Ensuring Content Integrity for Untrusted
Peer-to-Peer Content Distribution Networks

Nikolaos Michalakis

Robert Soulé

Robert Grimm

New York University

Abstract

Many existing peer-to-peer content distribution networks
(CDNs) such as Na Kika, CoralCDN, and CoDeeN are
deployed on PlanetLab, a relatively trusted environment.
But scaling them beyond this trusted boundary requires
protecting against content corruption by untrusted repli-
cas. This paper presents Repeat and Compare, a system
for ensuring content integrity in untrusted peer-to-peer
CDNs even when replicas dynamically generate con-
tent. Repeat and Compare detects misbehaving repli-
cas through attestation records and sampled repeated ex-
ecution. Attestation records, which are included in re-
sponses, cryptographically bind replicas to their code,
inputs, and dynamically generated output. Clients then
forward a fraction of these records to randomly selected
replicas acting as verifiers. Verifiers, in turn, reliably
identify misbehaving replicas by locally repeating re-
sponse generation and comparing their results with the
attestation records. We have implemented our system
on top of Na Kika. We quantify its detection guarantees
through probabilistic analysis and show through simula-
tions that a small sample of forwarded records is suffi-
cient to effectively and promptly cleanse a CDN, even if
large fractions of replicas or verifiers are misbehaving.

1 Introduction

Inadvertent and malicious content corruption by misbe-
having peers is one of the largest problems in today’s
peer-to-peer networks. Previous work has addressed
the problem in the contexts of file sharing [45, 25]
and cooperative storage [10, 12, 28]; this paper ad-
dresses the problem for content distribution networks
(CDNs). Existing peer-to-peer CDNSs, such as Na Kika
[20], CoralCDN [16], CoDeeN [46], and CobWeb [43],
are currently deployed on PlanetLab, which provides a
relatively trusted environment with resources donated
largely by the research community. But scaling such sys-
tems to the internet at large requires protecting against
content corruption by untrusted nodes. Potential attacks
range from serving stale content (to save bandwidth),
bypassing content transformations (to reduce CPU and
memory requirements), to out-right modification, for ex-
ample, by inserting ads (to generate profit).

The gravity of the problem depends in large part on
whether a CDN serves only static content or both static

and dynamic content. For CoralCDN, CoDeeN, and
CobWeb, which serve only static content, signing the
content and response headers at the origin server and ver-
ifying these signatures at the clients is sufficient to detect
tampering by CDN nodes [4]. Additionally, timestamps
can be used to ensure freshness. However, for Na Kika,
which also serves dynamic content, hashes, timestamps,
and signatures alone cannot establish content integrity—
after all, the CDN nodes are content producers. Since
web-based applications increasingly rely on the dynamic
creation and transformation of content [5], CDNs need
to support dynamic content and providing a general so-
lution for content integrity becomes a crucial challenge.

This paper presents Repeat and Compare, a system for
ensuring the integrity of both static and dynamic content
in untrusted peer-to-peer CDNs. The key idea behind
Repeat and Compare is to leverage the peer-to-peer sub-
strate to repeat content generation on other nodes and
then compare the results to detect misbehavior. Prin-
cipally, this approach is comparable to the use of data
replication and comparison through voting or reputation
in other peer-to-peer systems, with the crucial difference
that Repeat and Compare focuses on the replication of
computations instead of data. The goal is to enable ver-
ifiable and accountable distributed computations similar
to the models described in [23, 34, 50, 51].

Repeat and Compare must address three main chal-
lenges. First, it needs to observe responses sent to clients,
even though clients may lie. Second, it needs to repeat re-
sponse generation, even though origin servers may sup-
ply multiple, conflicting copies of the content. Third,
it needs to isolate misbehaving nodes, even though the
nodes that “repeat and compare” are not trusted. The un-
derlying source for all three challenges is the same: a “he
said, she said” conflict between three mutually untrusting
parties: clients, replicas, and origin servers.

To eliminate the “he said, she said” problem, Re-
peat and Compare uses attestation records. Attestation
records are included in responses and cryptographically
bind origin servers to their content and replicas to their
code, inputs, and dynamically generated output. Clients
then select a random sample of records and forward them
to replicas acting as verifiers. Verifiers, in turn, detect
misbehaving replicas by locally repeating response gen-
eration and comparing their results with the attestation
records. To isolate misbehaving replicas, the system re-

USENIX Association

NSDI *07: 4th USENIX Symposium on Networked Systems Design & Implementation

145

lies on a small core of verifiers, which is trusted by both
clients and origin servers, and which distributes a list of
suspected replicas. If using a trusted core of verifiers is
undesirable, then suspected replicas are distributed using
a decentralized trust model. Under this model, each ver-
ifier maintains its own list of suspected replicas. Clients
learn about misbehaving replicas by contacting verifiers
with which they have off-line trust relationships.

We have implemented our system on top of Na Kika
and quantify its detection guarantees through probabilis-
tic analysis. We also show through simulations that Re-
peat and Compare effectively and promptly isolates mis-
behaving replicas, even if a large fraction of replicas and
verifiers are misbehaving, and if only a small sample of
attestation records reaches well-behaved verifiers.

2 System Design

2.1 Requirements

There are three requirements our system must satisfy.
First, users should be able to donate resources to the in-
frastructure without having to submit their nodes to the
administrative control of a central authority. This en-
ables a more flexible replica deployment that can cover
a wider range of clients, whether they are geographically
dispersed or mobile. Second, the type of dynamic con-
tent that replicas can generate should be restricted as lit-
tle as possible. This enables applications to scale inde-
pendent of their functionality. Previous solutions for dy-
namic content generation restrict proxy functionality to a
small set of easily verifiable functions that modify origi-
nal content through add/remove/replace operations [31].
But most of the interesting functionality in web services
today involves executing general purpose scripts for con-
tent management [3]. Third, a mechanism for ensuring
the integrity of content generated within the CDN must
not rely on the ends, i.e., clients or servers, because it
leads to a tension between scalability and trust. Rely-
ing on origin servers to verify the integrity of content
delivered through the CDN does not scale. Also, it is
easy and cheap to create client or server identities and
use them to subvert detection.

2.2 System Overview

To illustrate how Repeat and Compare works, we walk
through an example. A user browses through her mo-
bile device an online bookstore that aggregates book list-
ings put together by a large number of independent book-
stores. To help scale the bookstore application, each
bookstore has donated nodes to serve as replicas. Each
request from the mobile device may involve transform-
ing media to fit a small screen or sorting a list based on
pricing information. If intermediate results have already
been generated by other replicas (e.g., media transcod-

_ Origin Server Replica

3. Locally repeat
execution and S

~ 1l
compare results. book.jpg '

Replica acting s pricelist.html
as verifier

N
1. Dynamically generate "y

response and -‘

attestation record.
Replica

2. Probabilistically
forward attestation

Client record to verifier.

Figure 1: Repeat and Compare overview.

ing), they can serve as inputs for generating the final re-
sponse, thus saving computational overhead and band-
width.

Figure 1 shows a high-level view of how Repeat and
Compare can verify the operation of an untrusted CDN.
Clients access content through peers in the CDN that act
as replicas of an origin server. Replicas are used both as
caches for static content, such as book items, as well as
generators of dynamic content, such as sorted price lists
of books [16, 20, 43, 46], while origin servers keep au-
thoritative copies of the content. Replicas locally gener-
ate responses if they have all the necessary inputs. Oth-
erwise, they contact other replicas or origin servers for
inputs. In addition, replicas can cache dynamically gen-
erated content using site-specific scripts [20]. This leads
to the flow of content and computations illustrated in the
upper right of Figure 1.

At this point, the client has received a response with
possibly corrupted or stale content. In the bookstore ex-
ample, it is possible that a replica sorts search results so
that certain books appear at the top to boost the sales for a
particular seller. To ensure content integrity Repeat and
Compare takes an optimistic approach: the client accepts
the response, but informs the CDN about it. First, each
replica embeds an attestation record in the response. Sec-
ond, the client forwards the record to a randomly selected
replica that acts as a verifier. To reduce the overhead im-
posed on the system, the client forwards only a sample
of the records that it sees. Third, to detect misbehaving
replicas, the verifier repeats execution and checks if the
result matches the record sent by the client.

