Drug repositioning inferred from E2F1-coregulator interactions studies for the prevention and treatment of metastatic cancers

Deborah Goody^{1†}, Shailendra K. Gupta^{2†}, David Engelmann¹, Alf Spitschak¹, Stephan Marquardt¹, Stefan Mikkat³, Claudia Meier¹, Charlotte Hauser⁴, Jan-Paul Gundlach⁴, Jan-Hendrik Egberts⁴, Hubert Martin⁵, Toni Schumacher¹, Anna Trauzold⁴, Olaf Wolkenhauer², Stella Logotheti¹, Brigitte M. Pützer^{1,6}*

- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany;
- Department of Systems Biology and Bioinformatics, University of Rostock, Rostock, Germany;
- 3. Core Facility Proteomics, ZEMFO, Rostock University Medical Center, Rostock, Germany;
- 4. Institute for Experimental Cancer Research, Medical Faculty, CAU, Kiel, and Department of Surgery, UKSH, Campus Kiel, Kiel, Germany;
- 5. Department of Neuropathology, University Hospital Charité, Berlin, Germany;
- Department Life, Light and Matter of the Interdisciplinary Faculty at Rostock University, Rostock, Germany.
- † Equally contributing first authors

*Corresponding author: Brigitte M. Pützer, MD, PhD, Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany. Tel: +49(0)3814945068, Fax: +49(0)3814945062, Email: <u>brigitte.puetzer@med.uni-rostock.de</u>

Figure S1. Prediction of E2F2 and MTA1 interaction. *In silico* prediction of E2F1 and MTA1 protein interaction indicates best complex formation of both proteins. E2F2 is shown as solid surface protein and colors are based on hydrophobicity index, whereas MTA1 is shown as solid ribbon with colors based on the secondary structure type. Atoms of MTA1 amino acid residues are shown as lines.

Figure S2. High protein levels of E2F1 and MTA1 correlate with aggressiveness of tumor cells in various cancer entities. Cells lines were seeded at the identical cell counts and allowed to grow to confluence. Protein expression levels were assessed by immunoblot using antibodies against depicted proteins. High protein levels of E2F1 and MTA1 correlate with aggressiveness of tumor cells. Actin was used for equal loading.

Figure S3. Effect of sh.E2F1 and sh.MTA1 on cell proliferation. XTT assays were performed 48 h after shRNA-mediated knockdown of E2F1 and MTA1 in three different cancer cell lines. The proliferation rate was calculated relative to the control (sh.ctrl). Bar graphs are represented as means \pm SD.

Figure S4. Correlation of E2F1 and MTA1 expression with patient survival. Using the UCSC Xena browser database Kaplan-Meier analyses were performed for overall survival of patients with **(A)** prostate adenocarcinoma (top), melanoma (center), and pancreatic adenocarcinoma (bottom) and **(B)** the Pan-Cancer cohort. Log-rank test p-values are depicted in the survival plots. High E2F1 expression is a prerequisite for poor survival (A and B left). While high MTA1 expression alone is a favourable parameter in some cancer entities (A and B middle and right), combined high MTA1 and E2F1 levels define bad prognoses (A and B right).

Figure S5. Survival data from patients with E2F1, MTA1 and HAS2 expression in different cancer cohorts. (A) Kaplan-Meier analyses in the Pan-Cancer cohort with high or low HAS2 levels. **(B)** Overall survival of patients with high E2F1, MTA1, and HAS2 expression in prostate (top) and pancreatic adenocarcinoma (bottom). Analyses were performed using the UCSC Xena browser database. Log-rank test p-values are depicted on the survival curves.

Figure S6. Structure based pharmacophore model generated from MTA1 residues interacting with E2F1 in the best pose. (A) Two hydrophobic groups are shown as *cyan spheres*, two hydrogen bond donors as *green arrows*, two hydrogen bond acceptors as *pink arrows*, and twelve excluded volumes as *gray spheres*. Amino acid residues of MTA1 and E2F1 involved in the binding interface are shown as *gray* and *red* lines. The MTA1 peptide backbone is highlighted as thick stick model. (B, C) Contact map of the best interaction poses of (B) argatroban and (C) demeclocycline in the MTA1 binding interface associated with E2F1. Interactions are shown as dotted lines. Green: conventional H-bond, light green: van der Waals interactions, orange: electrostatic interaction energy of -45.68 kcal/mol. In case of demeclocycline the interaction energy of argatroban with MTA1 suggest more stable binding in comparison to demeclocycline.

