
TEM Journal. Volume 13, Issue 3, pages 2341-2349, ISSN 2217-8309, DOI: 10.18421/TEM133-61, August 2024.

TEM Journal – Volume 13 / Number 3 / 2024. 2341

Low-Complexity and Secure Clustering-Based
Similarity Detection for Private Files

Duaa Fadhel Najem P

1
P, Nagham Abdulrasool Taha P

2
P , Zaid Ameen Abduljabbar P

2,3,4
P,

Vincent Omollo Nyangaresi P

5,6
P , Junchao Ma P

3
P, Dhafer G. Honi P

2,7

P

1
PDepartment of Cyber Security, College of Computer Science and Information Technology,

University of Basrah, Basrah 61004, Iraq
P

2
PDepartment of Computer Science, College of Education for Pure Sciences,

University of Basrah, Basrah, 61004, Iraq
P

3
PCollege of Big Data and Internet, Shenzhen Technology University, Shenzhen, 518118, China

P

4
PShenzhen Institute, Huazhong University of Science and Technology, Shenzhen 518000, China

P

5
PDepartment of Computer Science and Software Engineering, Jaramogi Oginga Odinga

University of Science & Technology, Bondo 40601, Kenya;
P

6
PDepartment of Applied Electronics, Saveetha School of Engineering, SIMATS,

Chennai, Tami lnadu 600124, India
P

7
PDepartment of IT, University of Debrecen, Debrecen, 4002, Hungary

Abstract – Detection of the similarity between files is
a requirement for many practical applications, such as
copyright protection, file management, plagiarism
detection, and detecting duplicate submissions of
scientific articles to multiple journals or conferences.
Existing methods have not taken into consideration file
privacy, which prevents their use in many delicate
situations, for example when comparing two
intellectual agencies' files where files are meant to be
secured, to find file similarities. Over the last few
years, encryption protocols have been developed with
the aim of detecting similar files without compromising
privacy. However, existing protocols tend to leak
important data, and do not have low complexity costs.
This paper addresses the issue of computing the
similarity between two file collections belonging to two
entities who desire to keep their contents private.

DOI: 10.18421/TEM133-61
34TUhttps://doi.org/10.18421/TEM133-61 U34T

Corresponding author: Zaid Ameen Abduljabbar,
Department of Computer Science, College of Education for
Pure Sciences, University of Basrah, Basrah, 61004, Iraq
Email: 34TUzaid.ameen@uobasrah.edu.iqU34T

Received: 23 January 2024.
Revised: 11 May 2024.
Accepted: 18 May 2024.
Published: 27 August 2024.

© 2024 Duaa Fadhel Najem et al;
published by UIKTEN. This work is licensed under the
Creative Commons Attribution-NonCommercial-NoDerivs
4.0 License.

The article is published with Open Access at
Uhttps://www.temjournal.com/

We propose a clustering-based approach that
achieves 90% accuracy while significantly reducing the
execution time. The protocols presented in this study
are much more efficient than other secure protocols,
and the alternatives are slower in terms of similarity
detection for large file sets. Our system achieves a high
level of security by using a vector space model to
convert the files into vectors and by applying Paillier
encryption to encrypt the elements of the vector
separately, to protect privacy. The study uses the
application of the Porter algorithm to the vocabulary
set. Using a secure cosine similarity approach, a score
for similar files was identified and the index of the
similarity scores is returned to the other party, rather
than the similar files themselves. The system is
strengthened by using clustering for files, based on the
k-means clustering technique, which makes it more
efficient for large file sets.

Keywords – File similarity, privacy, similarity
detection.

1. Introduction

File similarity detection techniques have begun to
be used in many important applications since the first
research in this field began in 1993 [1]. For example,
this approach is used in a file management system,
which can work more efficiently if similar files are
identified. It is also used to improve the function of
web crawlers in terms of detecting similar pages [2],
[3], [4]. Finally, this method is used in applications
related to plagiarism detection and copyright
protection [5], [6].

The problem of security is considered very
important in the process of data matching.

mailto:zaid.ameen@uobasrah.edu.iq
https://www.temjournal.com/
https://doi.org/10.18421/TEM133-61

TEM Journal. Volume 13, Issue 3, pages 2341-2349, ISSN 2217-8309, DOI: 10.18421/TEM133-61, August 2024.

2342 TEM Journal – Volume 13 / Number 3 / 2024.

For example, in the case where patient reports are
exchanged between health centres to understand the
spread of diseases, health centres cannot share patient
reports publicly, but must protect their privacy and
security.

We also need to consider the issue of data security
for papers submitted to academic journals, where
there is a need to verify whether a work has been sent
to multiple journals, as a study is not allowed to be
submitted to two or more scholarly journals
simultaneously [7], [8], [9].

We therefore need to apply encryption in order to
protect the security of the data, and combine a
method of encrypting files with similarity detection
to create an effective and secure technique.

The vector space model and the N-gram model
are two ways of representing text files. In the vector
space approach, which was employed in [10], [11],
the file is represented as a single vector, whereas the
authors of [12], [13] used the N-gram model in which
the file is represented as a large set of substrings. A
vector space is based on the concept of similarity,
where the file and the query are converted to vectors
of terms. The file is similar to the query if it is
similar in keywords with word frequencies. The
vector space model is used to detect the global
similarity, which means a bag of similar words [14],
[15].

