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Abstract. We present methods to utilise CryoSat-2 (CS-2)

synthetic aperture radar (SAR) mode data in operational ice

charting. We compare CS-2 data qualitatively to SAR mo-

saics over the Barents and Kara seas. Furthermore, we com-

pare the CS-2 to archived operational ice charts. We present

distributions of four CS-2 waveform parameters for different

ice types as presented in the ice charts. We go on to present

an automatic classification method for CS-2 data which, after

training with operational ice charts, is capable of determining

open ocean from ice with a hit rate of > 90 %. The training

data are dynamically updated every 5 days using the most

recent 15 days of CS-2 data and operative ice charts. This

helps the adaption of the classifier to the evolving ice/snow

conditions throughout winter. The classifier is also capable

of detecting three different ice classes (thin and thick first-

year ice as well as old ice) with success rates good enough

for the output to be usable to support operational ice chart-

ing. Finally, we present a near-real-time CS-2 product just

plotting the waveform characteristics and conclude that even

such a simple product is usable for some of the needs of ice

charting.

1 Introduction

Our aim is to present new methods to utilise satellite altime-

ter measurements in operational ice charting. We present an

automatic classification method to derive different ice stages

of development from CryoSat-2 (CS-2) waveforms. This is

different from the most common sea ice application of satel-

lite altimeters today, which is measuring the freeboard and

the thickness of Arctic winter sea ice; see for example Laxon

et al. (2013).

The use of altimeters to support ice mapping was sug-

gested already 35 years ago by Dwyer and Godin (1980). Ice

detected utilising altimeter waveforms has been compared

with sea ice extents from passive microwave satellite instru-

ments (Laxon, 1990) and European Remote Sensing satel-

lite (ERS-1) altimeter-based sea ice estimates were faxed

to research vessels navigating in the Southern Ocean in the

early 1990s (Laxon, 1994). Mostly due to synthetic aperture

radars (SARs) becoming the standard tool in operational sea

ice charting, altimetry has developed into a method for cli-

mate research (Laxon et al., 2003, 2013; Giles et al., 2008;

Kwok et al., 2009). Altimetry is, however, widely used in

numerical weather prediction where fast delivery products

from different altimeters in the open ocean are assimilated

into weather models (Vidard et al., 2009).

The diminishing Arctic sea ice cover is opening new sea

routes. In consequence, navigation in seasonally ice-covered

waters is due to increase rapidly. This calls for accurate and

timely sea ice information, especially under dangerous sea

ice conditions. Vessels navigating in or near sea ice can be

roughly divided into those wanting to completely avoid ice

and those that can safely operate in medium first-year ice.

For the ice-avoiding ships, ice edge detection is enough, but

for the latter group some information on the stage of develop-

ment of the ice is needed as well. The most widely used Earth

Observation (EO) data in operational ice charting are SAR

frames. In areas of heavy traffic, such as the Baltic Sea, SAR

data are virtually indispensable. However, because the num-

ber of SAR acquisitions is limited, other instruments, such

as altimeters, may provide valuable additional information

on sea ice.

Due to the number of SAR satellites flying today being

reasonably small, ice services can face incidents when fresh

SAR data are simply not available. The loss of Envisat (En-

vironmental Satellite) and its ASAR (Advanced Synthetic

Aperture Radar) instrument in April 2012 pointed out how

dependent European ice charting was on a single satellite.

Published by Copernicus Publications on behalf of the European Geosciences Union.



122 E. Rinne and M. Similä: CryoSat-2 operational ice charting

Furthermore, SAR images have a limited spatial coverage,

which results in data gaps. For ice-covered seas with little

or only sporadic traffic, SAR frames are often not acquired.

This is the case with Antarctic ice-covered seas – as the num-

ber of ground stations in the Antarctic is small, SAR acqui-

sitions over Antarctic sea ice would use costly satellite mass

storage. This is different in the Arctic seas: for example the

SAR frames from the Kara and Barents seas could be directly

downlinked to a ground station in northern Europe. Thus it

is convenient to study altimeter ice charting in the European

sector of the Arctic even if one of our aims is to contribute to

Antarctic sea ice charting.

In the absence of SAR data, ice services look for auxil-

iary data. Optical satellite images, such as MODIS (Mod-

erate Resolution Imaging Spectroradiometer) or Suomi-NPP

(National Polar-orbiting Partnership) images, may mitigate

the problem, but only if the lighting and cloud conditions

are favourable. Alas the polar night and frequent cloud cover

often render optical imagery useless. In these cases ice ser-

vices are bound to either use low-resolution (at the best in

10 km× 10 km grid) products from, for example, the EU-

METSAT OSI SAF (European Organisation for the Exploita-

tion of Meteorological Satellites Ocean and Sea Ice Satellite

Application Facility) project (http://saf.met.no/p/ice/) or, in

the worst case, inform the users that up-to-date ice informa-

tion is not available.