Figure S7. Cytotoxicity of demeclocycline, argatroban and silibinin in different cell lines. SK-Mel-147 and PC3 cells were treated with different concentrations of (A) argatroban, (B) silibinin or (C) demeclocycline. Cell viability was measured using XTT assay at indicated time points and calculated relative to the control (vehicle, set as 100%). Bar graphs are represented as means \pm SD.

Amino acid residues	Distance (Å)	Bond Category	Bond Type
E2F1:ARG111:NH1 - MTA1:GLU287:OE2	2.95438	Electrostatic	Salt Bridge
MTA1:ARG225:NH2 - E2F1:ASP381:OD1	3.8743	Electrostatic	Salt Bridge
MTA1:ARG335:NH2 - E2F1:GLU320:OE1	1.85946	Electrostatic	Salt Bridge
MTA1:LYS352:NZ - E2F1:PHE437:OXT	2.535	Electrostatic	Salt Bridge
E2F1:ARG109:NH1 - MTA1:GLU287:OE2	5.00665	Electrostatic	Attractive Charge
E2F1:ARG111:NH1 - MTA1:GLU284:OE2	4.51285	Electrostatic	Attractive Charge
E2F1:ARG111:NH2 - MTA1:GLU287:OE1	5.41277	Electrostatic	Attractive Charge
E2F1:LYS125:NZ - MTA1:GLU133:OE1	1.65758	Electrostatic	Attractive Charge
E2F1:ARG127:NH2 - MTA1:GLU133:OE1	4.76786	Electrostatic	Attractive Charge
E2F1:ARG373:NH1 - MTA1:GLU292:OE1	5.53418	Electrostatic	Attractive Charge
E2F1:ARG422:NH2 - MTA1:ASP179:OD1	4.61986	Electrostatic	Attractive Charge
MTA1:ARG189:NH1 - E2F1:GLU407:OE2	5.23428	Electrostatic	Attractive Charge
MTA1:ARG225:NH1 - E2F1:ASP381:OD2	4.62703	Electrostatic	Attractive Charge
MTA1:LYS331:NZ - E2F1:ASP277:OD2	4.44111	Electrostatic	Attractive Charge
MTA1:ARG335:NH1 - E2F1:GLU319:OE2	5.04002	Electrostatic	Attractive Charge
MTA1:ARG335:NH1 - E2F1:GLU320:OE2	4.97341	Electrostatic	Attractive Charge
MTA1:LYS340:NZ - E2F1:ASP277:OD2	5.05875	Electrostatic	Attractive Charge
E2F1:ARG113:NH1 - MTA1:LEU320:O	2.66335	Hydrogen Bond	Conventional H-bond
E2F1:LYS120:NZ - MTA1:THR134:O	1.69271	Hydrogen Bond	Conventional H-bond
E2F1:ARG127:NH2 - MTA1:LEU137:O	3.24795	Hydrogen Bond	Conventional H-bond
E2F1:THR228:OG1 - MTA1:LYS138:O	2.76769	Hydrogen Bond	Conventional H-bond
E2F1:PHE437:N - MTA1:GLU287:OE2	2.99446	Hydrogen Bond	Conventional H-bond
MTA1:ASN132:N - E2F1:LYS125:O	2.43103	Hydrogen Bond	Conventional H-bond