In the N-gram model, the files are converted into
N-grams (sets) of fixed length, and a hash code is
then computed for each N-gram and compressed to a
fingerprint. The N-gram model considers two files to
be similar if they share fingerprint words. This
approach can be used to detect local similarities, i.e.
overlaps between parts of two texts; however, the
systems that depend on this model do not take the
keywords and their frequencies, so the result displays
a bad relevance ranking [16].

In the central idea underlying the work in this
paper, there are two parties: the first is Alice, who
has a file u, and the other is Bob, who has a database
F. Neither party wants to reveal their private data to
the other. Alice wants to know the similarity score
between her file and those in the database held by
Bob. We use a vector space model to convert the
files into vectors, and apply Paillier encryption to
encrypt the elements of the vector separately, to
protect the users’ privacy. Based on the secure cosine
similarity, the study identifies a score representing
the similarity between files. The system returns the
index of m similarity scores to the first party, rather
than returning the actual similar files. The k-means
clustering scheme [17] was used to cluster the files,
so only representative files are used for pairwise
comparisons between a few clusters. The execution
time in this situation depends on the number of
representative files, which will be significantly lower

than the total number of files. The best way to select
representative files without losing too much accuracy
is by clustering the file collection into a number of
representative files k.

The main contribution of this paper is a scheme
that ensures privacy preservation for the contents of
the files (secure matching) for the two parties, and
protects the similarity scores which were exposed in
existing schemes [10]. [11], [12], as it does not
require the sharing of the general vector with the
parties. The authors suggest a clustering-based low-
complexity and secure private file similarity
detection (CLCSPFD) scheme that can offer state-of-
the-art privacy and excellent accuracy while
dramatically reducing the execution time, to meet the
requirements of resource-constrained devices. The
performance is evaluated via experiments on a real-
world database.

The rest of the paper is structured as follows.
Section 2 reviews related work on secure private files
similarity detection schemes. Section 3 introduces the
basic cryptographic tools that are used in this paper.
Section 4 describes the scenario for the solution to
the problem. Section 5 explains the basic steps in
constructing our algorithm. Section 6 presents the
results of our experiments, and Section 7 contains
conclusions and suggestions for future work.

2. Related Works

 In 2008, Jiang [10] was the first author to work

on the problem of private file similarity detection. A
scheme was presented that worked on detecting
secure similarity; the vector space model was used,
where the idea was that there were two parties, each
of which represented their files as vectors, and a
cosine similarity was applied to measure the
similarity. The same authors worked to improve the
efficiency of this scheme by using text file clustering
techniques [11]. However, in these schemes [10],
when the actual similarity scores are returned to the
other party after matching between the encrypted
data and the encrypted query, this can be considered
a privacy leak since the other party has access to the
files that are related to the similarity score.

The N-gram model was used in [12] to detect
similarity in a secure scheme. The authors used the
Jaccard similarity (JS) to measure the similarity
between two text files [16]. The idea suggested in
[11] was that both parties, Alice and Bob, should
represent their text files as 3-gram sets. A global 3-
gram set is created by Bob and revealed to Alice;
both parties then compute a binary vector, where if
the corresponding 3-grams exist, the entry has a
value of one, and otherwise a value of zero. The two
parties compute the JS by using a secure protocol
(secure division protocol).

TEM Journal. Volume 13, Issue 3, pages 2341-2349, ISSN 2217-8309, DOI: 10.18421/TEM133-61, August 2024.

TEM Journal – Volume 13 / Number 3 / 2024. 2343

This scheme was not secure, as one party revealed
all of the 3-grams to the other party. This can be
considered a security weakness.

In [13], the authors suggested an efficient
approach to evaluate the set similarity. The JS was
used to measure the similarity between two private
sets. Specifically, two approaches were applied to
compute the similarity of the sets: the first was to
compute the exact secure JS, while the second used
the MinHash technique to reduce the computation
and communication overheads. The PSI-CA protocol
[19] was used in both approaches to specify the
common 3-gram sets. The work in [20] used the
MinHash technique, an efficient method of detecting
the similarity of files in a secure manner. The authors
of [20] used the SJCM protocol, where the frequency
of each N-gram is computed using the JS during
secure computation. Blundo et al. [16] used the
secure algorithm presented by De Cristafaro et al.
[13] to detect the secure similarity between two sets.
More recently, in [22], Schoppmann et al. introduced
a secure system for documents using classification
(K-NN).

However, all of the systems described above
detect the actual similarity scores for the other side.
In contrast, our scheme encrypts the data and only
sends back the index of the matching file to the other
party. Furthermore, the scheme has low complexity
due to the use of the k-means clustering technique,
where the files are grouped into clusters, meaning
that only the similarity scores for the nk files inside
the closest cluster are computed when the first party
wants to inquire about a file.

3. Cryptographic Background

The following part provides a brief explanation of the
basic tools that are used in this paper.

