Supplementary Information

BET Bromodomain Inhibition as a Therapeutic Strategy in

Ovarian Cancer by Downregulating FoxM1

Zhenfeng Zhang^{1,2,*}, Pengfei Ma^{1,*}, Ying Jing^{1,*}, Ying Yan³, Mei-Chun Cai⁴, Meiying Zhang^{5,6}, Shengzhe Zhang⁷, Huixin Peng¹, Zhi-Liang Ji⁴, Wen Di^{5,6}, Zhenyu Gu³, Wei-Qiang Gao^{1,7}, Guanglei Zhuang^{1,6}

¹State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China

²State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China

³GenenDesign Co., Ltd, Shanghai, China

⁴State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China

⁵Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China

⁶Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China

⁷School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China

Corresponding author:

Guanglei Zhuang

State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China

Email: zhuangguanglei@gmail.com

^{*}These authors contributed equally to this work.

Supplementary Figure 1.

Supplementary Figure 1. A. Copy number analysis of BRD2 and BRD3 in TCGA ovarian cancer samples. Color scale: amplification in red and deletion in blue. B. Pan-cancer analysis of BRD4 genomic alterations in cBioportal database. C. Quantitative PCR of BRD2 and BRD3 in an ovarian cancer tissue cDNA array containing 192 clinical samples.

Supplementary Figure 2.

Supplementary Figure 2. A. Results of shRNA lentiviral screen in TOV-112D and OVISE cells were presented in rank order of ascending shRNA scores. The effect of shRNAs targeting BET proteins was highlighted by colored dots. Gray dots represent results for non-BET shRNAs. B. Forest plot of the expression of BRD2, BRD3 or BRD4 as a univariate predictor of overall survival in multiple ovarian cancer data sets. C. Kaplan-Meier plot of overall survival in ovarian cancer patients with high or low BRD4 gene expression.

Supplementary Figure 3. A. Cells were treated with (-)-JQ1, JQ1 (1 μ M) or I-BET151 (1 μ M) for 10 days. The remaining cells were stained with crystal violet. B. Cells were cultured on Matrigel and treated with (-)-JQ1, JQ1 (1 μ M) or I-BET151 (1 μ M) for 10 days.

Supplementary Figure 3.

В

Supplementary Figure 4. A. Cells were treated with DMSO, JQ1 (1 μ M) or BI-6727 (1 μ M) for 10 days. The remaining cells were stained with crystal violet. B. Quantification of cell cycle analysis.

Supplementary Figure 5.

Supplementary Figure 5. A. GSEA plots of indicated functionally defined gene sets in DMSO versus JQ1 treated OVTOKO cells at 24 hour. B. ChIP-seq binding density for BRD4 at the enhancer and promoter of FoxM1 following DMSO or JQ1 treatment. C. CHIP-qPCR analysis indicated BRD4 and FoxM1 occupancy at promoters of FoxM1 and FoxM1 target genes. D. Luciferase assay of FoxM1 promoter in HEK293T cells transfected with control, BRD4 or FoxM1. *P<0.05.

Supplementary Figure 6. A. Correlation of FoxM1 and BRD4 gene expression in TCGA ovarian cancer patients. B. Kaplan-Meier plots of disease free survival and overall survival in ovarian cancer patients with or without FoxM1 gene amplification.

Supplementary Figure 7.

Supplementary Figure 7. A. Cells were treated with (-)-JQ1, JQ1 (1 μ M) or I-BET151 (1 μ M) for 10 days. The remaining cells were stained with crystal violet. B. HEY and COV362 cells were treated with DMSO, JQ1 (1 μ M) or I-BET151 (1 μ M). Cell lysates were immunoblotted with indicated antibodies. C. Images of OVTOKO cell growth upon FoxM1 knockdown or JQ1 treatment.

Cell line	IC50 of (-)-JQ1	IC50 of JQ1	IC50 of I-BET
DOV 13	10	0.59	0.98
HEY	10	1.00	10
COV 318	10	0.26	0.97
COV 413B	10	0.19	0.61
COV 504	10	0.50	1.51
FU-OV-1	10	0.10	0.24
OAW28	10	0.10	0.35
OAW42	10	0.36	1.36
OV7	10	0.57	3.73
OV56	10	0.91	3.85
OV90	10	0.10	0.22
OVCA420	10	0.11	0.35
OVCA429	10	10	10
OVCA432	10	0.27	0.54
OVSAHO	10	2.19	0.79
PE01	10	0.30	0.75
ES-2	10	1.04	1.95
OVISE	10	0.10	0.10
Οντοκο	10	0.10	0.65
RMG-1	10	0.10	0.18
TOV-21G	10	1.63	4.14
COV 644	10	0.74	2.47
EFO 27	10	0.30	0.93
MCAS	10	0.12	0.89
RMUG-S	10	0.10	0.52
COV 362	10	1.86	3.10
IGROV1	10	1.40	10
TOV-112D	10	1.19	2.37

Supplementary Table 1: IC50 of compounds (µM)