MTA1:THR134:OG1 - E2F1:THR130:O	2.04248	Hydrogen Bond	Conventional H-bond
MTA1:ARG189:NH1 - E2F1:PRO405:O	2.24207	Hydrogen Bond	Conventional H-bond
MTA1:ARG225:NH1 - E2F1:VAL378:O	2.15437	Hydrogen Bond	Conventional H-bond
MTA1:ARG225:NH2 - E2F1:LEU377:O	1.97973	Hydrogen Bond	Conventional H-bond
MTA1:HIS253:N - E2F1:ASP381:OD1	2.81002	Hydrogen Bond	Conventional H-bond
MTA1:ALA254:N - E2F1:ASP381:OD1	2.89143	Hydrogen Bond	Conventional H-bond
MTA1:SER322:N - E2F1:ARG111:O	3.19967	Hydrogen Bond	Conventional H-bond
MTA1:ASN371:ND2 - E2F1:ILE293:O	2.94273	Hydrogen Bond	Conventional H-bond
E2F1:ARG109:CD - MTA1:THR257:OG1	3.71617	Hydrogen Bond	Carbon H-bond
E2F1:HIS114:CE1 - MTA1:ASN378:O	1.89129	Hydrogen Bond	Carbon H-bond
MTA1:LEU137:CA - E2F1:SER131:OG	2.61621	Hydrogen Bond	Carbon H-bond
MTA1:SER322:CB - E2F1:ARG111:O	3.62722	Hydrogen Bond	Carbon H-bond
MTA1:ARG335:CA - E2F1:LYS289:O	3.4143	Hydrogen Bond	Carbon H-bond
MTA1:GLY379:CA - E2F1:TYR128:OH	3.24445	Hydrogen Bond	Carbon H-bond
E2F1:ASP436:OD2 - MTA1:TRP317	4.58869	Electrostatic	Pi-Anion
E2F1:ASP436:OD2 - MTA1:TRP317	4.48457	Electrostatic	Pi-Anion
E2F1:LEU191:CD2 - MTA1:TYR140	3.09206	Hydrophobic	Pi-Sigma
E2F1:LEU377:CD1 - MTA1:TYR355	3.59324	Hydrophobic	Pi-Sigma
E2F1:LEU435:CD2 - MTA1:TRP317	3.34605	Hydrophobic	Pi-Sigma
E2F1:PRO122 - MTA1:LEU137	4.65475	Hydrophobic	Alkyl
E2F1:LYS125 - MTA1:LEU160	5.0351	Hydrophobic	Alkyl
E2F1:ALA275 - MTA1:MET329	4.98148	Hydrophobic	Alkyl
E2F1:LYS289 - MTA1:VAL337	5.43881	Hydrophobic	Alkyl
E2F1:LYS289 - MTA1:LYS340	5.27173	Hydrophobic	Alkyl

E2F1:PRO292 - MTA1:MET329	4.86215	Hydrophobic	Alkyl
E2F1:PRO292 - MTA1:VAL369	3.91604	Hydrophobic	Alkyl
E2F1:LEU374 - MTA1:MET285	5.47113	Hydrophobic	Alkyl
E2F1:ARG422 - MTA1:LEU181	3.4059	Hydrophobic	Alkyl
MTA1:ARG189 - E2F1:PRO404	4.42438	Hydrophobic	Alkyl
MTA1:ALA224 - E2F1:VAL378	4.16551	Hydrophobic	Alkyl
MTA1:ARG282 - E2F1:ILE400	5.33682	Hydrophobic	Alkyl
MTA1:LYS373 - E2F1:ILE293	4.87702	Hydrophobic	Alkyl
MTA1:ALA382 - E2F1:MET362	5.44388	Hydrophobic	Alkyl
E2F1:HIS406 - MTA1:ARG189	4.86253	Hydrophobic	Pi-Alkyl

Table S1. Intermolecular hydrogen interactions between E2F1 and MTA1 in the top interacting pose.