3.1. Homomorphic Encryption

Homomorphic encryption occupies the largest
position among encryption systems in order to secure
data and maintain its privacy. This approach has
many valuable properties [22], [24]. Through
homomorphic encryption, any mathematical
operation on encrypted texts can be performed
without the need to know the private key. In 2009,
Gentry [25] was the first author to design a fully
homomorphic scheme that supported multiplication
operations, and many authors later improved on this
technique [26], [27], [28]. The study employs an
additive homomorphic encryption process for the
scheme. Additive homomorphic encryption has the
following properties:

1- 𝐷𝑝𝑟 �𝐸𝑝𝑘(𝑥).𝐸𝑝𝑘(𝑦)� = 𝑥 + 𝑦.
where x and y are given integers, (𝑝𝑟,𝑝𝑘) are the
public key pairs, 𝐷𝑝𝑟() is the decryption algorithm,
and 𝐸𝑝𝑘() is the encryption algorithm.

2- . 𝐸𝑝𝑘(𝑥)𝑐 = 𝑥. 𝑐
 for any positive integer 𝑐 and 𝑥 in the
 message space.

3- The multiplicative inverse 𝐸𝑝𝑘(𝑦) =
𝐸𝑝𝑘(𝑦)−1 i.

 𝐷𝑝𝑟�𝐸𝑝𝑘(𝑥).𝐸𝑝𝑘(𝑦)−1� = 𝑥 − 𝑦

3.2. Paillier Cryptosystem

In 1999, Pascal Paillier [29] invented a strong
public-key cryptosystem that supports additive
homomorphic and multiplication homomorphic
functions. Paillier’s cryptosystem is semantically
secure. The authors used the algorithms of this
cryptosystem in the scheme which is explained in
detail in [29].

3.3. DGK Encryption System

There are many protocols that can be used for
comparing encrypted numbers, and these have been
applied in numerous fields, including secure
classification [30]. Veugen [31] created a protocol
that is considered efficient for comparing two
encrypted integers [[a]], [[b]] s.t. [[0]] < [[a]] and
[[b]] ≤ [[2ℓ]] without the need for decryption. The
DGK encryption system compares two private
numbers while preserving privacy [32], and is
additively homomorphic used in our scheme.

 The main idea underlying our scheme is to
calculate [[z]] = [[2ℓ]]−[[a]]+[[b]] for the (ℓ + 1)-bit
and determine its most significant bit 𝑧ℓ. [[a]] >=
[[b]] if it is 1, and [[a]] < [[b]] otherwise. Thus, to
determine whether or not [[a]] ≥ [[b]], all that is
needed is to compute the bit 𝑧ℓ.

In Veugen’s protocol [31], there are two parties:
Alice inputs an encrypted number [[a]], and Bob
inputs an encrypted number [[b]] , where [[δ]] =
([[a]] < [[b]]) = [[1 −2ℓ]] is the result. The power of
this protocol lies in its ability to prevent the other
party from knowing the true values of a, b, and the
comparison bit δ. In [31], Veugens outlines the
fundamental steps of this protocol.

4. Secure Comparison Scenario

The following problem is solved in this paper.
Bob and Alice both wish to use a secure comparison
to find similarities in their text files. Alice's private
file is u, while Bob's input is F.

TEM Journal. Volume 13, Issue 3, pages 2341-2349, ISSN 2217-8309, DOI: 10.18421/TEM133-61, August 2024.

2344 TEM Journal – Volume 13 / Number 3 / 2024.

Alice wants to determine whether there are files
in Bob’s dataset that are similar to her file without
compromising the privacy of the two parties, in a low
complexity minimal. Where each file is converted to
a vector.
Let F = {𝑓 1, . . . ,𝑓 𝑚} be a set of m files in Bob’s
database. Our protocol is called CLCSPFSD,
clustering-based low complexity and secure private
files similarity detection, and is defined as:

CLCSPFSD (u,F) →𝐼𝑛𝑥 (𝜎1 , . . . , 𝜎𝑚)

where u and F are Alice and Bob's private input files.
The CLCSPFSD protocol provides Alice with the
index of the similarity scores, 𝜎1 , . . .,𝜎𝑚, rather than
the actual files that were compared.

The work in this paper is more situation-specific
and broader. For instance, Alice does not need to
know the actual files in Bob's database if the
similarity scores she receives are extremely low, as
this means that there is no resemblance between
Alice's file and those in the other party's database.

We propose our CLCSPFSD approach to speed up
the work while providing high accuracy and similar
privacy. Although secure multiparty computation
protocols make pairwise file comparison
computations much more efficient, they are still too
slow for large datasets.

 We employ a vector space approach to calculate
the similarity between files, where each file is
expressed as a vector of normalised term frequencies,
as an alternative to comparing files term by term
[19].The work is done without the need for any third
party, and is implemented under the semi-honest
model [20].

5. Proposed Scheme

In the proposed approach, the vector space model

is used to represent files [19]. The assumed
vocabulary is identical for both parties. Initially all of
the unique phrases (keywords) from the file
collection F of m files are extracted, which is
represented by the vocabulary (weight of word)
𝑊 = {𝑤1,𝑤2, … ,𝑤𝑛} of 𝑛 terms. A single vector 𝑓𝚤��⃗ is
used to represent each file 𝑓𝑖 ∈ 𝐷, 𝑖 = 0, . . ,𝑚. If the
term does not exist in the file, its occurrence is zero.

The similarity score between Alice's input file u
and all of Bob's files F is determined. Initially, Alice
uses a vector to represent her files 𝑢�⃗ = {𝑢1, … ,𝑢𝑛}
and then applies encryption to the elements of the
vector separately, to protect privacy. The Paillier
encryption system is used to accomplish this, as
explained in Section 3.2.