Verifiers, however, may be malicious. To expose mis-
behaving verifiers, Repeat and Compare uses either a
centralized or a decentralized approach. By deploying
a small, centralized set of trusted verifiers, Repeat and
Compare relies on untrusted verifiers to absorb most of
the verification load and on the trusted ones to produce
the final result. If a trusted set of verifiers is not desirable,
then, in order to learn which replicas are misbehaving,

146

NSDI *07: 4th USENIX Symposium on Networked Systems Design & Implementation

USENIX Association

clients can select which verifiers they trust using off-line
relationships.

Our design meets the three requirements as follows.
Using attestation records to enforce accountability al-
lows users to donate resources to the infrastructure with-
out having to submit their nodes to the administrative
control of a central authority. Repeating execution and
comparing results enables applications to scale indepen-
dent of their functionality. Organizing replicas using
either a trusted core or decentralized trust relationships
helps counter the tension between scaling detection and
trusting the outcome of verification.

2.3 Design Space

Comparable to PeerReview [23], our system ensures
content integrity through detection rather than preven-
tion (e.g., BFT [7]) for three reasons. First, in contrast
to prevention, detection does not impose a bound on the
number of misbehaving replicas. As long as there is
one well-behaved replica, it can detect every misbehav-
ing replica, since it locally repeats execution. Second,
detection is cheaper and can be decoupled from the ac-
tual request-response process. This is important since the
main reasons for using CDNs are to reduce client latency
and bandwidth consumption across the internet. Third,
detection is good enough both for bounding the damage
over the client population and over time. In addition, it
reduces the incentives for misbehavior by exposing mis-
behaving nodes.

Basically, Repeat and Compare treats misbehavior as
a failure and thus represents a failure detection system.
As a result, it provides completeness and accuracy guar-
antees as described in [8]. Completeness ensures that
misbehaving nodes will be suspected by the system. Ac-
curacy ensures that well-behaved nodes will not be sus-
pected by the system. To motivate our solution, we
present a series of straw man approaches. We show how
to overcome the shortcomings of each approach, thus jus-
tifying our design. Table 1 summarizes the main idea,
benefits and drawbacks for each approach.
Detection by Clients: A natural application of the end-
to-end argument [37] would recommend that the client
be the verifying end, since it is also the receiving end.
This approach is suitable for static content, when the con-
tent and response headers are signed by the origin server.
But for dynamic content, clients cannot always verify the
integrity of received data as it may be expensive to do so.
In the bookstore example, a client would need to dynami-
cally generate a price list for different books. This would
involve contacting different vendor servers, which nulli-
fies the benefits of the CDN. Another option is for clients
to send multiple requests to randomly chosen replicas,
similar to sampled voting [28]. However, the only ben-
efit of using this approach is to tolerate a small fraction

of misbehaving replicas. If a large fraction of replicas is
misbehaving (i.e. more than half), then voting provides
neither accuracy nor completeness.

Detection by Spies: An alternative for detecting mis-
behavior is to have replicas imitate clients and send
requests to other replicas to monitor their behavior.
Since replicas can misbehave at will, if replica identi-
ties are public, direct replica-to-replica monitoring will
not work. One way to overcome this problem is to use
hidden verifiers. The idea is that a trusted party deploys
a set of “spies”, nodes whose identities are secret and
which imitate regular clients. Detection through spies is
attractive because it does not require any modification to
the application protocol, including the clients and servers
using the CDN.

However, spies are not a feasible long-term solution.

Since spies do not know when misbehaving replicas send
corrupt responses, they must maintain a constant flow of
monitoring requests to detect misbehavior. As a result, it
is very likely that, after some arbitrarily long period, ev-
ery spy that monitors a particular replica will have sent at
least one request to that replica. A malicious replica can
patiently serve correct responses until a certain timeout,
while recording client addresses in a “suspected spies”
list. Then it can serve corrupt responses to clients not
on the list. Using this strategy, it can remain undetected
with high probability. Spies do not have a way to de-
tect that they are suspected because not observing cor-
rupted responses does not imply that a spy was caught.
After all, it is also possible that there are no misbehaving
replicas in the system. So, either new spies need to be
periodically deployed or existing spies need to replenish
their network addresses, even if there are no misbehav-
ing replicas. Although this solution ensures accuracy, it
is not attractive because in order to provide completeness
it leads to an arms race for maintaining spies.
Detection by Informers and Reputation: The alter-
native is to use responses received by clients. The ba-
sic idea is that some clients act as “informers” and vol-
unteer to forward received responses back to a verifier.
The verifier detects if a replica is misbehaving by locally
generating the response and comparing it with the for-
warded response. This idea is attractive because it re-
quires only volunteers to make it work on the existing
web. No changes to servers are necessary and, except for
the volunteers, clients remain unmodified. However, us-
ing informers without protecting the content of responses
leads to the “he said, she said” problem. If a verifier sees
a corrupt response, it does not know if it came from a
replica or was tampered with by the client.

Using a reputation system to compute an aggregate
trust score for informers can lessen the “he said, she
said” problem by limiting the effects of dishonest in-
formers [25]. A verifier decides what the untampered

USENIX Association

NSDI *07: 4th USENIX Symposium on Networked Systems Design & Implementation

147

Approach

Key Idea

Benefits and Drawbacks

Detection by Clients

Clients verify the integrity and freshness of the
data they receive.

Protects static content. Resource-limited
clients may not be able to verify integrity of dy-
namically generated content.

Detection by Spies

A set of spies imitates clients by sending re-
quests and then verifying responses.

No changes to clients or servers, but cannot
know if a spy is compromised.

Detection by Informers &
Reputation

Verifiers use responses forwarded by clients to
compute a replica’s trust score.

Relies only on volunteers, but suffers from the
“he said, she said” problem.

Detection by Trusted Ver-
ifiers using Attestation

Replicas held accountable through attestations.
Response verification is performed by a small

Solves the “he said, she said problem”. Does
not scale.

set of trusted verifiers.

Servers as Verifiers . :
using records from informers.

Origin servers verify a sample of the responses

No need for globally trusted verifiers. Over-
loads popular servers. No ownership for aggre-
gated content.

Detection by Untrusted

and Trusted Verifiers ones in verification.

Relies on untrusted verifiers to assist trusted

Scales verification in the common case of cor-
rect responses by reducing the probability of
detection.

Decentralized Trust

trust relationships.

Verifiers keep local lists of misbehaving repli-
cas. Clients learn about replicas using offline

No need for globally trusted verifiers. Detec-
tion is slower.

Table 1: Overview of potential approaches for detecting misbehaving replicas, listing the key idea, benefits and draw-

backs for each approach.

response is, based on a weighted majority vote from dif-
ferent informers, before it repeats the response genera-
tion. In a large-scale environment, however, a reputation
system can be gamed by a strong adversary that can gain
a large enough foothold inside the volunteer informer
group. Large botnets spanning hundreds of thousands
to millions of machines make this threat real [47]. As a
result, this approach does not provide completeness nor
accuracy.

Detection by Trusted Verifiers using Attestation: If
responses are signed by replicas, then malicious inform-
ers cannot tamper with them, so an informer-based repu-
tation system is not necessary for resolving the “he said,
she said” problem. By attesting to the integrity of their
responses, replicas are held accountable. In addition, at-
testations must be linked back to the original data and
code, so origin servers must also attest to the integrity of
their original data. In the bookstore example, if a book
cover image is downsized to fit a handheld, it must be
linked back to the original image. So, forwarding attes-
tation records to verifiers is sufficient for ensuring com-
pleteness and accuracy.

The next issue is deciding who verifies attestation
records. The simplest approach is to use a small set
of verifiers that are trusted by both clients and origin
servers. However, when most of the records are valid,
i.e., they correspond to correct responses, trusted veri-
fiers can be overwhelmed, since the forwarded records
grow in proportion to the client population. Because

replicas generate content that might depend on client
properties or the time of the request, using a cache for
consistent records will not prove useful. Even if clients
forward only a fraction of received records, verifiers
must still handle traffic that is proportional to the number
of clients. As a result, trusted verifiers are a bottleneck
in the common case and a better verification approach is
necessary.

Servers as Verifiers: An alternative is to use origin
servers as trusted verifiers for their content. The idea
is that clients forward records to origin servers only for
responses related to their own content. This is attrac-
tive because clients and servers are not required to trust
a third party to perform verification. Servers could deny
access to their content to replicas that they consider mis-
behaving. However, this approach has three problems.
First, servers need to verify responses proportional to the
popularity of the content and, as a result, this approach
does not scale well. Second, clients must somehow learn
which replicas are misbehaving or not, so that they avoid
them. This means maintaining per-server state at the
client. Third, in collaborative applications, no single
server has ownership of the delivered content. In the ex-
ample of the collaborative bookstore from Section 2.2,
a list of book prices is generated from content that be-
longs to different vendors. As a result we dismiss this
approach.