		Single amino acid mutation		
S.No.	Mutation	Mutation energy (kcal/mol)	Effect of mutation	
1	M:ASN132>ALA	-0.63	Stabilizing	
2	M:GLU133>ALA	3	Destabilizing	
3	M:THR134>ALA	2.23	Destabilizing	
4	M:LEU137>ALA	-4.28	Stabilizing	
5	M:LYS138>ALA	-3.51	Stabilizing	
6	M:TYR140>ALA	1.33	Destabilizing	
7	M:LEU160>ALA	1.15	Destabilizing	
8	M:ASP179>ALA	-1.3	Stabilizing	
9	M:LEU181>ALA	0.99	Destabilizing	
10	M:ARG189>ALA	2.41	Destabilizing	
11	M:ARG225>ALA	4.91	Destabilizing	
12	M:HIS253>ALA	0.99	Destabilizing	
13	M:ALA254>ALA	0	Neutral	
14	M:ARG282>ALA	1.6	Destabilizing	
15	M:MET285>ALA	3.52	Destabilizing	
16	M:GLU287>ALA	-13.81	Stabilizing	
17	M:GLU292>ALA	-2.1	Stabilizing	
18	M:TRP317>ALA	-5.33	Stabilizing	
19	M:LEU320>ALA	2.24	Destabilizing	
20	M:SER322>ALA	0.07	Neutral	
21	M:MET329>ALA	-1.47	Stabilizing	
22	M:LYS331>ALA	-43.19	Stabilizing	
23	M:ARG335>ALA	1.62	Destabilizing	
24	M:VAL337>ALA	0.71	Destabilizing	
25	M:LYS340>ALA	1.08	Destabilizing	
26	M:LYS352>ALA	-3.17	Stabilizing	
27	M:TYR355>ALA	-0.68	Stabilizing	
28	M:VAL369>ALA	-0.07	Neutral	
29	M:GLY379>ALA	-0.37	Neutral	

 Table S2: Site directed mutagenesis for MTA1 amino acid residues interacting with E2F1.

		Single amino acid mutation		
S.No.	Mutation	Mutation energy	Effect of mutation	
		(kcal/mol)		
1	E:ARG109>ALA	3.1	Destabilizing	
2	E:ARG111>ALA	3.56	Destabilizing	
3	E:ARG113>ALA	1.69	Destabilizing	
4	E:HIS114>ALA	2.09	Destabilizing	
5	E:LYS120>ALA	3.78	Destabilizing	
6	E:PRO122>ALA	0.12	Neutral	
7	E:LYS125>ALA	0.87	Destabilizing	
8	E:ARG127>ALA	-26.72	Stabilizing	
9	E:TYR128>ALA	3.41	Destabilizing	
10	E:THR130>ALA	0.67	Destabilizing	
11	E:SER131>ALA	0.31	Neutral	
12	E:GLN189>ALA	-0.51	Stabilizing	
13	E:LEU191>ALA	1.05	Destabilizing	
14	E:THR228>ALA	-2.38	Stabilizing	
15	E:VAL262>ALA	0.14	Neutral	
16	E:ASP277>ALA	2.15	Destabilizing	
17	E:LYS289>ALA	0	Neutral	
18	E:PRO292>ALA	-0.1	Neutral	
19	E:ILE293>ALA	1.48	Destabilizing	
20	E:GLU319>ALA	0.13	Neutral	
21	E:GLU320>ALA	0.62	Destabilizing	
22	E:LEU374>ALA	2.45	Destabilizing	
23	E:LEU377>ALA	1.27	Destabilizing	
24	E:VAL378>ALA	0.71	Destabilizing	
25	E:ASP381>ALA	0.61	Destabilizing	
26	E:ILE400>ALA	-1.22	Stabilizing	
27	E:PRO404>ALA	0.81	Destabilizing	
28	E:PRO405>ALA	0.53	Destabilizing	
29	E:HIS406>ALA	0.23	Neutral	
30	E:GLU407>ALA	-0.39	Neutral	
31	E:ARG422>ALA	2.47	Destabilizing	
32	E:LEU435>ALA	-0.71	Stabilizing	
33	E:ASP436>ALA	-7.77	Stabilizing	
34	E:PHE437>ALA	1.06	Destabilizing	

Table S3: Site directed mutagenesis for E2F1 amino acid residues interacting with MTA1.