More specifically, Alice sends the encrypted
weights ⟦𝑜𝑐𝑐𝑤1⟧, … , ⟦𝑜𝑐𝑐𝑤𝑛⟧ to Bob.

Without using the homomorphic techniques to
decrypt the encrypted weights, he is still able to
perform some fundamental operations on them.
When Bob receives the encrypted vector, he
calculates the similarity between this vector and each
vector in collection 𝐹, to match the received vector.

The cosine similarity metric is used, and is
applied to the normalised vectors in an efficient and
secure manner. Calculation of the normalised vector
u is done as follows:

 𝑢𝑗 = 𝑢𝑗
‖𝑢‖

, ‖𝑢‖ = �∑ 𝑢𝑗2𝑛
𝑗=1 (1)

All the normalised vectors are multiplied by 100

to obtain rounded integer values, which makes them
suitable for encryption operations. A dot product
operation between the elements of two normalised
vectors is the simplest way to find their cosine
similarity. As a result, Bob can use the following
formula to get the encrypted similarity score
⟦𝐹𝑖⟧ between the normalised vector u and the stored
vectors 𝑓𝑖:

⟦𝐹𝑖⟧ = ∏ �𝑢𝑗�
𝑓𝚤���⃗ 𝑗𝑛

𝑗=1 (2)

Bob disregards any encrypted element in Alice's
vector for which the corresponding element value in
his vector is zero, in order to increase the efficiency
of computing the similarity score. By using this
technique, fewer unnecessary modular
multiplications are performed.

Alice and Bob use Protocol 1 (Secure Similarity
File Detection, SSFD), as given below, to return the
index of similarity scores to Alice from among the
similarity scores ⟦𝐹1⟧… . ⟦𝐹𝑚⟧ that were obtained by
Bob, containing only results within the given
threshold th.

Comparisons are applied between ⟦𝑡ℎ⟧ and the
distance F (𝜋−1(𝐼𝑛𝑑). If the latter is higher than a
given threshold, the Ind of matchings returned to
Alice.

Protocol 1: Secure Similarity File Detection
(SSFD)

Input: U: Query file for Alice, ⟦𝑡ℎ⟧: encrypted
threshold, {𝑓1, … , 𝑓𝑚}: Bob's collection.

Output: Alice: Binary representation of similar
files.

Alice:

• Create (pr, pk) and (gr, gk). //
Encryption with Pallier homomorphic

• Transmit to Bob (pk, gk). //
Encryption with DGK homomorphic

• 𝜔(𝑈) = vector {𝜔1′ , . . . ,𝜔𝑛′ }. //
Using a vector space model

TEM Journal. Volume 13, Issue 3, pages 2341-2349, ISSN 2217-8309, DOI: 10.18421/TEM133-61, August 2024.

TEM Journal – Volume 13 / Number 3 / 2024. 2345

Bob:

∀𝑗 = 1, …𝑚: For each file 𝑓𝑗 ∈ 𝐹

• Vector 𝜔𝑗 𝑜𝑓 𝑠𝑖𝑧𝑒 𝑛.
Alice:

• �𝜔𝑗′� ← 𝐸𝑝𝑘�𝜔𝑗′�,∀𝑗 = 1, … ,𝑛
• �∑ 𝜔′

𝑗
2]𝑛

𝑗=1 �
• �𝜔𝑗′�, 𝑗 = 1, … ,𝑛 (Transmit to Bob)
• �∑ 𝜔′

𝑗
2]𝑛

𝑗=1 � (Transmit to Bob)
• Set 𝑖𝑛𝑥 ← 1

Bob:
- Secure dot product �𝐹𝑗�∀𝑗 = 1, …𝑚: // As
shown in Equations 1and 2.

Bob:

• Select a random permutation € over
{1, … ,𝑚}

• Set ⟦𝑚𝑎𝑥𝑣 ⟧ ← ⟦𝑡ℎ⟧
• ⟦F⟧=⟦0⟧
• ∀𝑖 = 1, …𝑚:

o Bob: Secure comparison of
encrypted integers by a protocol as
explained by Veugen [25] for
(⟦𝑚𝑎𝑥𝑣⟧, �𝐹€(𝑖)�). The output is δ
comparison bit.

o Alice: Send ⟦𝛿⟧ to Bob
o Bob:⟦𝐹⟧ = ⟦𝐹⟧. ⟦𝛿⟧2€(𝑖).

• Bob: Send ⟦𝐹⟧ to Alice.
• Alice: Decrypt ⟦𝐹⟧; if all locations of binary

form are one then the files are similar.

Protocol 1 is effective in terms of comparison, but
it has a long computation time, as each file is
compared with all the others (for a secure
comparison). In other words, we compare each file
with the whole database. For each comparison, we
need a secure dot product, so to speed up the
protocol; we can use a representative for each cluster
of files. The comparison will then only involve the
representatives, and a few clusters can be chosen for
pairwise comparisons. To explain the protocol
further, the comparison process takes place for each
file with another file, and thus you need the
computation of the secure cosine.

The proposed work is built to use a representative
for each cluster of files, so only the representatives
are compared for pairwise comparisons between a
few clusters. In this scenario, the execution time will
depend on the number of representatives.