Detection by Untrusted and Trusted Verifiers: A
way to scale verification that does not rely on clients or

148

NSDI *07: 4th USENIX Symposium on Networked Systems Design & Implementation

USENIX Association

servers is to filter valid records by redirecting verification
to untrusted verifiers. Untrusted verifiers then forward
only invalid records to trusted verifiers (if they forward
valid ones they are misbehaving). This solution scales
for two reasons. First, since all replicas can perform
the same functionality, we can have as many verifiers as
replicas in the CDN. Second, a single invalid record is
a proof of misbehavior, so the total number of records
processed by trusted verifiers is on the order of the num-
ber of misbehaving replicas at any given time. Because
attestation records are tamper-evident, the worst an ad-
versarial untrusted verifier can do is drop the record of
a corrupt response, thus delaying detection. However, if
every record seen by a client is forwarded to a verifier, the
total traffic to the CDN is essentially doubled. Since us-
ing untrusted verifiers already provides only probabilis-
tic completeness, this motivates an approach based on
sampled forwarding. Clients only forward an attestation
record with probability p.
Decentralized Trust: A globally trusted set of verifiers
greatly reduces the communication and computational
overhead of detection because results can be publicized
and believed by everyone in the system. However, it is
not always desirable to have a globally trusted author-
ity, especially when a CDN is built through collabora-
tive efforts and is self-managed [20]. Instead, a decen-
tralized detection mechanism is necessary, where each
misbehaving replica is independently detected by each
correct replica. Under this model, clients learn about
misbehaving replicas by contacting verifiers with whom
they have off-line trust relations. To ensure complete-
ness, each misbehaving replica must be detected by all
correct verifiers/replicas. As a result, the computational
overhead per misbehaving replica is on the order of the
number of replicas in the system—after all, each replica
will have to verify attestation records by itself.
Decentralized detection may be augmented using gos-
sip initiated either by clients or verifiers. A client
can randomly select v verifiers to forward an attesta-
tion record, thus increasing the chances that it reaches
a “good” one by a v:1 ratio. However, it also imposes
a v:1 increase in traffic in the CDN, which is not desir-
able. Gossip might be more beneficial when used by ver-
ifiers. Since verifiers only forward incriminating attes-
tation records to other verifiers, the communication and
computational overhead in this case is the same as if each
verifier was contacted by a client instead.
Summary: We have explored the design space in order
to successively pin down by whom and how detection is
performed. As a result, we deduce three core properties
for Repeat and Compare. First, solutions that preserve
existing servers and clients are not sufficient. Servers
must sign their responses and clients must verify them.
In addition, replicas must produce attestation records that

clients can forward to replicas, which act as verifiers and
thus detect misbehavior. Without the accountability en-
forced by attestation records, there are no detection ac-
curacy guarantees. Second, if clients forward all records
they observe, then traffic is essentially doubled. This mo-
tivates a sampled forwarding approach, which provides
only eventual detection completeness with high proba-
bility. Third, there is a trade-off between trust and com-
putational cost. When there are trusted verifiers, the cost
for detection is low. When trusted verifiers are not desir-
able, decentralized detection can offer the same guaran-
tees, but with a cost proportional to the size of the CDN.

2.4 Repeat

Repeat essentially simulates the response generation pro-
cess illustrated in Figure 1 by recursively generating in-
termediate results until it outputs the final response. Re-
peating execution in the presence of non-determinism,
external inputs and implicit parameters might not always
produce identical results. Removing non-determinism
for general purpose computing is impossible. However,
web-based architectures are restricted enough to make
the task tractable. Client requests are processed inde-
pendently through well-defined interactions at the HTTP
protocol level and applications are relatively stylized,
written in scripting languages with bounded functional-
ity.

Identifying external inputs (client request, original
content) and configuration parameters (server configu-
ration, library versions) is as important as identifying
which code to repeat. Repeating the same code with dif-
ferent inputs, versions of inputs, or configuration param-
eters will likely produce different outputs. Therefore, ex-
ternal inputs and configuration parameters are uniquely
identified by a name, timestamp, and value. They are
then cryptographically bound to the code that used them
via attestation records. Replicas use this explicit infor-
mation to set up a runtime equivalent to the one that gen-
erated the original response.

Attestation Records

As mentioned earlier, attestation records are a necessary
ingredient to preventing the “he said, she said” problem
caused by untrusted origin servers and clients. What al-
lows an observer to detect misbehavior using attestation
records is a chain of accountability from the client to the
server. A broken chain serves as a misbehavior detector,
whereas a solid chain proves compliance with the proto-
col.

Attestation records are bound to either literals or ref-
erences. Literals are explicit data values such as sys-
tem clock times, seeds for random number generators,
sensor values etc. They are typically small inputs that
come either from origin servers or clients. References

USENIX Association

NSDI *07: 4th USENIX Symposium on Networked Systems Design & Implementation

149

are uniquely named data that need external communica-
tion to be fetched. These are data that have been dynam-
ically generated and labeled by replicas as part of the re-
sponse generation process. Examples include transcoded
media and aggregated content. In addition, static content
that resides on origin servers is treated as a reference.
Although such content could be represented by literals,
using references saves space in the attestation record in
case the content is large.

In order for accountability not to be compromised, a
record must have the following properties:

e [t must bind a replica or origin server to the response
it generated, so that it cannot later deny it generated
that response.

e It must be practically infeasible to generate a record
that incriminates another replica.

e A verifier must be able to verify the integrity of the
response using only the record and its own execu-
tion environment.

To show how attestation records satisfy those proper-
ties we explain how they are structured. Literals are of
the form

(TYPE, TIMESTAMP, VALUE, PUBKEY, SIGNATURE)
and references are of the form

(TYPE, NAME, TIMESTAMP, VALUE, INPUT-LIST, PUBKEY,
SIGNATURE).

In more detail, the different attestation record entries
have the following roles.

TYPE. For literals we distinguish types into CONFIG,
REQUEST, and ONETIME because each is processed dif-
ferently. CONFIG records are used to set configura-
tion parameters and initialize the runtime environment.
One example is setting pseudo-random number genera-
tor parameters such as the algorithm or seed. REQUEST
records bind the requester to the generated content and
are sent together with the request; they ensure that a
client cannot lie about the content it requested. ONETIME
records are discussed below. References always have
type RESPONSE, since they represent the content re-
turned with a response. The difference between static
and dynamic content is determined by checking for an
empty input list.

NAME. The name is a unique reference to the content,
a URL in our system. Since URLs embed the name of the
authoritative server, a replica cannot claim authorship of
content it does not own. Names are not necessary for
literals, which contain the actual data as part of the value
entry.

TIMESTAMP. The timestamp identifies different con-
tent versions and is used to ensure the freshness of a re-
sponse in case content has been updated by the origin

server. Its use is explained in more detail in the next sec-
tion.

VALUE. The value is used to verify integrity; it must
match the content produced during verification. For ref-
erences, the value is a digest of the response. For literals,
it is the actual plain-text value. For REQUEST records, it
contains client-specific inputs that affect how content is
processed (e.g., User—Agent for transforming images
for cell phones).

INPUT-LIST. An optional list of attestation records
declaring the inputs used to generate a record of type
RESPONSE. The list contains a record for the executable,
configuration parameters, and any external inputs. Using
input lists, the RESPONSE record is sufficient to guide the
verifier through execution. Notably, the structure of the
record resembles the recursive process of content gener-
ation in a CDN and thus provides the verifier with all the
information necessary for generating the final response
from scratch. Note that, besides a constant number of in-
put list entries to identify a replica’s execution environ-
ment and content processing script, the length of an input
list is proportional to the number of aggregated HTTP re-
sources.

PUBKEY. The public key is bound to the identity of
the principal that this record speaks for. Any of the ex-
isting distributed infrastructures [14, 54] can be used for
managing public keys. The certification authority plays
no role in the CDN itself.