Zygmuntowska (2014) examined the possibility of distin-

guishing between first-year (FY) and multi-year (MY) ice

throughout the winter using altimeter waveform parameters.

They gridded their data in a 25 km× 25 km grid, studied the

parameters one at a time, and found that the spatial dis-

tribution of a single parameter varied strongly from month

to month from the freezing-up period to the Arctic spring.

Sometimes the patterns followed the MY/FY ice areas, other

times not. This we can regard as a manifestation of sensitivity

of the altimeter waveform to the ice/snow surface conditions.

2 Data

Our study area is the Barents and Kara seas in the European

sector of the Arctic Mediterranean. We chose the area be-

cause of the good availability of data, namely the Arctic and

Antarctic Research Institute (AARI) operational ice charts

and an archive of SAR data as a heritage from the Enhanced

Arctic Sea Ice Information–ANISTIAMO exercise carried

out by the Finnish Meteorological Institute (FMI) in 2014

(ANISTIAMO Reports, 2014) and its predecessor described

in Similä et al. (2013).

2.1 CryoSat-2 data

We use the CS-2 SAR mode (Wingham et al., 2006)

Level 1b (L1b) data (Bouzinac, 2014), available online from

ESA. For this study we use the near-real-time (NRT) CS-2

products that were made available by ESA for our study. This

product was built using the Baseline-B CS-2 processor and

thus differs from the current Baseline-C CS-2 product. Most

importantly, the full range window in the Baseline-B prod-

uct is 128 range bins, whereas in Baseline-C it is 256 range

bins (Scagliola, 2014). This should be taken into account if

our methodology is to be applied on the current Baseline-C

products.

The main instrument of CS-2 is the SAR Interferomet-

ric Radar Altimeter (SIRAL). The CS-2 L1b product used

here is, essentially, the CS-2 SAR-processed average wave-

form for each point along the ground track of the satellite. In

the SAR mode, SIRAL employs the along-track beam for-

mation (i.e. SAR processing) to generate a resolution cell

of approximately 300 m by 1.65 km (Scagliola, 2014). The

SAR mode of CS-2 was originally designed for ice-covered

seas (Wingham et al., 2006). The along-track resolution en-

hancement due to SAR processing enables smaller leads to

be detected within the sea ice pack, as was possible with CS-

2’s predecessor, the Envisat RA-2 (Radar Altimeter; Laxon

et al., 2013). Thus the CS-2 is operated in SAR mode over

the ice-covered seas. This combined with the polar orbit of

CS-2 with an inclination of 92◦ results in a good coverage of

CS-2 SAR mode measurements over the ice-covered Arctic

oceans.

2.2 Ice charts

We take the ice stage of development from the weekly ice

charts published by the AARI (Bushuev and Loshchilov,

2007). The AARI ice charts are available online from http:

//www.aari.ru/. We downloaded the charts from the cur-

rent AARI website predecessor, an AARI FTP server, in

SIGRID3 format (SIGRID3 Manual, 2014). The ice charts

for the Kara and Barents seas provide estimates of total ice

concentration (CT), the partial concentrations (CA, CB, and

CC), and the stage of ice development (SA, SB, and SC) for

the three thickest ice types for polygonal areas. CA and SA

refer to the thickest ice, CB and SB to the second thickest

and CC and SC to the third thickest. To quantitatively study

the effect of sea ice stage of development on altimeter wave-

forms, we rasterised the AARI ice maps into 2 km× 2 km

grid grids in Lambert equal-area projection. We sampled

these grids so that for each CS-2 measurement falling within

the test area the ice characteristics for the ice chart polygons

were fetched from the temporally closest AARI map. As the

AARI maps are generated weekly, the largest time difference

between the the different data sets is 3 days.

The ice stage of development in the AARI ice charts fol-

lows the World Meteorological Organization (WMO) sea ice

nomenclature. The WMO nomenclature defines seven differ-

ent stages of development: nilas, grey ice, grey-white ice,

thin FY ice, medium FY ice, thick FY ice and old ice. The

three first stages are thin ice, which are defined as ice that

does not form pressure ridges. The three FY ice categories
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Figure 1. CS-2 pulse peakiness (1–5 March 2014) plotted on a RS-2

SAR composite (5 March 2014).

are ice which is thick enough to ridge and has not experi-

enced a whole melt season. The last stage, old ice, is ice that

has survived at least one whole summer melt season. In the

cryospheric community, old ice is often referred to as MY

ice. In this study we use only three different stages of de-

velopment: thin (< 70 cm) FY (WMO categories nilas, grey,

grey-white, and thin FY), thick (> 70 cm) FY (WMO cate-

gories medium and thick FY), and MY ice (WMO category

old ice).