The best way to select representatives without
losing too much accuracy is by clustering the file
collection into k (number of representatives).

Protocol 2 as seen in the Figure 1 that follows
outlines the phases of the SSFD protocol, which is
based on each party’s clustering file dataset. In the
first and second steps, the two parties must work for
their files as a cluster into k clusters. In this protocol,
assume that both sides create clusters of equal
numbers. The findings for the k-means clustering
technique are provided.

The distance function by these clustering
algorithms with the conventional cosine similarity
between the frequency vectors is employed. In
addition, the mean frequency vector for the files in
the cluster is chosen to determine the cluster centres.
For n files and k representatives, n – k merges have
applied, which is accomplished by indiscriminately
selecting the files that are the closest to one another
for merging. The files are represented by the centre
of the cluster when the two nearest files have been
combined into a single cluster.

In Steps 1(b) and 2(b), the two parties create the
representative vectors for the k clusters. In Step 3(a),
a comparison is made between the representatives for
the first party’s files and the other party’s
representative vectors. When the similarity score (σi,
j) is greater than the similarity threshold σth between
the i-th and j-th clusters for Alice and Bob, files in
clusters Alice 𝐴𝑖 and Bob 𝐴𝑗 are using a protocol 1
(SSFD) for securely compared. The clustering model
reduces the number of computations involving the
secure dot product, as not all of the files are
compared. The accuracy remains intact if there are
exactly as many files as there are representatives.

Figure 1. Protocol 2 (clustering-based SSFD)

5.1. Security Analysis

Our work is designed as a privacy-preserving
computation (secure two-party computation) under
the semi-honest model.

TEM Journal. Volume 13, Issue 3, pages 2341-2349, ISSN 2217-8309, DOI: 10.18421/TEM133-61, August 2024.

2346 TEM Journal – Volume 13 / Number 3 / 2024.

Our approach addresses the weakness of previous
works in the area of secure comparison in which the
second party receives the similarity scores, as our
system retrieves only the indexes of the similarity
scores for the second party. We use a simulation
approach [33], which is a known pattern used for
proofing the security protocols of two-party
computation. As mentioned earlier, the security
strength of this system is represented in returning the
index of similarity scores, where we used a sub-
protocol in Protocol 1 to accomplish this task to
clarify the security of such protocol [21]. We can
evaluate the security of each step in our system as
follows. Nothing is leaked to Bob, because Alice
calculates the vector and encrypts it using the public
key. Bob completes the similarity calculation by
himself, and Alice has no involvement at all. The
step in which the similarity score is chosen needs
collaboration between the two parties. Bob is unable
to access any vectors at this stage, as they are all
encrypted using Alice's public key.

5.2. Complexity of the System

Using the Paillier cryptosystem at the matching
stage, Alice encrypts the vector. Each encryption
process involves two multiplications and one
complex exponential process. Calculating the
encrypted similarities requires 𝑚 secure similarity
calculations. Find the similarities score accomplish
𝑚 − 1 comparisons that need per comparison of the
homomorphic process are 7 Paillier. Moreover, each
comparison requires DGK –comparison with 2ℓ + 1
DGK encryption process, two processes are Paillier
encryption.

 Our system uses two encryption systems: DGK,
with a ciphertext communication of 1024 bits, and
Paillier, with 2084 bits. In the initialisation stage,
only one round is required to exchange the keys
between the two entities; however, in the matching
step, a predetermined number of rounds are required.

It takes one cycle to transmit the encrypted vector
and obtain the result; with 𝑛 + 1 of communication
cost for Paillier ciphertexts. 𝑚 − 1 to find the
similarity and secure comparisons.

Using the cosine similarity between the vectors,
the choice is on the mean frequency vector of the
files in the cluster based on the cluster centres in the
k-means clustering and distance function
computation. For a number of representatives k and n
files, a total of n − k merges must be performed; this
is accomplished by selecting the files that are closest
to one another in a greedy manner. The cluster centre
represents the combined pair of nearest files, which
form a single cluster.

6. Experimental Results

 Experiments using the proposed system were
conducted on a real dataset containing 990 files from
a well-known English dataset, consisting of 20 news
collections [23].

 All non-letter words and converted words to
lower-case letters in order to get the vocabulary
collection are excluded. Then, eliminated stop words
is applied. To stem the remaining words, the Porter
algorithm [18] is used. A list of 418 stop words was
used by proposed work.

The collection contained 13,826 unique
keywords. The experiments were conducted using an
Intel CORE i7 CPU running at 2.2 GHz with 8 GB of
RAM and Windows 7, 64-bit operating system. Java
1.8.0_1911 was used to implement the system. In the
experiments, the results of the k-means clustering
technique are explained [17].

6.1. Effectiveness without the Proposed Clustering
Technique

The first experiment compares the query file

vector with a collection of 𝑚 files using Protocol 1.
Table 1 displays the execution time required to
compare the query file with all files in the dataset,
which was about 3.2 minutes.

Table 1. Execution times for file collections of different
sizes (m)

The experiment applies several pre-processing

operations in order to reduce the execution time, as
encryption involves many calculations. Each
encrypted element in the first party’s vector with a
like element value of zero at his vector is ignored by
the second party.