SIGNATURE. A signature using the principal’s private
key. It signs all other entries of the attestation record.
The signature binds an origin server to its content. It also
binds a replica to the original request, the replica’s ex-
ecution environment, any inputs, and the final response.
Assuming that an adversary cannot break cryptographic
primitives, one must steal a replica’s private key in order
to incriminate it.

Freshness

To ensure freshness, the client must receive the latest ver-
sion of the content as defined by the origin server. Since
both servers and replicas can lie, to determine the latest
version, servers must promise not to modify content for
a predetermined time period by setting the TIMESTAMP
of the RESPONSE record to an expiration time in the fu-
ture. This ensures that there is only one latest version,
the one with a timestamp that has not expired. When
a request is made, the client sets the current time as the
TIMESTAMP of the REQUEST record. To determine the
current time, we assume that all nodes (clients, replicas,
origin servers) have loosely synchronized clocks, i.e., all
clocks are within skew o and rates do not diverge. To
ensure that clocks remain loosely synchronized, our sys-
tem trusts an external time service such as NTP. To de-
tect that a server sent multiple conflicting versions, it is

150

NSDI *07: 4th USENIX Symposium on Networked Systems Design & Implementation

USENIX Association

sufficient for a verifier to see two records signed by the
server with versions greater than the timestamp of the re-
quest (within o).

Since there is no third party that can observe when a
client sent a request to a replica or when a replica sent
a request to an origin server, ensuring freshness requires
addressing a time-dependent instance of the “he said, she
said” problem. If a client forwards a record at time ¢ that
contains a timestamp e, where e < t, the verifier can-
not distinguish whether the replica sent stale content or
the client waited until time ¢ > e before forwarding the
record. To address this issue, each requester and respon-
der agree on the time of the request through the use of the
REQUEST record. The responder accepts the request only
if the embedded time is equal to its own time within o.
Since the request record is part of the response record’s
input list, it is signed by the replica, so the client cannot
modify it. Upon receiving the response, the client checks
that an attestation record’s request time was not modified
by a malicious replica.

With this information, a verifier can detect if content
is fresh by using the attestation record to check that (a)
the timestamp of the request is less than the timestamp
of the response plus o, and that (b) the timestamp of the
record is less than the timestamp of each input plus o.
In addition, the verifier needs to perform a sanity check
to avoid errors caused by clock skew. It needs to ver-
ify that the difference between its current time and the
timestamp of each input is greater than o before it ver-
ifies freshness. This check ensures that every node has
either transitioned to the newer version of the content or
still sees the current one.

Non-Repeatable Data

When repeating dynamic content generation, care must
be taken to identify which data intrinsically change over
time and, as a result, are not repeatable. We identify two
types of such data: one-time values and randomly gener-
ated data. One-time values depend on the exact time that
they were produced. Examples include sensor measure-
ments and stock prices. The problem with repeated ex-
ecution is that a verifier repeats the response generation
process at a later time, so if it makes a request to a content
producer for a one-time input it will get a different value.
We avoid this issue through the use of ONETIME literals.
We restrict their generation to origin servers because the
integrity of these records cannot be verified otherwise.
Similarly, when data are randomly generated, repeat-
ing the process will result in different outputs with high
probability. To avoid this issue, applications are con-
strained to use pseudo-random number generators and
produce a CONFIG literal with the seed inserted in the
VALUE entry. To defend against attacks where a replica
“fixes” seeds to reduce randomness, seeds can be pro-

vided either by origin servers or clients.

Runtime

Before a verifier repeats execution, it is important to set
the correct runtime environment. This involves load-
ing the correct code and server configuration. We use
CONFIG records for that purpose. These records are
bound to the version of the executable, dynamically
loaded libraries, and server configuration files. For the
executable and the libraries, the records are bound to a di-
gest of the binary. For configuration files, they are bound
to specific parameters that must be the same across all
replicas. Scripted code executed by a replica, such as
Javascript in the case of Na Kika [20], is supplied as
part of the RESPONSE record’s input list. If any of the
libraries or configuration parameters do not match the
records, then the verifier treats a replica as misbehaving.

2.5 Compare

Compare consists of two stages: forwarding attesta-
tion records to verifiers and then detecting misbehav-
ing replicas. As explained in Section 2.3, attestation
records are forwarded to verifiers via clients. A client
first checks that each response contains a consistent at-
testation record; otherwise, the client drops the response.
Then it forwards the record with probability p < 1 to
a randomly selected verifier. Sending a fraction rather
than all the records helps reduce the traffic overhead in
the CDN. Because current web clients do not support
the notion of attestation records clients either have to be
modified or install a local web proxy [33]. Unless a large
enough fraction of the client population supports attesta-
tion records, replicas have no incentive to produce attes-
tation records. To detect replicas, we adopt both central-
ized and decentralized approaches.

Centralized Detection

As explained in Section 2.3, if there is an authority that
is trusted by both clients and origin servers, then this au-
thority can deploy a small set of trusted verifiers to detect
misbehaving replicas. To scale detection, we leverage the
massive replication offered by the CDN. Untrusted veri-
fiers receive records from clients, perform Repeat and if
they detect a misbehaving replica, they forward the in-
criminating record to a trusted verifier. To prevent mali-
cious verifiers from overloading trusted ones, if the for-
warded record is not incriminating, then the untrusted
verifier is considered misbehaving and punished (same as
any misbehaving replica). As a result, misbehaving ver-
ifiers have no incentives to forward “good” records and
the traffic seen by trusted verifiers is proportional to the
number of misbehaving replicas. By definition, trusted
verifiers are trusted by all nodes in the system. Conse-
quently, once a replica has been detected as misbehav-

USENIX Association

NSDI *07: 4th USENIX Symposium on Networked Systems Design & Implementation

151

ing, no further verification of that replica’s responses by
other replicas is necessary.

Decentralized Detection

If a globally trusted authority is not desirable, then de-
tection can be performed using a decentralized transi-
tive trust model similar to Credence [45]. In Credence,
each peer keeps a local voting table for files it has re-
ceived. It uses the table as a guide to find like-minded
peers through statistical correlation of votes. Our model
differs from Credence in two ways. First, votes are not
cast by manually examining content as in file sharing, but
through Repeat. Second, the votes are not about content,
but about replica status, i.e., misbehaving versus well-
behaved.

So, decentralized detection works as follows. Like in
the centralized model, replicas act as verifiers. Clients
forward attestation records to them and they locally re-
peat execution to detect misbehavior. If they detect mis-
behavior, however, they do not forward the attestation
record to trusted verifiers as before. Instead, they main-
tain a local voting table that is initialized with positive
votes for every replica. If they receive an attestation
record that incriminates a replica then they permanently
change their vote for that node to negative. Clients access
the CDN by contacting a friend, a verifier that they trust
through off-line trust relationships. Friends then forward
to the clients lists of replicas that they believe are trust-
worthy, i.e., rank on the top of their lists. Clients use the
lists to find nearby replicas to access content. They re-
fresh the list of replicas by periodically contacting their
friends.

Punishment and Redemption

Once replicas are detected they are punished. A strict
punishment policy would require that replicas be ban-
ished. However, this might be too harsh in practice
as misbehavior may be the result of human error. We
acknowledge that there is no perfect solution to this
problem. But, since our system decouples detection
from punishment, a real deployment can use application-
specific policies to let nodes reenter. For example, in
the bookstore application of Section 2.2, one can use tit-
for-tat punishment: If a replica donated by a particular
vendor misbehaves, replicas block access to the vendor’s
content (i.e., remove the vendor’s books from the price
list) for a few hours to decrease sales.

Detection Guarantees

As explained in Section 2.3, failure detectors (as defined
in [8]) are characterized with respect to accuracy and
completeness. In terms of accuracy, Repeat ensures that
no well-behaved replicas are ever suspected, no matter
how many records are sent to verifiers. Completeness,

however, depends on Compare and is only probabilistic.
For every corrupt response sent by a misbehaving replica,
there is always a positive probability that the replica will
be detected.

Eventual completeness is guaranteed only if the sys-
tem maintains randomness. If clients keep forwarding
attestation records to the same verifiers, some misbehav-
ing replicas may never be detected. This is a real pos-
sibility for CDNs because clients usually get redirected
to nearby replicas. Other than locality, however, com-
pleteness is independent of the underlying peer-to-peer
topology; as a result, Repeat and Compare works with
arbitrary peer-to-peer CDN architectures. In practice, it
is important to quantify how fast the system detects mis-
behaving replicas and how much damage they can real-
ize before detection. We quantify Repeat and Compare’s
eventual completeness guarantees in Section 4.1.

