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Abstract – Detection of the similarity between files is 
a requirement for many practical applications, such as 
copyright protection, file management, plagiarism 
detection, and detecting duplicate submissions of 
scientific articles to multiple journals or conferences. 
Existing methods have not taken into consideration file 
privacy, which prevents their use in many delicate 
situations, for example when comparing two 
intellectual agencies' files where files are meant to be 
secured, to find file similarities. Over the last few 
years, encryption protocols have been developed with 
the aim of detecting similar files without compromising 
privacy. However, existing protocols tend to leak 
important data, and do not have low complexity costs. 
This paper addresses the issue of computing the 
similarity between two file collections belonging to two 
entities who desire to keep their contents private.  
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We propose a clustering-based approach that 
achieves 90% accuracy while significantly reducing the 
execution time. The protocols presented in this study 
are much more efficient than other secure protocols, 
and the alternatives are slower in terms of similarity 
detection for large file sets. Our system achieves a high 
level of security by using a vector space model to 
convert the files into vectors and by applying Paillier 
encryption to encrypt the elements of the vector 
separately, to protect privacy. The study uses the 
application of the Porter algorithm to the vocabulary 
set. Using a secure cosine similarity approach, a score 
for similar files was identified and the index of the 
similarity scores is returned to the other party, rather 
than the similar files themselves. The system is 
strengthened by using clustering for files, based on the 
k-means clustering technique, which makes it more 
efficient for large file sets.  

Keywords – File similarity, privacy, similarity 
detection.  

1. Introduction

File similarity detection techniques have begun to 
be used in many important applications since the first 
research in this field began in 1993 [1]. For example, 
this approach is used in a file management system, 
which can work more efficiently if similar files are 
identified. It is also used to improve the function of 
web crawlers in terms of detecting similar pages [2], 
[3], [4].  Finally, this method is used in applications 
related to plagiarism detection and copyright 
protection [5], [6]. 

The problem of security is considered very 
important in the process of data matching.  
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For example, in the case where patient reports are 
exchanged between health centres to understand the 
spread of diseases, health centres cannot share patient 
reports publicly, but must protect their privacy and 
security.    

We also need to consider the issue of data security 
for papers submitted to academic journals, where 
there is a need to verify whether a work has been sent 
to multiple journals, as a study is not allowed to be 
submitted to two or more scholarly journals 
simultaneously [7], [8], [9].   

We therefore need to apply encryption in order to 
protect the security of the data, and combine a 
method of encrypting files with similarity detection 
to create an effective and secure technique. 

The vector space model and the N-gram model 
are two ways of representing text files. In the vector 
space approach, which was employed in [10], [11], 
the file is represented as a single vector, whereas the 
authors of [12], [13] used the N-gram model in which 
the file is represented as a large set of substrings. A 
vector space is based on the concept of similarity, 
where the file and the query are converted to vectors 
of terms. The file is similar to the query if it is 
similar in keywords with word frequencies. The 
vector space model is used to detect the global 
similarity, which means a bag of similar words [14], 
[15]. 

In the N-gram model, the files are converted into 
N-grams (sets) of fixed length, and a hash code is 
then computed for each N-gram and compressed to a 
fingerprint. The N-gram model considers two files to 
be similar if they share fingerprint words. This 
approach can be used to detect local similarities, i.e. 
overlaps between parts of two texts; however, the 
systems that depend on this model do not take the 
keywords and their frequencies, so the result displays 
a bad relevance ranking [16]. 

In the central idea underlying the work in this 
paper, there are two parties: the first is Alice, who 
has a file u, and the other is Bob, who has a database 
F. Neither party wants to reveal their private data to 
the other. Alice wants to know the similarity score 
between her file and those in the database held by 
Bob. We use a vector space model to convert the 
files into vectors, and apply Paillier encryption to 
encrypt the elements of the vector separately, to 
protect the users’ privacy. Based on the secure cosine 
similarity, the study identifies a score representing 
the similarity between files. The system returns the 
index of m similarity scores to the first party, rather 
than returning the actual similar files. The k-means 
clustering scheme [17] was used to cluster the files, 
so only representative files are used for pairwise 
comparisons between a few clusters. The execution 
time in this situation depends on the number of 
representative files, which will be significantly lower 

than the total number of files. The best way to select 
representative files without losing too much accuracy 
is by clustering the file collection into a number of 
representative files k. 