The AARI ice charts are based on SAR and optical satel-

lite images as well as reports from coastal stations and ships.

The segmentation of images and subsequent interpretation

and mapping of ice conditions are carried out by ice experts.

The main purpose of the weekly ice chart is to show the spa-

tial distribution and characteristics of sea ice. We have not

found English language scientific publications discussing the

accuracy of the AARI weekly ice charts. However, they are

the only source of ice information for this area with ade-

quate spatial coverage and temporal resolution for our study.

Furthermore they are completely independent of CS-2 data,

which makes comparing the two meaningful.

The area of the polygons in the AARI ice chart varies

largely. In some cases the smallest diameter of the polygon

is around 10–20 km; in some cases the largest diameter of a

polygon is up to 100–200 km. Even if the AARI charts pro-

vide partial concentrations for up to three ice types for each

polygon, we assign just one ice type to a single polygon. In

Sect. 3.3 we need to apply a threshold for the partial con-

centration of the dominant ice class. For the automatic clas-

sifier discussed in Sects. 3.3 and 4.2, this threshold is 75 %.

When we assign an ice class to a polygon in the test phase,

no threshold is used and the partial concentration of the dom-

inant ice type is often below 75 %. Thus a large fraction of

the polygon represents in reality some other ice development

stage than what we have labelled it to be. In consequence, an

inherent inaccuracy is present in our reference data.

Figure 2. CS-2 stack standard deviation (1–5 March 2014) plotted

on a RS-2 SAR composite (5 March 2014).

2.3 SAR composites

To visualise CS-2 waveform characteristics, we use synthetic

aperture radar composites compiled from RADARSAT-2

frames. These composites were originally compiled to be

used as input data for a multisensor ice thickness chart for

the Barents and Kara seas in the ANISTIAMO demonstra-

tion project in spring 2014; see www.arcice.org. The SAR

data in Figs. 1 and 2 are used for visualisation only and are

included because they are the most widely used EO data in

operational ice charting; we assume most of our readers to be

familiar with it.

3 Methods

We set out to build a classifier to retrieve the ice stage of de-

velopment using only CS-2 waveforms and past AARI ice

charts as input. In this section we introduce all the wave-

form characteristics which we have utilised in our analysis

(Sect. 3.1). Then we review the classifier methodology in

Sect. 3.2. Finally we discuss the actual classification. We also

describe the preprocessing and postprocessing steps of our

classification procedure in Sect. 3.3.

3.1 Waveform statistics

We chose four characteristics – pulse peakiness (PP),

leading-edge width (LEW), late-tail-to-peak-power ra-

tio (LTPP), and stack standard deviation (SSD) – to describe

the CS-2 waveform. The PP, LTPP, and LEW are easily de-

rived from the waveform, and the SSD is delivered in the

L1B data product (Bouzinac, 2014).

www.the-cryosphere.net/10/121/2016/ The Cryosphere, 10, 121–131, 2016

www.arcice.org


124 E. Rinne and M. Similä: CryoSat-2 operational ice charting

The PP is defined as

PP= 128 ·

128∑
i=1

Pi

Pmax

, (1)

where Pi is the power in the ith range bin and Pmax is the

maximum power in one range bin in the waveform.

PP has been used previously to distinguish leads from

ice floes in pulse-limited radar altimeter data (Laxon et al.,

2003). Classifying waveforms with high PP as leads is an

integral step in traditional radar altimeter sea ice freeboard

processing.

The SSD is taken from the CS-2 L1b data product. The

SSD is essentially the standard deviation of power values

from a common surface formed from a set of Doppler wave-

forms over different incidence angles (Wingham et al., 2006).

SSD has been used, in conjunction with PP, in lead detection,

e.g. by Laxon et al. (2013), Ricker et al. (2014), and Kurtz

et al. (2014).

For the LEW, we use the difference between the bins re-

tracked with ρ= 10 % and ρ= 90 % using an Offset Center

of Gravity (OCOG) retracker. The OCOG retracker returns

the bin number where the received power count rises for the

first time over the threshold value τ of

τ(ρ)=
ρ

100
·

√√√√√√√√
128∑
i=1

P 4
i

128∑
i=1

P 2
i

. (2)

There ρ is the percentage.

The OCOG retrackers have been widely used in altimetry;

see for example Wingham et al. (1986), Bamber (1994), or

Soussi and Femenias (2006).

In our classification experiments we chose to experiment

with the two features suggested by Kurtz et al. (2014). The

ratio of late tail to peak power is defined as

LTPP=

1
21

max+70∑
i=max+50

Pi

Pmax

, (3)

where max is the index of the range bin with the maximum

power.