3 Implementation

Our prototype implementation of Repeat and Compare
builds on four open source packages: the Apache 2.2 web
server, the Apache-based Na Kika CDN [20], the Privoxy
personal proxy [33], and the OpenSSL cryptographic li-
brary [30]. Server- and replica-side functionality is pro-
vided by two Apache filters. One filter signs content
and comprises 1,000 lines of C code, while the other
filter verifies content and comprises 700 lines. Client-
side functionality is provided by a 600 line extension to
Privoxy, which decouples our implementation from the
actual browser used to access the CDN. All three compo-
nents leverage an attestation record library, which builds
on OpenSSL and comprises 4,400 lines of C++ code.
For Na Kika, we modified the fetchURL function to
add remotely accessed inputs to an attestation record’s
input list; we also added hooks to get and set the seed of
JavaScript’s random number generator. Our attestation
record library exports a C/C++ API for creating, parsing
and validating attestation records using RSA signatures.
Content digests are computed using SHA-1. Attestation
records are passed between nodes as X-Attestation
response headers. The configuration and the runtime in-
formation is expected to change slowly. So, to amor-
tize the cost per response, it is periodically updated using
hashes of the Apache executable, libraries, and configu-
ration files. Replicas simply insert the hashes as inputs
in each attestation record. Finally, for the signer module
we implemented an in-memory cache to store records for
content that have already been hashed and signed.

4 Evaluation

The hypothesis of this work is that Repeat and Compare
makes fast forward progress at detecting misbehaving
replicas even if a very large fraction of replicas are mis-
behaving. Detection depends on the forwarding proba-

152

NSDI *07: 4th USENIX Symposium on Networked Systems Design & Implementation

USENIX Association

bility p, the number of misbehaving and well-behaved
replicas in the system, and the number of corrupt re-
sponses a misbehaving replica has sent. To quantify ex-
pected system behavior, we analyze how each parameter
affects the probability and rate of detection, the time it
takes to cleanse the system, and the damage incurred un-
til cleansing is complete.

In practice, network and processing delays also affect
the time to detection. To account for these parameters,
we simulate a large-scale deployment of both the central-
ized and decentralized versions of Repeat and Compare.
Additionally, locality can have a negative impact on our
system’s effectiveness, as it reduces randomness. In par-
ticular, CDNs usually redirect clients to nearby replicas
in order to minimize client-perceived latency—but, as a
result, they also limit the set of replicas and verifiers vis-
ible to each client. We account for the effects of locality
through additional simulations.

Since Repeat and Compare requires signing all mes-
sages and repeating execution, detection can be expen-
sive and affect a CDN’s scalability. As a final assess-
ment, we perform a set of micro-benchmarks to ex-
perimentally determine how throughput changes when
servers generate attestation records and when replicas
verify them.

4.1 Detection
Analysis

The goal of our analysis is to abstract away application-
specific properties of CDNs and show the core guaran-
tees of Repeat and Compare given perfect randomness,
and no network and processing delays. We examine a
static view of the system, where no new nodes enter or
leave (other than those detected). We assume that clients
forward records with probability p and that there are f
misbehaving and g well-behaved replicas in the system.
g is constant over time because our system ensures ac-
curacy. Since a client will receive corrupt content with
probability f/(f + g), content integrity is ensured when
all misbehaving replicas have been detected. So, we are
interested in four properties of our detection mechanism:
(a) the probability of detecting a misbehaving replica, (b)
the rate of progress made by detection, (c) the time it
takes to detect all misbehaving replicas and (d) the dam-
age done (number of corrupted responses) until all the
misbehaving replicas are detected.

The probability Pp that a misbehaving replica is de-
tected depends on (1) the client forwarding the attestation
record and (2) the client forwarding it to a good verifier.
Given a sample of attestation records sent by a replica,
Pp depends only on b, the number of incriminating (bad)
records sent (good records have no effect). To get a lower
bound on Pp, we fix f during the time that b records are
sent. For every record sent, the probability that it reaches

a good verifier is:

= ﬂ, therefore Pp =1 — (1 — &)b
f+g f+y

If f is small, then Pp improves as p increases, otherwise

alarge f masks the effects of p. However, even if p = 1,

Pp can reach 1 only by increasing b.

To analyze the forward progress in detecting misbe-
having replicas, we examine how the rate of detection
changes dynamically as the misbehaving replicas are de-
tected and removed. To simplify the analysis, we assume
that at each time unit each replica serves one client re-
sponse and that clients contact verifiers randomly. Since
inactivity does not affect detection nor corruption and
replicas typically have similar capacity, we believe this
is a reasonable assumption.

The rate of detection r depends on the number of bad
requests sent per unit time, which is equal to f:

N
dt f+g
Since detected replicas are removed, the rate is negative
with respect to f. To give an insight of how this affects
f over time, we examine how 7 changes as f decreases.
We identify two interesting cases: (a) when f is a large
multiple of g, and (b) when f is a fraction of g. As long
as f is a large multiple of g, then r ~ pg. Since both
p and g are constant, detection makes steady progress.
As f decreases and approaches g, the detection rate de-
creases proportionally to how f decreases. But, even in
the worst case, where f = 1, the rate approaches p.

To estimate the time 7' it takes to detect all existing
misbehaving replicas, we compute the time it takes to
detect all of them except the last by solving the differ-
ential equation 1 and then compute the average time to
detect the last one using Py,. The reason for not using
Equation 1 to compute the total time is that when f < 1,
t asymptotically reaches infinity as f goes to 0, so it is of
no practical use. Our estimate is a lower bound because
we do not take into account network or computational
latency. Misbehaving replicas are detected and removed
within the same time unit they served a corrupt response.
We also assume there are F' misbehaving replicas ini-
tially and during detection no new replicas enter the sys-
tem. Solving Equation 1 gives:

i =""14 mE

In(—
pg P (f)

So, the total time to detect all misbehaving replicas ex-

cept the last is:

(1)

2

F—14ghlF

bg
To detect the last one it takes on average an additional

time:
1 g+1

Py g

USENIX Association

NSDI *07: 4th USENIX Symposium on Networked Systems Design & Implementation

153

This is because the probability of detection follows a ge-
ometric distribution with probability Py. So, the total
time of detection is:
_F+g+ghF

pg

T

For large F', T ~ F/(pg), so the time it takes to re-
move F' misbehaving replicas depends on how large is F'
compared to the constant pg. For small F', T' ~ 1/p so
detection is faster for higher values of p.

Given f misbehaving replicas in the system, the dam-
age done by a replica until it is detected (given that it
is the first one detected among f) follows a geometric
distribution and is:

1
p(75)

B =

To compute, however, the total damage B in terms of
corrupt responses sent during time 7', we must integrate
Equation 2 from 1 to F', because f depends on ¢. Then,
we add the total number of corrupt responses sent by the
last misbehaving replica, which is T":

_ F?/24 gF +1/2
Py

B

If F is large, then B ~ F?/(2pg)+ F/p. So, the damage
incurred is basically affected by F'. If F'is small, then
B ~ 1/p. So, the damage is reduced as p increases.

The analysis shows that, if the number of misbehav-
ing replicas is a fraction of the well-behaved replicas,
increasing p helps increase the probability and the rate
of detection and bound the damage. Setting a high p,
however, also increases the traffic overhead by a frac-
tion equal to p, as explained in Section 2.3. In partic-
ular, if p approaches 1, then traffic essentially doubles.
But as the analysis shows, when f is large, the detection
rate is dominated by the number of malicious replicas in
the system. In that case, detection has enough forward
progress momentum to allow for smaller values of p.

Simulations

To take into account network characteristics and pro-
cessing delays, we simulate Repeat and Compare us-
ing Narses [19] with a topology based on the Merid-
ian all-pairs wide-area latency matrix [42]. We selected
1,000 random nodes as replicas and another 1,000 ran-
dom nodes as clients. Simulation results are averaged
over 10 runs. The request load per replica was set to 1.2
requests per second based on informally gathered statis-
tics from Coral CDN’s deployment [15]. Finally, the sim-
ulation abstracts away the internals of repeated execu-
tion and uses a 5 second computational delay for ver-
ifying content. It also limits each verifier to 10 concur-

rent requests. Both the computational delay and through-
put limit are pessimistic when compared to our micro-
benchmarks in Section 4.3.