The main contribution of this paper is a scheme 
that ensures privacy preservation for the contents of 
the files (secure matching) for the two parties, and 
protects the similarity scores which were exposed in 
existing schemes [10]. [11], [12], as it does not 
require the sharing of the general vector with the 
parties. The authors suggest a clustering-based low-
complexity and secure private file similarity 
detection (CLCSPFD) scheme that can offer state-of-
the-art privacy and excellent accuracy while 
dramatically reducing the execution time, to meet the 
requirements of resource-constrained devices. The 
performance is evaluated via experiments on a real-
world database. 

The rest of the paper is structured as follows. 
Section 2 reviews related work on secure private files 
similarity detection schemes. Section 3 introduces the 
basic cryptographic tools that are used in this paper. 
Section 4 describes the scenario for the solution to 
the problem. Section 5 explains the basic steps in 
constructing our algorithm. Section 6 presents the 
results of our experiments, and Section 7 contains 
conclusions and suggestions for future work. 
 
2. Related Works 

 
   In 2008, Jiang [10] was the first author to work 

on the problem of private file similarity detection. A 
scheme was presented that worked on detecting 
secure similarity; the vector space model was used, 
where the idea was that there were two parties, each 
of which represented their files as vectors, and a 
cosine similarity was applied to measure the 
similarity. The same authors worked to improve the 
efficiency of this scheme by using text file clustering 
techniques [11]. However, in these schemes [10], 
when the actual similarity scores are returned to the 
other party after matching between the encrypted 
data and the encrypted query, this can be considered 
a privacy leak since the other party has access to the 
files that are related to the similarity score. 

The N-gram model was used in [12] to detect 
similarity in a secure scheme. The authors used the 
Jaccard similarity (JS) to measure the similarity 
between two text files [16]. The idea suggested in 
[11] was that both parties, Alice and Bob, should 
represent their text files as 3-gram sets. A global 3-
gram set is created by Bob and revealed to Alice; 
both parties then compute a binary vector, where if 
the corresponding 3-grams exist, the entry has a 
value of one, and otherwise a value of zero. The two 
parties compute the JS by using a secure protocol 
(secure division protocol).  
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This scheme was not secure, as one party revealed 
all of the 3-grams to the other party. This can be 
considered a security weakness.   

In [13], the authors suggested an efficient 
approach to evaluate the set similarity. The JS was 
used to measure the similarity between two private 
sets. Specifically, two approaches were applied to 
compute the similarity of the sets: the first was to 
compute the exact secure JS, while the second used 
the MinHash technique to reduce the computation 
and communication overheads. The PSI-CA protocol 
[19] was used in both approaches to specify the 
common 3-gram sets. The work in [20] used the 
MinHash technique, an efficient method of detecting 
the similarity of files in a secure manner. The authors 
of [20] used the SJCM protocol, where the frequency 
of each N-gram is computed using the JS during 
secure computation. Blundo et al. [16] used the 
secure algorithm presented by De Cristafaro et al. 
[13] to detect the secure similarity between two sets. 
More recently, in [22], Schoppmann et al. introduced 
a secure system for documents using classification 
(K-NN). 

However, all of the systems described above 
detect the actual similarity scores for the other side. 
In contrast, our scheme encrypts the data and only 
sends back the index of the matching file to the other 
party. Furthermore, the scheme has low complexity 
due to the use of the k-means clustering technique, 
where the files are grouped into clusters, meaning 
that only the similarity scores for the nk files inside 
the closest cluster are computed when the first party 
wants to inquire about a file. 
 
3. Cryptographic Background 
 
The following part provides a brief explanation of the 
basic tools that are used in this paper. 
 
