
Democratically Finding The
Cause of Packet Drops

Behnaz Arzani, Selim Ciraci, Luiz Chamon,
Yibo Zhu, Hongqiang (Harry) Liu, Jitu Padhye,

Geoff Outhred, Boon Thau Loo

1

2

The ultimate goal of network diagnosis:
Find the cause of every packet drop

Sherlock- SigComm 2007

Netclinic- VAST 2010

Netprofiler- P2Psys 2005

Marple- SigComm 2017

In this talk I will show how to:
Find the cause of every TCP packet drop*

*As long as it is not caused by noise

Not all faults are the same

33

Associate failed
links with

problems they
cause

High drop
rate

lower drop
rate

My connections
to service X are

failing

Mapping complaints to faulty links

4

But operators don’t always know where
the failures are either

Clouds operate at massive scales

5

Each Data center has millions of devices

Low congestion drop rates add noise

6* Z., Danyang, et al. "Understanding and mitigating packet corruption in data center networks."

One-off, transient, drops do occur on
many links and add noise to diagnosis*

One-off packet
drop

Fault: Systemic causes of packet drops
whether transient or not

7

Noise: One-off packet drop due to buffer
overflows

Fault: Systemic causes of packet drops
whether transient or not

Talk outline
• Solution requirements
• A strawman solution and why its impractical
• The 007 solution
– Design
– How it finds the cause of every TCP flow’s drops
– Theoretical guarantees

• Evaluation

8

Solution Requirements
• Detect short-lived failures
• Detect concurrent failures
• Robust to noise

9

Want to avoid infrastructure changes

• Costly to implement and maintain
• Sometimes not even an option
– Example: changes to flow destinations (not in the DC)

10

A “strawman” solution
• Suppose
– we knew the path of all flows
– we knew of every packet drop

• Tomography can find where failures are

If we assume there are enough flows

11

Example of doing tomography

12

4

1 2 3

Only solvable if we have N independent equations
N = number of links in the network

Tomography is not always practical

Theoretical challenges
Engineering challenges

13

Set of equations doesn't fully specify a solution
– Number of active flows may not be sufficient
– Becomes NP hard

Many approximate solutions
– MAX_COVERAGE (PathDump-OSDI 2016)
– They are sensitive to noise

14

Assume small number of failed links

AND

Fate Sharing across flows

Tomography is not always practical

• Finding path of all flows is hard
• Pre-compute paths

– ECMP changes with every reboot/link failure
– Hard to keep track of these changes

• Traceroute (TCP)
– ICMP messages use up switch CPU
– NATs and Software load balancers

• Infrastructure changes
– Labeling packets, adding metadata
– Costly

15

Engineering challenges

We show in this work
• Simple traceroute-based solution
–Minimal overhead on switches
– Tractable (not NP hard)
– Resilient to noise
– No infrastructure changes (host based app)

We prove its accurate

16

We can fix problems with traceroute

• Overhead on switch CPU
– Only find paths of flows with packet drops
– Limit number of traceroutes from each host
– Explicit rules on the switch to limit responses

• NATs and Software load balancer
– See paper for details

17

How the system works

18

4

1 2 3

Monitoring agent:
Deployed on all hosts

Notified of each TCP retransmission (ETW)
Path discovery agent finds the path of the failed flows

Flows vote on the
status of links

Votes: if you don’t know who to blame
just blame everyone!

1

How the system works

19

4

1 2 3

2Democracy works!

Can diagnose TCP flows
• Using votes to compare drop rates
– For each flow we know the links involved
– Link with most votes most likely cause of drops

20

Assume small number of failed links and
fate sharing across flows

Attractive features of 007
• Resilient to noise
• Intuitive and easy to implement
• Requires no changes to the network

21

We give theoretical guarantees

• We ensure minimal impact on switch CPU
– Theorem bounding number of traceroutes

• We prove the voting scheme is 100% accurate
when the noise is bounded
– Depends on the network topology and failure

drop rate

22

Questions to answer in evaluation

• Does 007 work in practice?
– Capture the right path for each flow?
– Find the cause of drops for each flow correctly?

• Are votes a good indicator of packet drop rate?
• What level of noise can 007 tolerate?
• What level of traffic skew can 007 tolerate?

23

5 hour experiment
• Comparison to EverFlow (ground truth)
– Do Traceroutes go over the right path?
– Does 007 find the cause of packet drops?

Two month deployment
• Types of problems found in production:
– Software bugs
– FCS errors
– Route flaps
– Switch reconfigurations

YES

Does 007 work in practice

24

YES

25

Are votes correlated with drops?

0 10 20 30 40 50 60 70 80 90 100

A
ccuracy

Drop rate 1% Drop rate 0.1% Drop rate 0.05%

Are votes correlated with drops?