LTPP tells us how much off-nadir power there is present in

the tail of the waveform. Typically LTPP is high for surfaces

with large roughness.

We also studied the feasibility of another waveform cha-

rasteristic suggested by Kurtz et al. (2014). This is the ratio

of early tail to peak power (denoted here ETPP):

ETPP=

1
6

max+6∑
i=max+1

Pi

Pmax

. (4)

The ETPP describes how rapidly the power P declines im-

mediately after the maximum value.

On the detection of potential leads we employ three

slightly different statistics to characterise specular reflec-

tions. These three features consist of PP and two statistics

presented in Ricker et al. (2014). They are are defined as fol-

lows:

PPleft = 9 ·
Pmax

max−3∑
i=max−1

Pi

(5)

and

PPright = 9 ·
Pmax

max+3∑
i=max+1

Pi

, (6)

where max refers to the index of the range bin with maxi-

mum power. We determined experimentally the thresholds:

PP> 40 and either PPleft> 20 or PPright> 15. Ricker et al.

(2014) also used a SSD threshold for lead detection. How-

ever, in our data set when the PP conditions were met, SSD

was almost always below 4 and we did not set an additional

condition.

It is important to note here that we rely only on the wave-

form characteristics. We do not do freeboard processing in

the style of Laxon et al. (2013) or use the freeboard values in

the higher-level CS-2 data products. This is because we want

the CS-2 methods to be simple as well as independent from

any other data sources.

3.2 k nearest-neighbour classifier

We review briefly the basic ideas of the k nearest-neighbour

(k-NN) classifier. The k-NN classifier is a simple, memory-

based classifier which does not require a statistical model for

the data. The k-NN classifier can in some cases achieve error

rates similar to the Bayesian classifier, which is the statisti-

cally best classifier (Hastie et al., 2001) but a significantly

more complicated one than k-NN. In the first phase we col-

lect the training data together into a set of feature vectors

and corresponding classes. In our case the features were the

waveform-based statistics (SSD, LEW, PP, and LTPP), and

the classes are the ice stages of development (open ocean,

thin FY, thick FY, and MY ice).

To decide the class of a new sample point from a test set,

we find the k closest samples from the training data and per-

form a majority vote among them. The mode class among

the k nearest neighbours is selected as the class for the new

sample point. If two or more classes have the same amount of

samples in the group of k nearest neighbours, then the class

is selected randomly from those classes.

The crucial requirements for the efficiency of the classifier

are as follows:

1. the training set must represent well the data to be clas-

sified,

The Cryosphere, 10, 121–131, 2016 www.the-cryosphere.net/10/121/2016/
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Figure 3. Normed distributions of waveform parameters: SSD (top left panel), PP (top right panel), LeW (low left panel), and LTPP (low

right panel) for the period 1–15 November (solid lines) and 16–30 November (dashed lines) 2013.

2. dimension of the feature space may not be very large,

3. the number k of the neighbours must be determined

soundly,

4. the distance between the measurements must be a

proper metric.

The class boundaries in k-NN are determined totally by the

data. Hence, the first requirement is of major importance. The

second requirement is natural for all classifiers. One manifes-

tation of the “curse of dimensionality” is that, in high dimen-

sions, almost all pairs of points are equally far away from

each other (see Hastie et al., 2001). The suitable amount of

k NN depends on the dimension of the feature vector and the

size of the training data. Here k is determined empirically.

We used the ordinary Euclidean metric as our distance func-

tion.

It is worth emphasising that the distance between the sam-

ple points is measured in the feature space. Two neighbour-

ing points in feature space can be spatially hundreds of kilo-

metres away from each other. Closeness in feature space only

implies the similarity of waveforms.

3.3 Classification procedure

Due to the reasons discussed below we selected a k-NN clas-

sifier for our classification method. The adopted classifier is

able to classify four different ice classes (open ocean, thin

FY, thick FY, and MY ice) with reasonable accuracy.

The results of Zygmuntowska (2014) led us to adopt an

approach where we dynamically update the training set for

the classifier. The training data were gathered from the CS-

2 acquisitions and the AARI charts during a 15-day period.

Only the AARI polygons where the partial concentration of

the dominant ice class was > 75 % were used for training.

The data were divided into four different ice classes. Using

the k-NN classifier we then determined the class boundaries

for the training data set.

Finally we used these class boundaries to process the CS-

2 data of the following 5-day period, called here test data.

The training data, and hence also the class boundaries, were

recalculated at intervals of 5 days. We chose to do this, in-

stead of applying fixed class boundaries all the time, because

the constantly updated class boundaries help the classifier to

adapt to continuously evolving ice and snow conditions. The

magnitude of the change in the training data can be seen in

Figs. 3 and 4 as the difference between the dashed and solid

lines. The difference is subtle but, according to our study,

large enough to cause problems if not taken into account.