By using this technique, fewer unnecessary
modular multiplications are performed. When
Protocol 1 is used, Table 2 shows that the matching
time for the given query vector against all files in the
dataset is reduced to just 1.7 min.

Execution times (s)
Size of file
collection

(𝑚)

File vector
 encryption

Secure dot
product

computation

Finding
similar

files

Total
runni

ng
time

100 14.699 19.21 19.943 17.95
0

300 37.87 51.468 54.018 47.78
5

600 91.192 137.068 139.651 122.6
37

800 83.343 130.764 160.523 124.8
77

990 130.537 194.083 262.388 195.6
69

TEM Journal. Volume 13, Issue 3, pages 2341-2349, ISSN 2217-8309, DOI: 10.18421/TEM133-61, August 2024.

TEM Journal – Volume 13 / Number 3 / 2024. 2347

Table 2. Execution time pre-computation

The sizes of the file collection m and the file
vector n determine the computational cost for the
secure dot product operation used in our system. The
execution times for the secure similarity function,
which increases linearly with the size of the file
collection, are shown in Table 3. The execution time
becomes longer when the larger vector's collection
size is fixed. This is because clustering is not applied
to the files, and thus Protocol 1 is slow for large
datasets, despite its efficiency, as explained earlier.

Table 3. Execution times for the secure dot product
operation

To increase security, the size of the key in all of
the experiments was 1024. Table 4 shows the
variation in the execution time with an increase in the
key size.
Table 4. Paillier key with different sizes 𝑘

6.2. Effectiveness with Clustering Technique

In this stage of the experiments, the authors
applied Protocol 2 to 900 files randomly selected
from the original set of 990 files. This was the same
dataset that was used in 20news collection [18].

From these 900 files, two collections are
produced, each containing 495 files, and found that
there were 150 files that were the same in both
collections. As a result, each collection had 345
unique files and 150 perfectly identical files (with a
cosine similarity score of 1.0). In total, if the cosine
score was equal to or greater than 0.80, there were
210 unique pairs of files. This stage treats these 210
files as similar files.

Through this research, it is clear that the proposed
clustering technique works more quickly to identify
the matches, as fewer comparisons are made. This
experiment calculates how long the k-means
clustering procedure will take on the given file
collection. The running times for the k-mean
clustering algorithm are displayed in Table 5.
Through this experiment, the number of clusters from
100 to 500 is varied. As shown in the table below,
the execution times for the clustering step were much
lower than for Protocol 1 SSFD .

Table 5. Running times for clustering of 500 files

Number
of clusters

Runnin
g time (s)

100 45.18
200 62.1
300 65.81
400 69.31
500 110.5

Table 6 shows that the accuracy and the effect of

the number of representations on it (Protocol 2
explains that in the Step 3(b) the precision does not
reduce). The percentage of matches detected
generally remained above 70% when using values
from 0.5 to 0.9 for the threshold. As the threshold for
similarity increases, some similar files are excluded,
resulting in a percentage of similar files detected that
is less than 100%.

Table 6. The accuracy and the effect of the number of
representations

Similarity
threshold

0.5 0.6 0.7 0.8 0.9 1

Number of
representative
files

% of matches found

100 94 90 75 75 23 2
200 95 89 80 55 15 5
300 94 94 75 58 15 5
400 95 95 85 65 18 12
500 99 95 90 75 50 35

The k-means clustering method reduces the
number of file comparisons (by reducing the number
of computations of secure dot products).

Execution time (sec.)
Size of

file
collection

(m)

File
vector

encryptio
n

Secure dot
product

computatio
n

Finding
similar

files

Total
running

time

100 0.72 5.715 16.824 7.753
300 0.74 14.757 81.25 32.249
600 0.78 40.855 134.963 58.866
800 0.7 62.616 193.741 85.685
990 0.759 82.73 252.998 112.162

Duration (s)

Size of file
collection

(m)

Query length (n)

100 200 300 400

200 8.685 9.023 9.847 9.185

500 25.941 28.249 36.952 37.01

800 44.228 45.105 45.564 47.747
990 62.981 64.522 69.099 69.11

Execution times (s)
Paillier

key
size

(bits)

File vector
encryption

Secure
calculation

of dot
products

Finding
similar

files

Total
running

time

128 0.026 3.093 39.892 14.337
256 0.042 6.677 54.007 20.242
512 0.107 20.979 97.938 39.674

1024 0.655 64.068 187.271 83.998

TEM Journal. Volume 13, Issue 3, pages 2341-2349, ISSN 2217-8309, DOI: 10.18421/TEM133-61, August 2024.

2348 TEM Journal – Volume 13 / Number 3 / 2024.

In order to determine the similarity scores for the
210 most similar files out of the 495 files in each
party’s collection, a total of 1,980 pairwise
comparisons must be performed.

The percentage of comparisons and the
percentage of matches found using k-means
clustering are displayed in Table 7.

Table 7. Effectiveness of k-means clustering

Figure 2 shows a comparison of the complexity
costs. The difference in time cost between Protocol 1
(SPFD) (i.e., without using the clustering algorithm),
and Protocol 2 (CLCSPFD) (i.e., with the clustering
algorithm) is presented. Figure 2 shows the CPU
time required to compare one file against all of the
other files. CLCSPFD has a very low complexity,
since it applies a clustering algorithm to improve the
matching efficiency.