Figure 2 shows how long it takes to detect misbehav-
ing replicas for various fractions of misbehaving replicas
with p = 0.1 both in the centralized and decentralized
models described in Section 2.5. Using a small set of
trusted verifiers (size=4, Figure 2(a)), misbehaving repli-
cas are detected much faster than in the decentralized de-
tection model (Figure 2(b)). Using gossip does not seem
to expedite detection (Figure 2(c)). In our simulation,
each verifier forwards incriminating records to 20 ran-
domly chosen verifiers and each forwarded record has
a TTL of 2. The reason for gossip’s ineffectiveness is
that a verifier is more likely to get an attestation record
directly through a client than through gossip due to the
computational delay of verification. Overall, all three
schemes take less than 500 seconds to isolate all misbe-
having replicas even if they are 90% of the replica popu-
lation.

4.2 Locality

To examine the impact of locality, we use the same simu-
lation environment as before. Since the Meridian matrix
contains network distances for each pair of nodes, we use
this redundant information to simulate an application-
level anycast service by organizing replicas in concentric
rings centered at each client starting at 2 ms and doubling
the radius at every step. This is similar to how Meridian
nodes organize their neighbors [48].

As explained before, there is a tension between local-
ity and randomness. If the application-level anycast ser-
vice is perfect and always returns the closest replica to
the client, then no misbehaving replica is ever detected.
This is because the same replica that serves content is
also selected as a verifier. So, any incriminating attes-
tation records will always be verified by the very same
replicas that generated them. If, however, locality is re-
laxed by selecting a random node within a 2 ms radius
from the client, then detection commences similarly to
the random case, as shown in Figure 3. Relaxing per-
fect locality either when choosing replicas or verifiers is
sufficient to ensure progress. There is a subtle difference
between the two alternatives. When replicas are chosen
randomly but clients remain fixed to the same verifier,
the effect is the same as having each verifier scanning its
proximity for misbehaving replicas (Figure 3(a)). When
verifiers are chosen randomly, but clients remain fixed to
the closest replica, then if a misbehaving replica is not the
closest node to any client, it will never be detected. Since
it is not the closest to any client, it will never serve any
requests either, so it cannot do any harm (Figure 3(b)).
Finally, a hybrid approach, where both replicas and ver-
ifiers are chosen randomly within the proximity of the

154

NSDI *07: 4th USENIX Symposium on Networked Systems Design & Implementation

USENIX Association

N=1000, misbehaving = 4%
/

N=1000, misbehaving = 4%
N=1000, misbehaving = 32%
N=1000, misbehaving = 64%
N=1000, misbehaving = 90%

0.8

N=1000, misbehaving = 4%
N=1000, mlsbehavmgf %
N=1000, misbehaving = 64%
N=1000, misbehaving = 90%

0.8 - 0.8

- |

N= 1000’ misbehaving = 90/

0.6

o goomes

0.4

X
wwﬂ*""w
=

Relative rate of corruption [resp/s]
x
Relative rate of corruption [resp/s]

Relative rate of corruption [resp/s]

seroeo ¥
—

0.2

E
8
8

100

o
)
-

200 300
Time [sec]

500 0 100 200 300

Time [sec]

400 100 200 300

Time [sec]

400

(a) Centralized detection. (b) Decentralized detection. (c) Decentralized with gossip.

Figure 2: Comparison of centralized detection, decentralized detection, and decentralized detection with gossip.

N=1000, misbehaving = 4%
N=1000, misbehaving = 32%
N=1000, misbehaving = 64%
N=1000, misbehaving = 90%

"\ .E
N
*""x‘ B

3

\\\ \

Relative rate of corruption [resp/s]

1 T T T T 1
N=1000, misbehaving = 4% N=1000, mlsbehavlng 4%
N=1000, mlsbehavlng 32% N=1000, mlsbehavmg 32%
=z N=1000, misbehaving = 64% 5 N=1000, mishehaving = 64%
a 08rf N=1000, misbehaving = 90% a 08 N=1000, misbehaving = 90%
g g
s]
T O06[% K B
s 2
8 B 8
= % =
; 04 % o
B % S
ER 3 H
5 LY : 5
T 02r B T
& hY E@ =
0 S :
o 50 100 150 200 250 0 50 150

Time [sec]

(a) Relaxed locality for verifiers.

Time [sec]

(b) Relaxed locality for request processing.

200 250 0 100 150

Time [sec]

200

(c) Relaxed locality for both.

Figure 3: Locality vs. randomness. By default, clients are redirected to the closest node; for relaxed locality, a random

node within a 2 ms radius from the client is selected.

client detects misbehaving replicas faster (Figure 3(c)).

4.3 Overhead

Using our prototype implementation, we evaluate the
overhead of producing attestation records at origin
servers and verifying them at Na Kika replicas.

Content Producer Overhead

To characterize the overhead of producing attestation
records, we compare a server’s throughput and 90th per-
centile latency when it reaches maximum capacity with
and without running the signer module that produces
the X-Attestation header. The server machine is
a 3.2 GHz dual core Pentium D with 4 GB RAM run-
ning Fedora Core 6 Linux with a 2.6.18 kernel. Load is
generated using the httperf [29] web load generator by
fetching a single static 2,097 byte document represent-
ing Google’s home page (without inline images). Since
static resources are already well-served by existing web
servers, this benchmark illustrates the worst case over-
head scenario to content producers that adopt Repeat
and Compare. Without the signer module the server
reaches 1,070 responses per second (rps) with 1 ms 90th
percentile latency. With the signer module, the server
reaches 443 rps with 2.8 seconds 90th percentile latency.
Generating attestation records adds significant overhead
to the content producer because it signs each attestation

record with its private RSA key. When the signer mod-
ule caches records for content already signed, the server
reaches 1,070 rps with 1 ms 90th percentile latency, i.e.
no perceived overhead.

Verifier Overhead

To characterize the overhead of verifying attestation
records, we compare the throughput of a Na Kika node
running at full capacity with and without running a ver-
ifier module. The node dynamically scales an image to
fit a 176 x 208 pixel cell phone screen. With the verifier
module, the node also repeats execution, generating the
same reduced-size image and comparing its digest with
the attestation record’s digest. The server machine is the
same as in the previous benchmark. Na Kika and the
verifier run on a 2.8 GHz Intel Pentium 4 PC with 1GB
RAM running Fedora Core Linux with a 2.6.9 kernel.
Load is generated as in the previous benchmark, but in
addition an equal load is generated for verification. Since
verification involves checking the consistency of the at-
testation record using the signer’s public key, serving a
CPU-consuming page provides a pessimistic estimate of
the verification overhead. As a base, running an exe-
cutable that transforms the image in a tight loop achieves
13.1 transformations per second. Without signing or ver-
ification the Na Kika node can serve 6.8 rps. We at-
tribute the extra overhead to Na Kika’s Javascript-based

USENIX Association

NSDI *07: 4th USENIX Symposium on Networked Systems Design & Implementation

155

pipeline, which is also a large CPU consumer. When
signing is enabled, the node reaches 5.9 rps. When sign-
ing and verifying simultaneously, the throughput drops
to 2.8 rps. This is expected, since the verifier duplicates
the response generation process, thus taking up an equal
amount of resources.

5 Related Work

The typical solution for preventing message tampering
between clients and servers is end-to-end connection-
based encryption using, for example, the SSL protocol.
This negates the functionality of the CDN, though, since
replicas cannot act on the message. Merkle tree au-
thentication [4] is a proposed alternative, where static
cacheable content is signed at the server and verified by
the client. Also, digital rights management schemes en-
able consumers to download content from untrusted dis-
tributors [1]. For dynamic content, [9, 31] propose the
use of XML-based rules for adding/removing/replacing
content, which is limited enough to be easily verified by
a client.

Attestation has been used in the context of trusted
computing to prove to a third party that a node executes
trusted code [32]. The idea is to generate proofs of trust
using an attestation chain that cryptographically binds an
executable, the data it manipulates, and the underlying
operating system to a trusted processor. However, cur-
rent approaches are limited to attesting to the integrity
of the executable’s identity, not its functionality. As a
result, they cannot detect exploits or misconfigurations
(induced by human factor) [18, 39]. Ongoing work [41]
focuses on providing more expressive attestations using
trusted reference monitors. Since attestations incorporate
the operating system, the trusted code depends on a par-
ticular OS version, making it harder to accommodate se-
curity updates as well as bug fixes and creating a tension
between complete attestation and timely upgrades. Our
system avoids this tension by focusing only on observ-
able differences. Comparable to our system, the Com-
mon Language Infrastructure’s strong names are used to
uniquely identify assemblies, distinguish versions, and
provide integrity [13]. Strong names consist of a text
name, version number, culture information, a public key,
and a digital signature similar to our attestation records.