As one can see from Figs. 3 and 4, the waveform param-

eters of different ice categories are often very close to each

other. In our data set this is true especially in November dur-

ing the freeze-up period. It is obvious that we cannot sep-

arate the ice types using just one parameter. Instead a set

of parameters should be utilised simultaneously. The shape

of distribution of a single parameter for ice class deviated

in most cases essentially from the normal distribution. The

task of non-parametrically modelling a non-Gaussian multi-
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Figure 4. Normed distributions of waveform parameters: SSD (top left panel), PP (top right panel), LeW (low left panel), and LTPP (low

right panel) for the period 1–15 March (solid lines) and 16–30 March (dashed lines) 2014.

dimensional distribution is very challenging. We avoided the

difficulty of modelling the multidimensional non-Gaussian

distributions by applying the k-NN classifier (see Sect. 3.2).

In order to calculate the distance between the feature vec-

tors, we used the Euclidean distance with equal weights.

We scaled the distribution of each parameter on the inter-

val [0, 2]. The full range interval [0, 2] corresponds to the PP

value range [0, 40], LEW range [0, 8], SSD range [0, 50], and

finally the LTTP range [0, 0.18]. The ranges were determined

empirically. The values of rare events were truncated.

During the 15-day training period we collect a rather ex-

tensive data set. In most cases this set covers the variation

occurring in the following 5 days of CS-2 data. To charac-

terise the waveform, we selected first the standard features

(PP, LEW, SSD) as a part of a feature vector. Increasing the

dimension of the feature space always increases the mean

distance between sample points inside a unit cube, as noted

in Sect. 3.2. This implies that even small changes in the train-

ing data and, hence, in the class boundaries may have a sig-

nificant impact on the classification result.

On the other hand, the discrimination between feature vec-

tors is, in principle, more efficient if the description of a

waveform is more versatile, i.e. the number of features is

larger. Keeping in mind these two consequences of adding

features,we studied if an additional feature would improve or

weaken the results. We chose to test the influence of adding

the LTPP and/or ETPP characteristics.

A way to measure dependence between two random vari-

ables is to utilise the mutual information (MI) (Cover and

Thomas, 1991). MI measures the overall dependency be-

tween two random variables, not just the linear dependency

like the correlation coefficient. We calculated the pairwise

values of MI between features ETPP and LTPP and the set

of standard parameters (PP, LEW, and SSD). The MI values

were consistently lower for LTPP than ETPP. This implies

that the LTPP contains less overlapping information with the

standard three parameters than ETPP.

Next we checked if the addition of LTPP to the three pre-

vious parameters (PP, LEW, and SSD) actually improves the

k-NN classification. The result was that the addition of LTPP

increased the correct classification accuracy from 0 to 5 % for

a single class depending on the ice class and the test set. This

was more than the improvement after addition of ETPP. We

also tested a five-dimensional (5-D) feature vector containing

the parameters (ETPP, LTPP, PP, LEW, SSD). The addition

of ETPP had a negative impact on the accuracy compared to

the tested four-dimensional (4-D) feature vector. Hence, we

selected the features (PP, LEW, SSD, LTPP) as our feature

vector.

Prior to the classification we preprocess the data. All

waveforms with LEW larger than 14 are excluded from anal-

ysis. We regard these waveforms as too noisy to be useful.

We also wanted to remove potential leads from data to

limit the confusion between different ice types. This was

done by removing all waveforms with PP> 40 and either

PPleft> 20 or PPright> 15 (see Sect. 3.1) as potential leads.

The amount of lead detections was usually 5–13 % from the

measurements, depending on the season and ice type. The

The Cryosphere, 10, 121–131, 2016 www.the-cryosphere.net/10/121/2016/
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amount of potential leads was larger in November than in

March. Also the number of potential leads was larger for the

thin ice class than for thicker ice types.

To reduce speckle, we average the CS-2 waveform pa-

rameters over the five consecutive footprints and assign the

value to a single footprint area; i.e. we use the running mean

method for each parameter separately. The CS-2 measure-

ments are subject to speckle like any other SAR signature.

The speckle influence is most obvious for PP, but it is also

present in other waveform parameters. In this step we im-

plicitly assume that the five consecutive footprints covering

a track of 1900 m belong to the same ice class. Considering

our coarse typing of ice classes (3–4 ice types), this is a rea-

sonable assumption.