3.1.  Homomorphic Encryption 
 

Homomorphic encryption occupies the largest 
position among encryption systems in order to secure 
data and maintain its privacy. This approach has 
many valuable properties [22], [24]. Through 
homomorphic encryption, any mathematical 
operation on encrypted texts can be performed 
without the need to know the private key. In 2009, 
Gentry [25] was the first author to design a fully 
homomorphic scheme that supported multiplication 
operations, and many authors later improved on this 
technique [26], [27], [28]. The study employs an 
additive homomorphic encryption process for the 
scheme. Additive homomorphic encryption has the 
following properties:  

 
 

1-  𝐷𝑝𝑟 �𝐸𝑝𝑘(𝑥).𝐸𝑝𝑘(𝑦)� = 𝑥 + 𝑦. 
where x and y are given integers, (𝑝𝑟,𝑝𝑘) are the 
public key pairs,  𝐷𝑝𝑟()  is the decryption algorithm, 
and  𝐸𝑝𝑘()  is the encryption algorithm. 

2- . 𝐸𝑝𝑘(𝑥)𝑐 = 𝑥. 𝑐 
            for any positive integer 𝑐 and  𝑥 in the   
             message space. 

3- The multiplicative inverse 𝐸𝑝𝑘(𝑦) = 
𝐸𝑝𝑘(𝑦)−1 i. 

             𝐷𝑝𝑟�𝐸𝑝𝑘(𝑥).𝐸𝑝𝑘(𝑦)−1� = 𝑥 − 𝑦 
 
3.2.  Paillier Cryptosystem 
 

In 1999, Pascal Paillier [29] invented a strong 
public-key cryptosystem that supports additive 
homomorphic and multiplication homomorphic 
functions. Paillier’s cryptosystem is semantically 
secure. The authors used the algorithms of this 
cryptosystem in the scheme which is explained in 
detail in [29]. 
 
3.3.  DGK Encryption System 
 

There are many protocols that can be used for 
comparing encrypted numbers, and these have been 
applied in numerous fields, including secure 
classification [30]. Veugen [31] created a protocol 
that is considered efficient for comparing two 
encrypted integers [[a]], [[b]] s.t. [[0]] < [[a]] and 
[[b]] ≤ [[2ℓ]] without the need for decryption. The 
DGK encryption system compares two private 
numbers while preserving privacy [32], and is 
additively homomorphic used in our scheme. 

 The main idea underlying our scheme is to 
calculate [[z]] = [[2ℓ]]−[[a]]+[[b]] for the (ℓ + 1)-bit 
and determine its most significant bit 𝑧ℓ. [[a]] >= 
[[b]] if it is 1, and [[a]] < [[b]] otherwise. Thus, to 
determine whether or not [[a]] ≥ [[b]], all that is 
needed is to compute the bit  𝑧ℓ. 

In Veugen’s protocol [31], there are two parties: 
Alice inputs an encrypted number [[a]], and Bob 
inputs an encrypted number [[b]] , where [[δ]] = 
([[a]] < [[b]]) = [[1 −2ℓ]] is the result. The power of 
this protocol lies in its ability to prevent the other 
party from knowing the true values of a, b, and the 
comparison bit δ. In [31], Veugens outlines the 
fundamental steps of this protocol. 
 
4. Secure Comparison Scenario 
 

The following problem is solved in this paper. 
Bob and Alice both wish to use a secure comparison 
to find similarities in their text files. Alice's private 
file is u, while Bob's input is F.  
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Alice wants to determine whether there are files 
in Bob’s dataset that are similar to her file without 
compromising the privacy of the two parties, in a low 
complexity minimal. Where each file is converted to 
a vector. 
Let F = {𝑓 1, . . . ,𝑓 𝑚} be a set of m files in Bob’s 
database. Our protocol is called CLCSPFSD, 
clustering-based low complexity and secure private 
files similarity detection, and is defined as:  

CLCSPFSD (u,F) →𝐼𝑛𝑥 (𝜎1 , . . . ,  𝜎𝑚) 
 

where u and F are Alice and Bob's private input files. 
The CLCSPFSD protocol provides Alice with the 
index of the similarity scores, 𝜎1 , . . .,𝜎𝑚, rather than 
the actual files that were compared. 

The work in this paper is more situation-specific 
and broader. For instance, Alice does not need to 
know the actual files in Bob's database if the 
similarity scores she receives are extremely low, as 
this means that there is no resemblance between 
Alice's file and those in the other party's database. 

