parity servers. This is because d© is needed every time
after the log gets merged into the parity chunk, which is
performed independently by every parity server. It is too
expensive to maintain the consensus about whether d(©)
is needed for every chunk on every parity server, as it
introduces overwhelming communication cost, memory
footprint and design complexity.

For a series of r writes, d M ~d (’), the speculation will
succeed for r — 1 writes (d() , d<3), e ,d(’)) and will only
fail once (d(1)). Consequently, PARIX avoids disk reads
(on the data server) for the last r — 1 writes while only
introducing a small penalty of an extra network RTT to
the first one.

A partial write to an EC group performs both random
writes to the data and sequential appends to the parity.
Although PARIX and previous PL schemes have similar
overhead in performing appends on the parity servers,
PARIX remarkably outperforms them in performing
writes on the data server: for a non-cached (resp. cached)
overwrite, PARIX’s overhead is a disk write (resp. a
memory write), while previous PL schemes’ overhead is
a disk write after a disk read (resp. a memory write after
a disk read) assuming the read is cache-missed.

If the speculation fails, d©) needs to be sent from
the data chunk to the parity chunk, introducing an extra
network RTT of about 0.1 ~ 0.2 milliseconds. The failed
speculation also wastes extra network bandwidth, which
is negligible for modern networks as the partial writes
are small. It is the parity servers’ responsibility to track
whether d© is already in the log for its EC group.

Compared to existing PL techniques, the speculation-
based scheme usually reduces the amount of reads and
slightly increases the amount of writes when missing
d©®. In the worst case (of large sequential one-shot
writes), speculation might double the amount of writes.
Besides, a few more extra bytes will be transferred
between data/parity servers when missing d ©), Clearly,
large sequential one-shot write workload is not suitable
for the speculative partial write scheme, and could be
recognized by an additional cache layer (which will be
studied in our future work) and handled as full writes.

Full writes. Workloads in real-world applications per-
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Figure 3: Partial writes with strong consistency guaran-
tee. LDW: local data write. LPU: local parity update.

form not only random small writes but also large se-
quential writes, which induce full writes on the entire EC
groups. For a full write d = (d;), i = 1,2,--- ,m, we first
compute the parity p = (p;), j =1,2,--- ,k by Eq. (1)
and write the parity into the corresponding parity servers.
We then invalidate previous logs for the EC group in the
journal by appending a special mark /. Therefore, the
logs for data d on the parity journal are in the form of
“d(l), d(0>, d(Z), N d(l), d0, d(Z), oo, I, ---”. Note
that d1V) is ahead of d*) due to the speculation (Fig. 2b).

Replay. The replay of parity journals is asynchronously
performed when the disk is idle. The (basic) replay
procedure is straightforward. A process traverses the
journal from the beginning, and for each parity block (the
minimum unit of a disk sector) it records the original
and latest data blocks (d® and d)) in RAM. When
encountering a mark /, it invalidates the records that are
ahead of /. Finally it updates all the parities using the
recorded original and latest values by Eq. (3).

4 PARIX Block Store

We have implemented a prototype of PARIX block store
(PBS), which utilizes PARIX to provide virtual disks [18,

, 21] that can be mounted by virtual machines (VMs)
running cloud-oblivious POSIX applications. The design
of PBS is similar to Blizzard [21] and URSA [1], except
that PBS uses PARIX-backed EC (instead of replication
in Blizzard and URSA) to achieve data durability.

PBS organizes its data and parity into fixed-size (nor-
mally 64MB) data/parity chunks. Like URSA [1], PBS
leverages MySQL [4] and Redis [2] to implement a
global master [9], which can be configured into the
high-availability (HA) mode [33]. The master manages
metadata [23] such as chunk ID/size and performance
statistics, coordinates services like volume creation and
recovery [19], and detects errors like missing servers and
inconsistent chunks. Clients retrieve chunk information
from the master, and read/write data through the chunk
servers. PBS adopts no nested striping [21], because EC
has essentially achieved the same effect.

Fig. 3 shows the partial write procedure in PBS. A
client sends a write request to the data server, which
forwards it to all relevant parity chunks on different
parity servers. When receiving the write, the parity
servers perform local parity update (LPU) to the per-
chunk journal (Fig. 2b) and respond to the data server.
Note that the data server cannot perform in-place local
data write (LDW) for updating the data to its disk until
this point, since if the parity servers request the initial
value (d?)) in their response it will need to perform read-
after-write (instead of pure write) and send d ©) to them.

PBS extends the basic replay procedure (§3). We
maintain an index structure in RAM recording the po-
sitions of d(©) and d(") for each parity block, so that in
replay we could update a parity block by reading only the
two blocks in the journal without traversing the journal.
For EC(im,k), in the worst case the size of logs needed
to be read from the journal for replaying a parity chunk
is 2m times the parity chunk size, because calculating
a parity block requires at most m data blocks each of
which requires its own d© and d\"). Since the journal
is replayed whenever the disk is idle, in practice its size
is much smaller than 2m times the parity chunk size.