Figure 2. Comparison of CPU execution times for
Protocol 1 (SPFD) and Protocol 2 (CLCSPFD)

7. Conclusion and Future Work

The process of similarity detection between files
plays an important role in several real domains.
Existing systems assume that each file is public and
that its content can be easily accessed, but if there are
two entities who do not want to disclose the contents
of their files, such systems are not useful for
maintaining privacy.

Existing protocols leak important data, and do not
have a low complexity cost. There is therefore a need
for a new system to solve this problem. The proposed
system computes the similarity of two file collections
belonging to two entities who wish to keep the
contents secret. The protocols presented this study
are much more efficient than existing secure
protocols, although some of the procedures used are
slow for big file sets. Therefore, this scheme
developed a clustering-based approach that achieved
90% accuracy while drastically reducing the
execution time.

In future work, the scheme will use the N-gram
method to implement file similarity detection, as this
has the benefit of finding local similarities with
overlapping text fragments. In order to calculate the
similarity under such a model, identifying the set of
shared grams requires a secure and effective method.

Acknowledgements

This work is supported by the Natural Science Foundation
of Top Talent of SZTU under grant no.GDRC202137.

References:

[1]. Manber, U. (1994). Finding similar files in a large file
system. In Proceedings of the USENIX Winter 1994
Technical Conference, 1-10. USENIX Association:
San Francisco, California.

[2]. Manku, G. S., Jain, A., & Das Sarma, A. (2007).
Detecting near-duplicates for web crawling.
In Proceedings of the 16th international conference
on World Wide Web, 141-150.

[3]. Fröbe, M., Bevendorff, J., Gienapp, L., Völske, M.,
Stein, B., Potthast, M., & Hagen, M. (2021).
CopyCat: Near-Duplicates within and between the
ClueWeb and the Common Crawl. In Proceedings of
the 44th International ACM SIGIR Conference on
Research and Development in Information, 2398-
2404.

[4]. Hussien, Z. A., Abdulmalik, H. A., Hussain, M. A.,
Nyangaresi, V. O., Ma, J., Abduljabbar, Z. A., &
Abduljaleel, I. Q. (2023). Lightweight integrity
preserving scheme for secure data exchange in cloud-
based IoT systems. Applied Sciences, 13(2), 691.
Doi: 10.3390/app13020691

[5]. Al Sibahee, M.A., Abdulsada, A.I., Abduljabbar,
Z.A., Ma, J., Nyangaresi, V.O., & Umran, S.M.
(2021). Lightweight, Secure, Similar-Document
Retrieval over Encrypted Data. Appl. Sci., 11(24),
12040. Doi: 10.3390/app112412040

[6]. Abduljabbar, Z.A., Ibrahim, A., Al Sibahee, M.A.,
Lu, S., & Umran, S.M. (2021). Lightweight Privacy-
Preserving Similar Documents Retrieval over
Encrypted Data. In 2021 IEEE 45th Annual
Computers, Software, and Applications Conference
(COMPSAC), 1397-1398. Madrid, Spain.
Doi: 10.1109/COMPSAC51774.2021.00202

Similarity
threshold

0.5 0.6 0.7 0.8 0.9 1

Percentage of
comparisons (not
pairwise)

 % of matches detected

10 88 89 70 60 25 8
20 95 89 83 60 28 1

0
30 95 94 85 62 30 1

2
40 95 95 85 68 45 2

5
50 95 95 85 70 55 3

5

TEM Journal. Volume 13, Issue 3, pages 2341-2349, ISSN 2217-8309, DOI: 10.18421/TEM133-61, August 2024.

TEM Journal – Volume 13 / Number 3 / 2024. 2349

[7]. Unger, N., Thandra, S., & Goldberg, I. (2016). Elxa:
Scalable privacy-preserving plagiarism detection.
In Proceedings of the 2016 ACM on Workshop on
Privacy in the Electronic Society, 153-164.

[8]. Al Sibahee, M.A., Lu, S., Abduljabbar, Z.A., et al.
(2018). Efficient encrypted image retrieval in IoT-
cloud with multi-user authentication. International
Journal of Distributed Sensor Networks, 14(2).
Doi: 10.1177/1550147718761814

[9]. Abduljabbar, Z.A., Jin, H., Ibrahim, A., Hussien,
Z.A., Hussain, M.A., Abbdal, S.H., & Zou, D. (2016).
SEPIM: Secure and Efficient Private Image Matching.
Appl. Sci., 6, 213. Doi: 10.3390/app6080213

[10]. Jiang, W., Murugesan, M., Clifton, C., & Si, L.
(2008, April). Similar document detection with
limited information disclosure. In 2008 IEEE 24th
International Conference on Data Engineering, 735-
743. IEEE.

[11]. Murugesan, M., Jiang, W., Clifton, C., Si, L., &
Vaidya, J. (2010). Efficient privacy-preserving similar
document detection. The VLDB Journal, 19(4), 457-
475.

[12]. Jiang, W., & Samanthula, B. K. (2011). N-gram
based secure similar document detection. In Data and
Applications Security and Privacy XXV: 25th Annual
IFIP WG 11.3 Conference, DBSec 2011, Richmond,
VA, USA, July 11-13, 2011. Proceedings 25, 239-246.
Springer Berlin Heidelberg.