We propose our CLCSPFSD approach to speed up 
the work while providing high accuracy and similar 
privacy. Although secure multiparty computation 
protocols make pairwise file comparison 
computations much more efficient, they are still too 
slow for large datasets. 

 We employ a vector space approach to calculate 
the similarity between files, where each file is 
expressed as a vector of normalised term frequencies, 
as an alternative to comparing files term by term 
[19].The work is done without the need for any third 
party, and is implemented under the semi-honest 
model [20]. 

 
5. Proposed Scheme 

 
In the proposed approach, the vector space model 

is used to represent files [19]. The assumed 
vocabulary is identical for both parties. Initially all of 
the unique phrases (keywords) from the file 
collection F of m files are extracted, which is 
represented by the vocabulary (weight of word)  
𝑊 = {𝑤1,𝑤2, … ,𝑤𝑛} of 𝑛 terms. A single vector 𝑓𝚤��⃗  is 
used to represent each file 𝑓𝑖 ∈ 𝐷, 𝑖 = 0, . . ,𝑚. If the 
term does not exist in the file, its occurrence is zero.  

The similarity score between Alice's input file u 
and all of Bob's files F is determined. Initially, Alice 
uses a vector to represent her files 𝑢�⃗ = {𝑢1, … ,𝑢𝑛} 
and then applies encryption to the elements of the 
vector separately, to protect privacy. The Paillier 
encryption system is used to accomplish this, as 
explained in Section 3.2. 

More specifically, Alice sends the encrypted 
weights ⟦𝑜𝑐𝑐𝑤1⟧, … , ⟦𝑜𝑐𝑐𝑤𝑛⟧ to Bob.  

 

Without using the homomorphic techniques to 
decrypt the encrypted weights, he is still able to 
perform some fundamental operations on them. 
When Bob receives the encrypted vector, he 
calculates the similarity between this vector and each 
vector in collection 𝐹, to match the received vector.  

The cosine similarity metric is used, and is 
applied to the normalised vectors in an efficient and 
secure manner. Calculation of the normalised vector 
u is done as follows: 

            𝑢𝑗 = 𝑢𝑗
‖𝑢‖

, ‖𝑢‖ = �∑ 𝑢𝑗2𝑛
𝑗=1                 (1)    

 
All the normalised vectors are multiplied by 100 

to obtain rounded integer values, which makes them 
suitable for encryption operations. A dot product 
operation between the elements of two normalised 
vectors is the simplest way to find their cosine 
similarity. As a result, Bob can use the following 
formula to get the encrypted similarity score 
⟦𝐹𝑖⟧ between the normalised vector u and the stored 
vectors 𝑓𝑖: 

⟦𝐹𝑖⟧ = ∏ �𝑢𝑗�
𝑓𝚤���⃗ 𝑗𝑛

𝑗=1                     (2)         
 

Bob disregards any encrypted element in Alice's 
vector for which the corresponding element value in 
his vector is zero, in order to increase the efficiency 
of computing the similarity score. By using this 
technique, fewer unnecessary modular 
multiplications are performed. 

Alice and Bob use Protocol 1 (Secure Similarity 
File Detection, SSFD), as given below, to return the 
index of similarity scores to Alice from among the 
similarity scores ⟦𝐹1⟧… . ⟦𝐹𝑚⟧  that were obtained by 
Bob, containing only results within the given 
threshold th.  

Comparisons are applied between ⟦𝑡ℎ⟧ and the 
distance F (𝜋−1(𝐼𝑛𝑑). If the latter is higher than a 
given threshold, the Ind of matchings returned to 
Alice. 

Protocol 1: Secure Similarity File Detection 
(SSFD)  

Input: U:  Query file for Alice, ⟦𝑡ℎ⟧:  encrypted 
threshold, {𝑓1, … , 𝑓𝑚}: Bob's collection. 

Output:  Alice: Binary representation of similar 
files.  