Minimizing trust placed on nodes in peer-to-peer net-
works through decentralized reputation systems has been
used for file sharing by computing either local val-
ues [45] or global values [25], both based on user rat-
ings. As mentioned in Section 2.3, a reputation system
can be used for CDNs in order to replace trusted veri-
fiers. However, it is useful only when combined with
attestation records and applied to replicas, not clients.
Also, sampled voting for content integrity has been used
in the context of the peer-to-peer data preservation sys-

tem LOCKSS [28]. LOCKSS peers verify data integrity
by collecting votes from a sample of the population
and comparing them with their local copy. Sampled
voting combined with repeated execution could provide
clients with information for detecting misbehaving repli-
cas without the need for verifiers. However, using veri-
fiers is more suitable for CDNs because unilateral poli-
cies for punishing misbehavior are easier to build even if
the majority of replicas are misbehaving.

The effects of misbehaving peers can be nullified us-
ing byzantine fault tolerance as described in PBFT [7] if
the number of misbehaving peers is less than 1/3 of the
total number of nodes. However, in a collaborative peer-
to-peer CDN, there could be an unlimited number of ra-
tional users that donate nodes to benefit from the use of
the CDN, but deviate from the service to gain a free ride.
This behavior has been modeled as Byzantine-Altruistic-
Rational (BAR) [2]. Using the layered approach pro-
posed in [2] for building BAR tolerant systems, one
could provide stronger integrity guarantees than our sys-
tem because Repeat and Compare cannot produce proofs
of misbehavior when replicas deny service to clients. At
the same time, by detecting misbehavior after the fact in-
stead of preventing it altogether, Repeat and Compare re-
quires only one replica to generate a response and at most
two well-behaved replicas to verify the response (in our
centralized model). As a result, Repeat and Compare can
maintain lower latency and higher throughput than PBFT
and BAR systems.

Using repeated execution to detect misbehavior has
been used in the context of bug discovery in Rx [35] and
worm containment in Vigilante [11]. Our approach dif-
fers in that execution is repeated by a separate party, the
verifier, rather than the client. Repeated execution in Pi-
oneer [38] is closer to our approach because a trusted
platform, the dispatcher, verifies the integrity of code
running on an untrusted platform. But since generat-
ing a proof of correctness in Pioneer is extremely time-
sensitive, it is not suitable for large scale systems.

Our system can benefit from an application-level any-
cast service that can serve as a controlled entry point for
peers that wish to join the CDN. We believe it would be
easy to modify systems such as OASIS [17] or Merid-
ian [48] to also redirect clients to verifiers. Repeat and
Compare has already been integrated with Na Kika [20],
which uses a structured overlay to coordinate caches.
Structured overlay networks provide robust and scalable
coordination strategies [21, 22, 27, 36, 44, 52] and have
been successfully used for static content distribution in
CoralCDN [16] and Squirrel [24]. However, our system
is independent of the coordination mechanism and can
also be used by systems such as CoDeeN [46], ColTrES
[6], Tuxedo [40] and DotSlash [53] that use domain-
specific topologies and algorithms to balance load and

156

NSDI *07: 4th USENIX Symposium on Networked Systems Design & Implementation

USENIX Association

absorb load spikes.

The problem of verifiable, accountable distributed
computations has been explored in the contexts of secure
information aggregation in sensor networks [34], byzan-
tine fault detection [23], networked services [50, 49], and
commercial peer-to-peer computing [51]. Comparable to
our approach, these efforts hold both clients and servers
accountable for their statements, using some form of at-
testation record. In departure from our approach, several
efforts employ deterministic detection strategies, provid-
ing stronger guarantees but requiring more resources.
One significant difference (and contribution) of our work
is the systematic exploration of the design space.

6 Discussion and Future Work

Comparing the role of determinism in fault detection and
fault prevention is instructive. Fault prevention requires
that failures are independent and thus introduces non-
determinism through n-version programming and dis-
similar hardware components. In contrast, fault detection
requires that all observable replica behavior be determin-
istic and repeatable. This limits detection systems, such
as ours, to services that do not depend on true random-
ness. Our implementation meets this requirement by en-
suring identical executable versions and runtime environ-
ments, including the use of pseudo-random number gen-
erators and identical seeds. It is an open issue whether
this approach generalizes beyond web applications. We
believe that virtual machines may provide the basis for a
more general solution.

Our system depends on all requests receiving re-
sponses. As a result, replicas cannot be held account-
able for refusing service and Repeat and Compare can-
not prove a denial of service attack. We believe, however,
that misbehaving nodes are motivated to serve rather than
drop requests in order to maximize damage. As a result,
denial of service is not a significant problem in CDNs.
Another issue not addressed in this work is the scenario
of an attacker strategically changing a small number of
high-value responses to maximize damage. This issue
is real because our probabilistic detection favors popular
content. One possible solution is for origin servers to set
a priority value in the attestation records of high-value
content, with client forwarding such records with higher
probability (e.g., p = 1).

Finally, our system does not provide support for
databases. To generate attestation records for database
reads, records would have to bind results to the cor-
responding queries and database tables. Supporting
database updates, however, is more challenging. Since
replicas are not trusted, our system can potentially suf-
fer from forking attacks, where updates from different
clients are hidden from each other [26]. We believe that
database replication can provide the basis for a solution:

different replicas can compare their local copies and thus
detect divergence.

7 Conclusions

We have presented Repeat and Compare, a system for
ensuring content integrity in peer-to-peer CDNs when
replicas dynamically generate content. Repeat and Com-
pare detects misbehaving replicas through attestation
records and by leveraging the peer-to-peer network to re-
peat content generation on other replicas and then com-
pare the results. Attestation records cryptographically
bind replicas to their code, inputs, and dynamically gen-
erated output and build chains of accountability that help
trace misbehavior. Our evaluation shows that Repeat and
Compare is effective at quickly cleansing a CDN even if
large fractions of replicas are misbehaving. &

Acknowledgments

We thank Mike Freedman, Guy Lichtman, Lakshmi
Subramanian, Jinyang Li and Dinh Nguyen Tran for
their discussions. We also thank our shepherd, Bar-
bara Liskov, and the anonymous reviewers for their feed-
back. This material is based upon work supported by
the National Science Foundation under Grant No. CNS-
0537252.

References

[1] A. Adelsbach, M. Rohe, and A.-R. Sadeghi. Towards multilater-
ally secure digital rights distribution infrastructures. In Proc. 5th
ACM DRM, pp. 45-54, Nov. 2005.

[2] A.S. Aiyer, L. Alvisi, A. Clement, M. Dahlin, J.-P. Martin, and
C. Porth. BAR fault tolerance for cooperative services. In Proc.
20th SOSP, pp. 45-58, Oct. 2005.

[3] S. S. Bakken, A. Aulbach, E. Schmid, J. Winstead, L. T. Wil-
son, R. Lefdorf, A. Zmievski, and J. Ahto. PHP Manual. PHP
Documentation Group, Feb. 2004. http://www.php.net/
manual/.

[4] R. J. Bayardo and J. Sorensen. Merkle tree authentication of
HTTP responses. In Proc. 14th WWW, pp. 1182-1183, May
2005.

[5] L. Bent, M. Rabinovich, G. M. Voelker, and Z. Xiao. Characteri-
zation of a large web site population with implications for content
delivery. In Proc. 13th WWW, pp. 522-533, May 2004.

[6] C. Canali, V. Cardellini, M. Colajanni, R. Lancellotti, and P. S.
Yu. Cooperative archictectures and algorithms for discovery and
transcoding of multi-version content. In Proc. 8th IWCW, Sept.
2003.

[7] M. Castro and B. Liskov. Practical byzantine fault tolerance and
proactive recovery. ACM TOCS, 20(4):398—461, Nov. 2002.

[8] T. D. Chandra and S. Toueg. Unreliable failure detectors for re-
liable distributed systems. Journal of the ACM, 43(2):225-267,
Mar. 1996.

[9] C.-H. Chi and Y. Wu. An XML-based data integrity service

model for web intermediaries. In Proc. 7th IWCW, 2002.