[13]. Blundo, C., De Cristofaro, E., & Gasti, P. (2012).
EsPRESSo: efficient privacy-preserving evaluation of
sample set similarity. In International Workshop on
Data Privacy Management, 89-103. Berlin,
Heidelberg: Springer Berlin Heidelberg.

[14]. Manning, C.D., et al. (2008). Introduction to
Information Retrieval. Cambridge University Press.

[15]. Wang, C., Cao, N., Li, J., Ren, K., & Lou, W.
(2010). Secure ranked keyword search over encrypted
cloud data. In 2010 IEEE 30th international
conference on distributed computing systems, 253-
262. IEEE.

[16]. Samanthula, B. K., & Jiang, W. (2015). Secure
multiset intersection cardinality and its application to
jaccard coefficient. IEEE Transactions on
Dependable and Secure Computing, 13(5), 591-604.
Doi: 10.1109/TDSC.2015.2415482.

[17]. Liao, W. (2013). Parallel k-Means Data Clustering.
Retrieved from:
http://www.ece.northwestern.edu/wkliao/Kmeans/ind
ex.html [accessed: 5 December 2013].

[18]. Porter, M. (2006). An algorithm for suffix stripping.
Program: electronic library and information systems,
40(3), 211-218.
Doi: 10.1108/00330330610681286.

[19]. De Cristofaro, E., Gasti, P., & Tsudik, G. (2012).
Fast and private computation of cardinality of set
intersection and union. In International Conference
on Cryptology and Network Security, 218-231. Berlin,
Heidelberg: Springer Berlin Heidelberg.

[20]. Yu, X., Chen, X., Shi, J., Shen, L., & Wang, D.
(2017). Efficient and scalable privacy-preserving
similar document detection. In GLOBECOM 2017-
2017 IEEE Global Communications Conference, 1-7.
IEEE.

[21]. Bost, R., Popa, R., Tu, S., & Goldwasser, S. (2015).
Machine learning classification over encrypted data.
In The Network and Distributed System Security
Symposium, 1-14.

[22]. Schoppmann, P., Vogelsang, L., Gascón, A., &
Balle, B. (2020). Secure and Scalable Document
Similarity on Distributed Databases: Differential
Privacy to the Rescue. Proceedings on Privacy
Enhancing Technologies 2020, 2020(2), 209-229.
Doi: 10.2478/popets-2020-0024.

[23]. UCI Machine Learning Repository. (n.d.). Twenty
Newsgroups dataset. UCI Machine Learning
Repository. Retrieved from:
https://archive.ics.uci.edu/ml/datasets/Twenty+Newsg
roups [accessed: 02 January 2024].

[24]. Ramaiah, Y. G., & Kumari, G. V. (2012). Efficient
public key homomorphic encryption over integer
plaintexts. In 2012 International Conference on
Information Security and Intelligent Contr, 123-128.
IEEE.

[25]. Gentry, C. (2009). Fully homomorphic encryption
using ideal lattices. In Proceedings of the forty-first
annual ACM symposium on Theory of computing,
169-178.

[26]. Chillotti, I., Gama, N., Georgieva, M., & Izabachene,
M. (2016). Faster fully homomorphic encryption:
Bootstrapping in less than 0.1 seconds. In
International conference on the theory and
application of cryptology and information security, 3-
33.

[27]. Brakerski, Z., Gentry, C., & Vaikuntanathan, V.
(2014). (Leveled) fully homomorphic encryption
without bootstrapping. ACM Transactions on
Computation Theory, 6(3), 1-36.
Doi: 10.1145/2090236.2090262.

[28]. Martins, P., Sousa, L., & Mariano, A. (2017). A
survey on fully homomorphic encryption: An
engineering perspective. ACM Computing Surveys,
50(6), 1-33.
Doi: 10.1145/3124441.

[29]. Paillier, P. (1999). Public-key cryptosystems based
on composite degree residuosity classes.
In International conference on the theory and
applications of cryptographic techniques, 223-238.
Berlin, Heidelberg: Springer Berlin Heidelberg.

[30]. Li, P., Li, T., Yao, Z. A., Tang, C. M., & Li, J.
(2017). Privacy-preserving outsourcing of image
feature extraction in cloud computing. Soft
Computing, 21, 4349-4359.
Doi: 10.1007/s00500-016-2066-5.

[31]. Veugen, T. (2012). Improving the DGK comparison
protocol. In 2012 IEEE International Workshop on
Information Forensics and Security (WIFS), 49-54.

[32]. Damgård, I., Geisler, M., & Krøigaard, M. (2007).
Efficient and secure comparison for on-line auctions.
In Information Security and Privacy: 12th
Australasian Conference, ACISP 2007, Townsville,
Australia, July 2-4, 2007. Proceedings 12, 416-430.
Springer Berlin Heidelberg.

[33]. Lindell, Y., & Pinkas, B. (2009). Secure multiparty
computation for privacy-preserving data mining.
Journal of Privacy and Confidentiality, 1(1), 59–98.
Doi: 10.29012/jpc.v1i1.566.

https://archive.ics.uci.edu/ml/datasets/Twenty+Newsgroups
https://archive.ics.uci.edu/ml/datasets/Twenty+Newsgroups

	To increase security, the size of the key in all of the experiments was 1024. Table 4 shows the variation in the execution time with an increase in the key size.