Alice: 

• Create (pr, pk) and (gr, gk).           //  
Encryption with Pallier homomorphic  

• Transmit to Bob (pk, gk).                  //  
Encryption with DGK homomorphic 

• 𝜔(𝑈) = vector {𝜔1′ , . . . ,𝜔𝑛′ }.             //  
Using a vector space model  
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Bob: 

∀𝑗 = 1, …𝑚:    For each file 𝑓𝑗 ∈ 𝐹 

• Vector 𝜔𝑗  𝑜𝑓 𝑠𝑖𝑧𝑒 𝑛. 
Alice:  

•  �𝜔𝑗′�  ← 𝐸𝑝𝑘�𝜔𝑗′�,∀𝑗 = 1, … ,𝑛 
• �∑ 𝜔′

𝑗
2]𝑛

𝑗=1 � 
• �𝜔𝑗′�, 𝑗 = 1, … ,𝑛      (Transmit to Bob) 
• �∑ 𝜔′

𝑗
2]𝑛

𝑗=1 �            (Transmit to Bob) 
• Set 𝑖𝑛𝑥 ← 1 

Bob:  
- Secure dot product �𝐹𝑗�∀𝑗 = 1, …𝑚:          // As 
shown in Equations 1and 2. 

Bob:  

• Select a random permutation € over 
{1, … ,𝑚} 

• Set ⟦𝑚𝑎𝑥𝑣 ⟧ ←  ⟦𝑡ℎ⟧ 
• ⟦F⟧=⟦0⟧ 
• ∀𝑖 = 1, …𝑚: 

o Bob: Secure comparison of 
encrypted integers by a protocol as 
explained by Veugen [25] for 
(⟦𝑚𝑎𝑥𝑣⟧, �𝐹€(𝑖)�). The output is δ 
comparison bit.  

o Alice: Send ⟦𝛿⟧ to Bob 
o Bob:⟦𝐹⟧ = ⟦𝐹⟧. ⟦𝛿⟧2€(𝑖).     

 
• Bob: Send ⟦𝐹⟧  to Alice. 
• Alice: Decrypt ⟦𝐹⟧; if all locations of binary 

form are one then the files are similar. 
 

Protocol 1 is effective in terms of comparison, but 
it has a long computation time, as each file is 
compared with all the others (for a secure 
comparison). In other words, we compare each file 
with the whole database. For each comparison, we 
need a secure dot product, so to speed up the 
protocol; we can use a representative for each cluster 
of files. The comparison will then only involve the 
representatives, and a few clusters can be chosen for 
pairwise comparisons. To explain the protocol 
further, the comparison process takes place for each 
file with another file, and thus you need the 
computation of the secure cosine. 
 

The proposed work is built to use a representative 
for each cluster of files, so only the representatives 
are compared for pairwise comparisons between a 
few clusters. In this scenario, the execution time will 
depend on the number of representatives.  

The best way to select representatives without 
losing too much accuracy is by clustering the file 
collection into k (number of representatives). 

Protocol 2 as seen in the Figure 1 that follows 
outlines the phases of the SSFD protocol, which is 
based on each party’s clustering file dataset. In the 
first and second steps, the two parties must work for 
their files as a cluster into k clusters. In this protocol, 
assume that both sides create clusters of equal 
numbers. The findings for the k-means clustering 
technique are provided. 

The distance function by these clustering 
algorithms with the conventional cosine similarity 
between the frequency vectors is employed. In 
addition, the mean frequency vector for the files in 
the cluster is chosen to determine the cluster centres. 
For n files and k representatives, n – k merges have 
applied, which is accomplished by indiscriminately 
selecting the files that are the closest to one another 
for merging. The files are represented by the centre 
of the cluster when the two nearest files have been 
combined into a single cluster. 

In Steps 1(b) and 2(b), the two parties create the 
representative vectors for the k clusters. In Step 3(a), 
a comparison is made between the representatives for 
the first party’s files and the other party’s 
representative vectors. When the similarity score (σi, 
j) is greater than the similarity threshold σth between 
the i-th and j-th clusters for Alice and Bob, files in 
clusters Alice 𝐴𝑖 and Bob 𝐴𝑗 are using a protocol 1 
(SSFD) for securely compared. The clustering model 
reduces the number of computations involving the 
secure dot product, as not all of the files are 
compared. The accuracy remains intact if there are 
exactly as many files as there are representatives.  