• Test cluster (we know ground truth)

26

False positive

Comparison to MAX_COVERAGE

• MAX_COVERAGE (PathDump- OSDI 2016)
– Approximate solution to a binary optimization
– See 007 extended version for proof
– Highly sensitive to noise

• Integer optimization
– Improvement on the binary optimization approach
– Reduces sensitivity to noise

27

Binary optimization underperforms
• Clos topology
• 2 pods
• 4000 links

• Drop rates between 0.01%-1% uniform at random
• Noise uniformly at random between 0-0.0001%

28

75
.3

%

Is 007 robust to noise?

29

Skewed traffic causes problems

30

4

1 2 3
0

We don’t care about this particular case, because…
The failure isn’t impacting any traffic

But what if it had?

Is 007 impacted by traffic skew?

• More simulation results in the paper

31

Conclusion
• 007: simple voting scheme
• Finds cause of problems for each flow
• Allows operators to prioritize fixes
• Analytically proven to be accurate
• Contained at the end host as an application
– No changes to the network or destinations

32

Thank You

• Adi Aditya
• Alec Wolman
• Andreas Haeberlen
• Ang Chen
• Deepal Dhariwal
• Ishai Menache
• Jiaxin Cao
• Monia Ghobadi

• Mina Tahmasbi
• Omid AlipourFard
• Stefan Saroiu
• Trevor Adams

33

An example closer to home

34

Guaranteed Accurate

• Theorem:
For Vigil will rank with probability
the bad links that drop packets with probability
higher than all good links that drop packets with probability
if

where is the total number of connections between hosts, and
are lower and upper bounds, respectively, on the number of
packets per connection.

35

Minimal impact on switch CPU

• Theorem:
The rate of ICMP packets generated by any switch due to a
traceroute is below if the rate at which hosts
trigger traceroutes is upper bounded as

Where are the number of ToR, T1 , and T2
switches respectively and is the number of hosts under each
ToR.

n0, n1, n2

36

Failures are complicated

37

We can now prioritize fixes
• We can answer questions like:
– Why are connections to storage failing?
– What is causing problems for SQL connections?
– Why do I have bad throughput to a.b.c.d?

38

An example closer to home

39

More than finding a few failed links

40

Past solutions don’t help

• Don’t allow for always on monitoring
– Pingmesh [SIGCOMM-15]
– EverFlow [SIGCOMM-15]
– TRAT [SIGCOMM-02]
– Other Tomography work

• Require changes to network/remote hosts
–Marple [SIGCOMM-17]
– PathDump [OSDI-16]
– Link-based anomaly detection [NSDI-17]

41

Finding paths is also hard
• Infrastructure changes are costly
– DSCP bit reserved for other tasks
– Cannot deploy any changes on the destination end-point

• Reverse engineering ECMP also difficult
– Can get the ECMP functions from vendors
– Seed changes with every reboot/link failure
– Hard to keep track of these changes

• Only option left: Traceroute
– ICMP messages use up switch CPU
– We cannot find the path of all flows• Problem is not always fully specified
• Approximate solutions are NP hard
• And the approach is sensitive to noise 42

Our Solution

007 Monitors TCP connections at the host
through ETW

It detects retransmissions as soon as they happen

43

Mapping DIPs to VIPs

• Connections are to Virtual IPs
– SYN packets go to a Software Load Balancer (SLB)
– The host gets configured with a physical IP
– All other packets in the connections use the physical IP

• Traceroute packets must use the physical IP

44

An evaluation with skewed traffic

• Traffic concentrated in one part of network
• Extreme example: most flows go to one ToR
– Small fraction of traffic goes over failed links
– Votes can become skewed
– We call this a hot ToR scenario

45

Our Solution

007 Monitors TCP connections at the host
through ETW

It detects retransmissions as soon as they happen

46

Observation

Data gathered using the monitoring agent of NetPoirot
Uses ETW to get notifications of TCP retransmissions

47

If path of all flows was known

• Given TCP statistics for existing flows
–We know the paths that have problems
–Without having to send any probe traffic
–Without having to rely on packet captures

• We can also find the failed links

48

We can now prioritize fixes
• We can answer questions like:
– Why are connections to storage failing?
– What is causing problems for SQL connections?
– Why do I have bad throughput to a.b.c.d?

• Just one catch:
– Needs to know retransmissions
– Ok for infrastructure traffic (e.g. storage)
– See paper on how to extend to VM traffic

49

SLB

Get the DIP to VIP mapping from SLBSend traceroute like packetsEach connection votes on the status of links
good links get a vote of 0

50

Where in the network?

51

Holding the network accountable

• Given impacted application find links responsible
– Allows us to prioritize fixes

• Given a failed device quantify its impact
– Estimate cost of failures in customer impact

52

Failures are hard to diagnose

High CPU load
High I/O load

Reboots
Software bugs

BGP link flaps
FCS errors

misconfigurations
Switch Reboots

Congestion
Hardware bug

+
Millions of devices

Bad design
Software bugs

High CPU usage
High memory usage

53