B. Chun, F. Dabek, A. Haeberlen, E. Sit, H. Weatherspoon, M. F.

Kaashoek, J. Kubiatowicz, and R. Morris. Efficient replica main-

tenance for distributed storage systems. In Proc. 3rd NSDI, pp.
45-58, May 2006.

[10]

USENIX Association

NSDI *07: 4th USENIX Symposium on Networked Systems Design & Implementation

157

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

M. Costa, J. Crowcroft, M. Castro, A. Rowstron, L. Zhou,
L. Zhang, and P. Barham. Vigilante: End-to-end containment
of internet worms. In Proc. 20th SOSP, pp. 133-147, Oct. 2005.
F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica.
Wide-area cooperative storage with CFS. In Proc. 18th SOSP,
pp. 202-215, Oct. 2001.

ECMA International.

4th edition, June 2006.
C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas, and
T. Ylonen. SPKI certificate theory. RFC 2693, IETF, Sept. 1999.

M. J. Freedman. Personal Communication, Oct. 2006.

Common language infrastructure (CLI),

M. J. Freedman, E. Freudenthal, and D. Mazieres. Democratizing
content publication with Coral. In Proc. 1st NSDI, pp. 239-252,
Mar. 2004.

M. J. Freedman, K. Lakshminarayanan, and D. Maziéres. OASIS:
Anycast for any service. In Proc. 3rd NSDI, pp. 129-142, May
2006.

T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh.
Terra: A virtual machine-based platform for trusted computing.
In Proc. 19th SOSP, pp. 193-206, Oct. 2003.

T. J. Giuli and M. Baker. Narses: A scalable, flow-based network
simulator. Tech. Report arXiv:cs.PF/0211024, Stanford Univer-
sity, Nov. 2002.

R. Grimm, G. Lichtman, N. Michalakis, A. Elliston, A. Kravetz,
J. Miller, and S. Raza. Na Kika: Secure service execution and
composition in an open edge-side computing network. In Proc.
3rd NSDI, pp. 169-182, May 2006.

K. Gummadi, R. Gummadi, S. Gribble, S. Ratnasamy,
S. Shenker, and I. Stoica. The impact of DHT routing geome-
try on resilience and proximity. In Proc. 2003 SIGCOMM, pp.
381-394, Aug. 2003.

I. Gupta, K. Birman, P. Linga, A. Demers, and R. van Renesse.
Kelips: Building an efficient and stable P2P DHT through in-
creased memory and background overhead. In Proc. 2nd IPTPS,
pp. 160-169, Feb. 2003.

A. Haeberlen, P. Kouznetsov, and P. Druschel. The case for
byzantine fault detection. In Proc. 2nd HotDep, Nov. 2006.

S. Iyer, A. Rowstron, and P. Druschel. Squirrel: A decentralized
peer-to-peer web cache. In Proc. 21st PODC, pp. 213-222, July
2002.

S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina. The eigen-
trust algorithm for reputation management in P2P networks. In
Proc. 12th WWW, pp. 640-651, May 2003.

J. Li, M. Krohn, D. Maziéres, and D. Shasha. Secure untrusted
data repository (SUNDR). In Proc. 6th OSDI, pp. 121-136, Dec.
2004.

J. Li, J. Stribling, R. Morris, and M. F. Kaashoek. Bandwidth-
efficient management of DHT routing tables. In Proc. 2nd NSDI,
pp. 99-114, May 2005.

P. Maniatis, D. S. H. Rosenthal, M. Roussopoulos, M. Baker, T. J.
Giuli, and Y. Muliadi. Preserving peer replicas by rate-limited
sampled voting. In Proc. 19th SOSP, pp. 44-59, Oct. 2003.

D. Mosberger and T. Jin. httperf: A tool for measuring web server
performance. In Proc. 1st Workshop on Internet Server Perfor-
mance, pp. 59-67, June 1998.

OpenSSL. http://www.openssl.org/. Accessed Feb.

2007.

H. K. Orman. Data integrity for mildly active content. Proc. 3rd
Workshop on Active Middleware Services, p. 73, Aug. 2001.

S. Pearson, B. Balacheff, L. Chen, D. Plaquin, and G. Proudler.
Trusted Computing Platforms: TCPA Technology In Context.
Prentice Hall, July 2002.

Privoxy. http://www.privoxy.org/. Accessed Feb. 2007.

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

B. Przydatek, D. Song, and A. Perrig. Sia: Secure information
aggregation in sensor networks. In Proc. Ist SenSys, pp. 255—
265, Nov. 2003.

F. Qin, J. Tucek, J. Sundaresan, and Y. Zhou. Rx: Treating bugs
as allergies—a safe method to survive software failures. In Proc.
20th SOSP, pp. 235-248, Oct. 2005.

A. Rowstron and P. Druschel. Pastry: Scalable, distributed object
location and routing for large-scale peer-to-peer systems. In Proc.
Middleware ’01, pp. 329-350, Nov. 2001.

J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end arguments
in system design. ACM TOCS, 2(4):277-288, Nov. 1984.

A. Seshadri, M. Luk, E. Shi, A. Perrig, L. van Doorn, and
P. Khosla. Pioneer: verifying code integrity and enforcing un-
tampered code execution on legacy systems. In Proc. 20th SOSP,
pp. 1-16, Oct. 2005.

E. Shi, A. Perrig, and L. V. Doorn. BIND: A fine-grained attesta-
tion service for secure distributed systems. Proc. 2005 S&P, pp.
154-168, May 2005.

W. Shi, K. Shah, Y. Mao, and V. Chaudhary. Tuxedo: A peer-to-
peer caching system. In Proc. 2003 PDPTA, pp. 981-987, June
2003.

A. Shieh, D. Williams, E. Sirer, and F. Schneider. Nexus: A new
operating system for trustworthy computing. In 20th SOSP Work-
in-Progress Session, Oct. 2005.

E. G. Sirer. Meridian: Data Description, 2005. http:
//www.cs.cornell.edu/People/egs/meridian/
data.php. Accessed Feb. 2007.

Y. J. Song, V. Ramasubramanian, and E. G. Sirer. Optimal re-
source utilization in content distribution networks. Tech. Report
CIS TR2005-2004, Cornell University, Nov. 2005.

I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakr-
ishnan. Chord: A scalable peer-to-peer lookup service for Inter-
net applications. In Proc. 2001 SIGCOMM, pp. 149-160, Aug.
2001.

K. Walsh and E. G. Sirer. Experience with a distributed object
reputation system for peer-to-peer filesharing. In Proc. 3rd NSDI,
pp. 1-14, May 2006.

L. Wang, V. Pai, and L. Peterson. The effectiveness of request
redirection on CDN robustness. In Proc. 5th OSDI, pp. 345-360,
Dec. 2002.

Washington Post. The botnet trackers, February 16 2006. http:
//www.washingtonpost.com/wp-dyn/content/
article/2006/02/16/AR2006021601388.html.
Accessed Feb. 2007.

B. Wong, A. Slivkins, and E. G. Sirer. Meridian: A lightweight
network location service without virtual coordinates. In Proc.
2005 SIGCOMM, pp. 85-96, Aug. 2005.

A. Yumerefendi and J. Chase. The Role of Accountability in De-
pendable Distributed Systems. In Proc. Ist HotDep, June 2005.
A.R. Yumerefendi and J. S. Chase. Trust but verify: Accountabil-
ity for network services. In Proc. 11th ACM SIGOPS European
Workshop, p. 37, Sept. 2004.

M. Yurkewych, B. N. Levine, and A. L. Rosenberg. On the cost-
ineffectiveness of redundancy in commercial P2P computing. In
Proc. 12th CCS, pp. 280-288, Nov. 2005.

B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and
J. D. Kubiatowicz. Tapestry: A resilient global-scale overlay for
service deployment. /EEE J-SAC, 22(1):41-53, Jan. 2004.

W. Zhao and H. Schulzrinne. DotSlash: Providing dynamic scal-
ability to web applications with on-demand distributed query re-
sult caching. Tech. Report CUCS-035-05, Columbia University,
Sept. 2005.

L. Zhou, F. B. Schneider, and R. V. Renesse. Coca: A secure
distributed online certification authority. ACM TOCS, 20(4):329—
368, Nov. 2002.

158

NSDI *07: 4th USENIX Symposium on Networked Systems Design & Implementation

USENIX Association