 

 
Figure 1. Protocol 2 (clustering-based SSFD) 

 
5.1.  Security Analysis 
 

Our work is designed as a privacy-preserving 
computation (secure two-party computation) under 
the semi-honest model.  
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Our approach addresses the weakness of previous 
works in the area of secure comparison in which the 
second party receives the similarity scores, as our 
system retrieves only the indexes of the similarity 
scores for the second party. We use a simulation 
approach [33], which is a known pattern used for 
proofing the security protocols of two-party 
computation. As mentioned earlier, the security 
strength of this system is represented in returning the 
index of similarity scores, where we used a sub-
protocol in Protocol 1 to accomplish this task to 
clarify the security of such protocol [21]. We can 
evaluate the security of each step in our system as 
follows. Nothing is leaked to Bob, because Alice 
calculates the vector and encrypts it using the public 
key. Bob completes the similarity calculation by 
himself, and Alice has no involvement at all. The 
step in which the similarity score is chosen needs 
collaboration between the two parties. Bob is unable 
to access any vectors at this stage, as they are all 
encrypted using Alice's public key. 
 
5.2.  Complexity of the System 
 

Using the Paillier cryptosystem at the matching 
stage, Alice encrypts the vector. Each encryption 
process involves two multiplications and one 
complex exponential process. Calculating the 
encrypted similarities requires  𝑚 secure similarity 
calculations. Find the similarities score accomplish 
𝑚 − 1 comparisons that need per comparison of the 
homomorphic process are 7 Paillier. Moreover, each 
comparison requires DGK –comparison with 2ℓ + 1 
DGK encryption process, two processes are Paillier 
encryption. 

 Our system uses two encryption systems: DGK, 
with a ciphertext communication of 1024 bits, and 
Paillier, with 2084 bits. In the initialisation stage, 
only one round is required to exchange the keys 
between the two entities; however, in the matching 
step, a predetermined number of rounds are required. 

It takes one cycle to transmit the encrypted vector 
and obtain the result; with 𝑛 + 1  of communication 
cost for Paillier ciphertexts.  𝑚 − 1 to find the 
similarity and secure comparisons.  

Using the cosine similarity between the vectors, 
the choice is on the mean frequency vector of the 
files in the cluster based on the cluster centres in the 
k-means clustering and distance function 
computation. For a number of representatives k and n 
files, a total of n − k merges must be performed; this 
is accomplished by selecting the files that are closest 
to one another in a greedy manner. The cluster centre 
represents the combined pair of nearest files, which 
form a single cluster.  

 
 

6. Experimental Results 
 
      Experiments using the proposed system were 
conducted on a real dataset containing 990 files from 
a well-known English dataset, consisting of 20 news 
collections [23].  

 All non-letter words and converted words to 
lower-case letters in order to get the vocabulary 
collection are excluded. Then, eliminated stop words 
is applied. To stem the remaining words, the Porter 
algorithm [18] is used. A list of 418 stop words was 
used by proposed work. 

The collection contained 13,826 unique 
keywords. The experiments were conducted using an 
Intel CORE i7 CPU running at 2.2 GHz with 8 GB of 
RAM and Windows 7, 64-bit operating system. Java 
1.8.0_1911 was used to implement the system. In the 
experiments, the results of the k-means clustering 
technique are explained [17]. 
 
 

6.1.  Effectiveness without the Proposed Clustering 
Technique 

 
The first experiment compares the query file 

vector with a collection of 𝑚 files using Protocol 1. 
Table 1 displays the execution time required to 
compare the query file with all files in the dataset, 
which was about 3.2 minutes.  

 
Table 1.  Execution times for file collections of different 
sizes (m) 

 
The experiment applies several pre-processing 

operations in order to reduce the execution time, as 
encryption involves many calculations. Each 
encrypted element in the first party’s vector with a 
like element value of zero at his vector is ignored by 
the second party.  

By using this technique, fewer unnecessary 
modular multiplications are performed. When 
Protocol 1 is used, Table 2 shows that the matching 
time for the given query vector against all files in the 
dataset is reduced to just 1.7 min. 