In the worst case the index structure keeps 2 addresses
in RAM for each data block (of 512B), but the actual
index size is much less than that, because: (i) the sizes
of most small writes are at least 4KB (a page), instead
of 512B (a block), which only requires to keep in RAM
the first index and the size of each write; and (ii) a large
write will immediately free all the in-RAM indices for
the corresponding blocks. Assuming an average write
size of 64KB, the in-RAM index size is at least three
orders of magnitude smaller than the size of the data.

Recovery. When a data/parity chunk fails, the healthy
data/parity blocks in the corresponding EC groups are
read to perform the recovery. The unplayed parity logs
in the journal are first replayed, similar to the aforemen-
tioned normal replay procedure. The small difference is
that the recovery is pipelined: each parity block is used
to calculate the failed block right after it is replayed.

Consistency. PBS uses a lease to ensure a virtual
disk has at most one active client at any time and
leverages (chunk-level) versioning [15] to guarantee per
chunk strong consistency [1 1] (Fig. 3). The versioning
mechanism is similar to that of parity logging [17], the
details of which are omitted here due to lack of space.

5 Evaluation

This section presents evaluation results of the PBS proto-
type. Our testbed consists of 10 machines, each with dual
10-core Xeon E5-2630v4 2.20GHz CPU, 128GB RAM,
one 10GbE NIC port, and 10 7200RPM HDDs. The ma-
chines connect to a non-blocking 10GbE network. The
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Figure 4: IOPS test. Background log flushing is omitted
since PARIX only introduces a very small amount of
extra data for logging compared to existing PL schemes.
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Figure 5: Latency test. Note that PARIX tries to elim-
inate unnecessary reads when performing speculative
partial writes, so we measure random I/O latency so as
to avoid the impact of prefetching and caching.

sizes of data/parity chunks and EC stripes are 64MB and
16KB, respectively. The virtual disk size is 100GB. The
performance is measured by micro benchmarks, namely,
small writes of 4KB block size (fio --rw=randwrite
bs=4KB). §5.1 measures the performance of PBS in IOPS
and latency, and §5.2 shows the recovery performance of
PBS with different journal sizes.

5.1 PARIX Block Store

This section evaluates PBS. All measurements are per-
formed on the VMs that mount virtual disks. For non-
cached write, we turn off the cache in the OS and RAID
cards, but keep the on-disk cache (otherwise the tests
would not be able to get stable results). The queue depth
is 1 and 32 for latency and IOPS tests, respectively.
Figs. 4 and 5 show the results in IOPS and random
latency, respectively, where HDD represents the baseline
performance of an HDD, R3 uses 3 replication, PBS-1
and PBS-2 use EC(4,2) respectively with failed and
successful speculation, EC is the standard EC(4,2) mode
(no journal), and PLog uses traditional parity logging.
First, PARIX remarkably outperforms PLog when

8
24
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o
>
3
cGEZIIIIIII
0
02 04 08 16 3.2

Journal Size (normalized to chunk size)

Figure 6: Single chunk failure recovery.

write-after-read is avoided in successful speculation.
Second, PARIX is comparable to PLog even when the
speculation fails, since the penalty is as small as an extra
network RTT. Note that in order to compare different
EC partial write schemes we must exclude the influence
of read caching and prefetching, which exist in multiple
layers in the I/O stack. Therefore, in Fig. 5 we measure
the random (instead of sequential) 1/O latency for all EC
schemes, which may be up to more than 20 milliseconds
unless the speculation succeeds (in PBS-2).

5.2 Recovery

We test the recovery performance of PARIX block store
on 3 machines, using EC(4,2) with 64MB chunk size.
A client first continuously performs small writes (of
4KB block size) until the (per parity chunk) journal
size reaches a pre-defined proportion to the chunk size,
which simulates the scenario that some corresponding
parity logs in the journal have not yet been replayed
before performing the recovery. We then emulate a data
chunk failure by killing its service process. Fig 6 depicts
the recovery times with respect to the exponentially-
increased journal size (ranging from 0 to 3.2x chunk
size). We do not test higher journal sizes, since in those
cases replication would be even more efficient than EC
and thus it might be inappropriate to apply PARIX. The
result shows that the recovery overhead introduced by the
parity journal is small, owing to the (in-RAM) full index.

6 Conclusion

This paper proposes PARIX for fast EC parity logging.
We identify the root cause (write-after-read) for the poor
performance of current EC partial writes, and specula-
tively performs pure write instead of write-after-read for
small overwrites. We have implemented a prototype of
PARIX block store (PBS). Evaluation shows that PBS re-
markably outperforms current PL schemes. In the future,
we plan to use PBS at the backend of our commercial
block store in MOS (Meituan Open Service) [3].
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