We classify the running means of the waveform parame-

ters using the k-NN classifier. In the first phase we perform

the classification for each 4-D feature vector separately. Then

we take the mode of 50 consecutive ice class labels. The re-

sulting mode is then regarded as the estimated ice type, and

it has a resolution of 19 km. If we take into account the spa-

tial averaging the true resolution is about 20 km along the

track. We examined also the possibility of using only 30 con-

secutive class labels to achieve a spatial resolution of about

12 km. In our test runs the 20 km resolution yielded, how-

ever, slightly more accurate results than the 12 km resolution.

Although the difference was not large, we chose the coarser-

resolution data because of slightly better reliability.

The mode operation is also applied for our ground truth

data points extracted from the AARI ice charts (50 consecu-

tive points corresponding to the CS-2 points). When we as-

sess the classification accuracy using the ground truth data, it

takes place comparing these 19–20 km long segment tracks.

In the classification maps in Sect. 4.2 we show the results

using a sliding-window technique; i.e. the consecutive class

labels have a distance of just 0.38 km between them.

We still must determine a reasonable value for k. That

is, how many feature vectors from the training data do we

use to build class boundaries. The value k= 1 yielded highly

variable results for the test sets and was deemed impractical

for our purposes. When we compared the values k= 3 and

k= 5, we noticed that the results were close to each other

for November, although k= 3 yielded slightly better results.

In March the results more clearly favoured k= 3 over k= 5.

Increasing k to a larger value than k= 5 led to poorer re-

sults. The difference between the November and March data

sets was that the number of ice types was four in March and

three in November. Hence the classification task in March

was more challenging than in November. We have used the

value k= 3 in our classifications.

4 Results and discussion

4.1 Qualitative comparison

To visualise the behaviour of PP, Fig. 1 below shows

PP drawn over a SAR composite from the same area on

5 March 2014. The figure shows an increase from the low

(PP< 3, blue) values over open ocean to high (PP> 7, red)

values over ice. The increase coincides with the ice edge vis-

ible in the SAR frame. Analogously to Fig. 1 and PP, Fig. 2

shows the CS-2 SSD over a SAR frame. Again the ice edge is

clearly visible as SSD changes from high values (SSD> 20,

blue) over open ocean to small values (SSD< 10, red) on ice.

However, SSD seems to exhibit more variation over ice than

PP does. There are areas of high SSD within the ice pack,

some of which coincide with features in SAR data. The in-

terpretation of a SAR frame to ice characteristics is subjec-

tive due to the multitude of factors affecting the backscatter-

ing. Areas of high backscatter can be thick, heavily deformed

ice or, in some cases, broken thin ice with varying amounts

of open ocean, e.g. brash ice. Detailed information on SAR

backscattering statistics in our test region can be found in

Lundhaug (2002). Due to the ambiguity in SAR signature, it

is impossible to derive the ice thickness from a single SAR

frame alone. Because of this, we did not carry out a quanti-

tative comparison of SAR and CS-2 data.

To further study the effect of the ice stage of develop-

ment on the CS-2 waveform, we sampled the AARI ice

charts at a point closest to the CS-2 measurement as de-

scribed in Sect. 2.2. The distributions of waveform param-

eters for different stages of development are shown in Figs. 3

and 4. Open ocean, as expected from the SAR–CS-2 com-

parison above, shows peaks in high (SSD> 50) SSD and low

(PP< 5) PP. In March thin FY ice has a bimodal PP distribu-

tion, possibly due to the polygons labelled with thin ice often

having a total ice concentration of less than 100 %; i.e. there

are open-water areas present in addition to the ice. Overall,

the distributions show promise for distinguishing different

ice classes based on the four waveform parameters. Our au-

tomatic classifier results are presented in the next subsection.

4.2 Automatic classification

The classification methodology is presented in Sect. 3.3. The

waveform parameters are correlated but also have differences

in their distributions as shown in Figs. 3 and 4. We utilised

three different ice categories in November (open ocean, thin

FY, and MY ice) during the freeze-up period and four ice

categories in the middle of winter in March (open ocean, thin

FY, thick FY, and MY ice).

In the training data the dominant ice type from AARI

charts was used as the true ice type for all CS-2 waveforms

falling within the ice chart polygon if the partial concentra-

tion of the dominant ice type was > 75 %. Only measure-

ments from this kind of polygons were accepted for train-
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Figure 5. Automatic classification test for November 2013. AARI ice chart SA sampled at CS-2 footprints (left panel) and the classification

result from CS-2 measurements (right panel). 15–30 November 2013. Blue: open ocean; green: FY< 70 cm; and red: MY.