Rank	Gene	LOG2_FC	LOG2_FC	GO grouping	
1	NTSR1	-6,47	-1,88	regulation of apoptotic process	
2	HAS2	-7,06	-1,51	extracellular matrix adhesion/cell adhesion/cell migration	
3	NOG	-6,41	-1,76	extracellular matrix adhesion/cell adhesion/cell migration	
4	RIN2	-7,08	-1,14	intracellular transport	
5	ITGB4	-5,6	-1,6	extracellular matrix adhesion/cell adhesion/cell migration	
6	NPY1R	-4,83	-2,54	biosynthetic process	
7	PYGB	-5,11	-1,56	immune system process	
8	LXN	-5,8	-1,02	immune system process	
9	AHNAK2	-5,09	-1,09	regulation of gene expression	
10	FZD4	-4,13	-1,13	vasculogenesis	
11	FN1	-3,62	-1,36	extracellular matrix adhesion/cell adhesion/cell migration	
12	MUC5B	-3,02	-2,05	immune system process	
13	SPRY4	-4,35	-1,07	regulation of MAPK cascade	
14	TRIB2	-3,43	-1,28	regulation of MAPK cascade	
15	SULF2	-4,02	-1,04	extracellular matrix adhesion/cell adhesion/cell migration	
16	SPTSSB	-3,08	-1,1	biosynthetic process	
17	HSPG2	-2,34	-1,17	vasculogenesis	
18	TMEM200C	-2,2	-1,67	-	
19	NFIC	-2,8	-1,11	regulation of gene expression	
20	TBXAS1	-1,59	-1,69	vasculogenesis	
21	PCOLCE2	-1,28	-1,79	immune system process	
22	MYO1D	-2,22	-1,1	intracellular transport	
23	FAM131B	-1,46	-1,15	extracellular matrix adhesion/cell adhesion/cell migration	
24	CADM2	-1,03	-1,05	extracellular matrix adhesion/cell adhesion/cell migration	

Table S4: List of downregulated genes after knockdown of E2F1 and MTA1. The ranking is based on the weighted sum of fold changes using the ratio of median log₂ fold change of the downregulated targets in shE2F1 versus shMTA1 microarrays.

No.	Zink ID	Generic name	FIT SCORE	Biological properties	structure
1	ZINC080342 34	Demeclocycline	3.2139	Antibacteria I drug	
2	ZINC124667 45	Argatroban	2.22492	Anticoagula nt drug	
3	ZINC115926 28	C115926 Lincomycin 28		Antibacteria I drug	
4	ZINC115926 29	(2R,4S)-N-[(1S,2R)- 2-hydroxy-1- [(2S,3S,4S,5S,6S)- 3,4,5-trihydroxy-6- methylsulfanyl- tetrahydropyran-2	1.26729	Antibacteria I drug	
5	ZINC038309 96	Lincomycin hydrochloride	1.09165	Antibacteria I drug	
6	ZINC040972 85	Beclomethasone	0.97053 8	Antibacteria I drug	HO HOME THE TRANSPORT
7	ZINC115926 47	(4R,4aS,5aS,6R,12a R)-7-chloro-4- dimethylamino- 3,6,10,12,12a- pentahydroxy-1,11- dioxo-4a,5,5a,6- tetrah	0.76239 9	Antibacteria I drug	
8	ZINC160522 77	DOXYCYCLINE HYDROCHLORIDE	0.71873 4	Antibacteria I drug	
9	ZINC020335 89	Silibinin	0.68623 4	Antioxidant	

10	ZINC017690 96	Vitamin B2 / Lyxoflavine	0.56853	Growth promoter for agricultural products	
11	ZINC006012 55	Amisulpride	0.53685 4	Antipsychoti c drug	
12	ZINC080342 63	4-dimethylamino- 3,5,10,12,12a- pentahydroxy-6- methylene-1,11- dioxo-4,4a,5,5a- tetrahydrotetracene- 2-ca /Metacycline	0.48419 3	Antibacteria I drug	
13	ZINC085511 08	Flavin mononucleotide	0.45203 5	Vitamin	
14	ZINC038761 36	Betamethasone	0.34563 9	Anti- inflammator y drug	
15	ZINC197959 61	Demeclocycline hydrochloride	0.07940 28	Antibacteria I drug	
16	ZINC038309 97	Lincomycin hydrochloride	0.07203 77	Antibacteria I drug	

Table S5. List of approved drugs/nutraceuticals mapped with the generated pharmacophore model.