Figure 6. Automatic classification test for March 2014. AARI ice chart SA sampled at CS-2 footprints (left panel) and the classification

result from CS-2 measurements (right panel). 15–30 March 2014. Blue: open ocean; green: FY< 70 cm; yellow: FY> 70 cm; and red: MY.

ing. Then the CS-2 data for the following 5-day test set (see

Sect. 3.3) were classified using the system. The results of

the CS-2 classification were then compared to the stages of

development taken from the temporally closest AARI chart

during the test period. In the test set we do not use the 75 %

rule for the dominant ice class; we use the stage of devel-

opment which has the highest concentration as the truth for

all of the CS-2 measurements falling within the polygon. Ta-

bles 1 and 2 show the classification matrices for November

and March, respectively. Maps of the classification results are

presented in Figs. 5 and 6 for November and March, respec-

tively.

In November thin FY ice, MY ice, and open ocean are

present both in the CS-2 data and in the AARI chart (Fig. 5

and Table 1). Thick FY ice was absent in the AARI charts

we used as training for November, and thus we only have

three classes: open ocean, thin FY, and MY ice. The open

ocean is classified right in 98 % of the cases. The thin FY

ice mixes somewhat with MY ice: 46 % of CS-2 measure-

ments in polygons marked as consisting mostly of thin FY

ice in the AARI charts are classified to be MY ice based on

CS-2. Analogously 8 % of CS-2 measurements from poly-

gons where MY ice is dominant is classified as thin FY ice.

Part of the inconsistency is natural. In reality there are inclu-

sions of FY ice within the old ice area as well as inclusions

of MY ice in the FY ice area. However, there are CS-2 mea-

surements classified as MY ice south of 80◦ N. It is unlikely

that these are in reality MY ice. We assume these to be areas

of deformed ice where the large-scale surface roughness is

more akin to MY ice than recently formed FY ice. If this is

the case, the information about deformed ice, most likely an

obstacle to navigation, would be valuable for operational ice

charting. Sadly, we have no means to test our assumption.

For March (Fig. 6 and Table 2) the results are similar to

November. The overall correspondence of AARI maps and

the CS-2 classification is good. The two FY ice classes mix

considerably. This is not an unsurprising result because the

thickness of 70 cm is not a threshold which would abruptly

change the characteristics of ice. Instead the division of ice

thickness of less or larger than 70 cm is mostly based on the
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Table 1. Classification matrix of CS-2-based classification (rows)

and AARI ice chart (columns), November 2013. Last column shows

the best and the worst hit rates of the three 5-day periods.

FY< 70 cm MY Open ocean Worst–best

FY< 70 51 % 46 % 3 % 31–64 %

MY 8 % 92 % 0 % 88–97 %

Open ocean 5 % 4 % 92 % 87–95 %

needs of ice navigation. Furthermore there are inclusions of

thin FY ice within the thick FY and vice versa. The results for

open ocean (93 % right) and MY ice (83 % right) are good. A

notable feature in the chart is MY ice appearing in the CS-2

measurements at about 78◦ N, 95◦ E, west of Vilkitsky Strait.

There were small amounts of MY ice near the coast marked

in the AARI charts too. Thus it may be that our classification

exaggerates the amount of MY ice, especially in the areas

where heavy deformation is likely to occur. However, for the

purposes of operational ice charting, a cautious approach is

often preferred.

Our classification results are similar to those of Zyg-

muntowska et al. (2013), obtained for an airborne altime-

ter on a smaller scale. Zygmuntowska et al. (2013) used

a Bayesian classifier and presented a comparison of CS-2-

derived sea ice types and OSI SAF ice types. They showed

that ice type classification with satellite altimeter data are

possible but also found regions where clear discrepancies oc-

cur between the CS-2 derived ice type and its validation data.

They attributed these discrepancies to areas of FY ice with

large surface roughness. We also found false positive MY ice

classifications. As discussed before, for our application, clas-

sifying heavily deformed FY ice as MY ice is not a problem

since both present a similar threat to navigation.

Detection of MY ice has implications for sea ice thick-

ness retrieval from CS-2. Most of the current altimeter sea

ice thickness processors apply some kind of a MY ice mask,

firstly to modify the snow climatology used (for example

Laxon et al., 2013) and then to modulate the ice density

for freeboard-to-thickness conversion (Kern et al., 2014).

An often-used source for the ice type is the OSI SAF ice

type product (for example Laxon et al., 2013, and Ricker

et al., 2014). Our methodology produces realistic results, es-

pecially in March, for detection of MY ice and thus could

benefit the traditional ice thickness retrievals. However, here

the false positive MY detections would be a larger problem

than they are for the ice navigation application. The den-

sity of heavily deformed FY ice would still be higher than

the density of MY ice, and thus false MY detections would

result in too small a thickness. Furthermore, the MY mask

could easily be derived from the operational ice charts di-

rectly, without any waveform-based classification being nec-

essary. That having been said, our study does prove that the

C-S2 waveforms contain information about the sea ice type.

For near-real-time applications of CS-2 data, MY ice mask

would be an interesting option since no auxiliary MY prod-

ucts for the time of the measurement are yet available.

When we inspect the classification results, the detection of

thin ice (here FY ice thinner than 70 cm) has been least suc-

cessful. As seen in Figs. 3 and 4, the waveforms originating

from thin ice exhibit a wide range of variation for all used

features. This is understandable. Very thin ice (thickness less

than 10 cm) often has ice concentration well below 100 %.

Due to this, some of the waveforms assigned to thin ice are

actually waveforms from open water. This can be seen espe-

cially clearly in the behaviour of SSD in Fig. 2. Processes

such as rafting and ridging increase surface roughness, and

thin ice as defined in this work can be easily ridged. The thin

ice is mostly mixed with thick FY ice (thickness larger than

70 cm) and to a lesser degree also with open ocean.

5 CryoSat-2 product to support FMI operational ice

charting

We built a CS-2 ice product based on near-real-time wave-

form characteristics to test if the Finnish ice service would

benefit from CS-2 data. The product is basically maps of

NRT CS-2 PP, LEW, and SSD. A comparably simple sys-

tem was built to download the data from an ESA server and

to calculate and plot PP, LEW, and SSD. All of the CS-2 data

acquired during the previous two days are used for each prod-

uct. The prototype system has been running at the Sodankylä

satellite receiving station since September 2014. The FMI

CS-2 product is available online at http://ice.fmi.fi/Cryosat/.

The ice experts were told to look for abrupt changes in the

PP to detect the ice edge and to interpret areas of constant

low PP as open ocean. The analysts were also briefed that, in

addition to open ocean, heavily deformed sea ice may result

in low PP. We did not endeavour to make an automated ice

edge detection since the ground tracks are rather sparse and

we did not want to interpolate between them.

The product was received well. During the fall the Finnish

ice service provided ice information to ships in the Kara

Sea, and the CS-2 product was used as an independent real-

ity check for Sentinel-1 and COSMO-SkyMed SAR frames.

As expected, in an area where SAR data are readily avail-

able, such as the Kara Sea, altimeter products add little or no

value to operational ice charting. However, several requests

have been made to build a similar product for the Antarc-

tic ice-covered oceans. Our plan is to continue providing the

FMI CS-2 product and implement a similar product for the

Sentinel-3A data in the future.

In April 2015, University College London (UCL) pub-

lished a near-real-time CS-2 sea ice thickness product, avail-

able online. The UCL product is based on the CS-2 process-

ing chain presented in Laxon et al. (2013). The volume es-

timates derived from the UCL NRT and the standard UCL

product have been shown to agree within 0.5 %. However, as
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Table 2. Classification matrix of CS-2-based classification (rows) and AARI ice chart (columns), March 2014. Last column shows the best

and the worst hit rates of the three 5-day periods.

FY< 70 cm FY> 70 cm MY Open ocean Worst–best

FY< 70 20 % 60 % 7 % 13 % 15–26 %

FY> 70 1 % 84 % 14 % 0 % 75–91 %

MY 0 % 14 % 86 % 0 % 77–92 %

Open ocean 2 % 1 % 3 % 93 % 90–98 %

no user experiences nor comparisons to independent data on

ship scale are available, it is hard to assess the usability of

the UCL product for navigation. This will surely change as

the UCL product becomes more well known and user cases

begin to form. Furthermore, a comparison of fine-resolution

data (such as ship measurements) to CS-2 data, such as the

UCL NRT product, would be a natural continuation of our

study presented in this paper.

6 Conclusions

For the first time, we have demonstrated the use of a SAR

altimeter, namely the SIRAL-2 onboard CS-2, to support op-

erational ice charting. We have presented a qualitative com-

parison of a SAR composite and CS-2 data. Furthermore,

we have compared the CS-2 waveform characteristics to the

stage of development of ice taken from ice charts. We have

also presented an automatic classification system capable of

detecting open ocean, thin FY ice, thick FY ice, and MY

ice based on four CS-2 waveform characteristics. This is the

first time ice classification methodology using satellite SAR

altimeter data is presented and tested outside the grey litera-

ture. The classification system requires recent operational ice

charts for the training, but after the training the only input are

CS-2 data. The system resolves MY ice and open ocean well.

The two tested FY classes mix significantly, but for the ap-

plication of operational ice charting this is not a problem.

We have built a prototype system providing simple maps

of NRT CS-2 waveform characteristics. This product was

tested by the Finnish Ice Service during the winter of 2014–

2015. The feedback was positive. Thus we conclude that

satellite altimeters, in this case the CS-2, provide an indepen-

dent source of sea ice information to complement SAR and

passive microwave data. Albeit low resolution and sparse,

altimeter measurements can be used at times and locations

where other data sources are unavailable.
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