 

Execution times (s) 
Size of file 
collection 

(𝑚) 

File vector 
 encryption 

Secure dot 
product 

computation 

Finding 
similar 

files 

Total 
runni

ng 
time 

100 14.699 19.21 19.943 17.95
0 

300 37.87 51.468 54.018 47.78
5 

600 91.192 137.068 139.651 122.6
37 

800 83.343 130.764 160.523 124.8
77 

990 130.537 194.083 262.388 195.6
69 
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Table 2. Execution time pre-computation 

 
 

The sizes of the file collection m and the file 
vector n determine the computational cost for the 
secure dot product operation used in our system. The 
execution times for the secure similarity function, 
which increases linearly with the size of the file 
collection, are shown in Table 3. The execution time 
becomes longer when the larger vector's collection 
size is fixed. This is because clustering is not applied 
to the files, and thus Protocol 1 is slow for large 
datasets, despite its efficiency, as explained earlier. 
 

Table 3. Execution times for the secure dot product 
operation 
 

To increase security, the size of the key in all of 
the experiments was 1024. Table 4 shows the 
variation in the execution time with an increase in the 
key size. 
Table 4. Paillier key with different sizes 𝑘 
 

 
 

6.2. Effectiveness with Clustering Technique 
 

In this stage of the experiments, the authors 
applied Protocol 2 to 900 files randomly selected 
from the original set of 990 files. This was the same 
dataset that was used in 20news collection [18].  

 

From these 900 files, two collections are 
produced, each containing 495 files, and found that 
there were 150 files that were the same in both 
collections. As a result, each collection had 345 
unique files and 150 perfectly identical files (with a 
cosine similarity score of 1.0). In total, if the cosine 
score was equal to or greater than 0.80, there were 
210 unique pairs of files. This stage treats these 210 
files as similar files.  

Through this research, it is clear that the proposed 
clustering technique works more quickly to identify 
the matches, as fewer comparisons are made. This 
experiment calculates how long the k-means 
clustering procedure will take on the given file 
collection. The running times for the k-mean 
clustering algorithm are displayed in Table 5. 
Through this experiment, the number of clusters from 
100 to 500 is varied. As shown in the table below, 
the execution times for the clustering step were much 
lower than for Protocol 1 SSFD . 

 
Table 5. Running times for clustering of 500 files 

 

Number 
of clusters 

Runnin
g time (s) 

100 45.18 
200 62.1 
300 65.81 
400 69.31 
500 110.5 

 
Table 6 shows that the accuracy and the effect of 

the number of representations on it (Protocol 2 
explains that in the Step 3(b) the precision does not 
reduce). The percentage of matches detected 
generally remained above 70% when using values 
from 0.5 to 0.9 for the threshold. As the threshold for 
similarity increases, some similar files are excluded, 
resulting in a percentage of similar files detected that 
is less than 100%. 
 
Table 6. The accuracy and the effect of the number of 
representations 
 

Similarity 
threshold 

0.5 0.6 0.7 0.8 0.9 1 

Number of 
representative 
files 

% of matches found 

100 94 90 75 75 23 2 
200 95 89 80 55 15 5 
300 94 94 75 58 15 5 
400 95 95 85 65 18 12 
500 99 95 90 75 50 35 

 

The k-means clustering method reduces the 
number of file comparisons (by reducing the number 
of computations of secure dot products).  

 
 

Execution time (sec.) 
Size of 

file 
collection 

(m) 

File 
vector 

encryptio
n 

Secure dot 
product 

computatio
n  

Finding 
similar 

files 

Total 
running 

time 

100 0.72 5.715 16.824 7.753 
300 0.74 14.757 81.25 32.249 
600 0.78 40.855 134.963 58.866 
800 0.7 62.616 193.741 85.685 
990 0.759 82.73 252.998 112.162 

Duration (s) 

Size of file 
collection 

(m) 

Query length (n) 

100 200 300 400 

200 8.685 9.023 9.847 9.185 

500 25.941 28.249 36.952 37.01 

800 44.228 45.105 45.564 47.747 
990 62.981 64.522 69.099 69.11 

Execution times (s) 
Paillier 

key 
size 

(bits) 

File vector 
encryption 

Secure 
calculation 

of dot 
products 

Finding 
similar 

files 

Total 
running 

time 

128 0.026 3.093 39.892 14.337 
256 0.042 6.677 54.007 20.242 
512 0.107 20.979 97.938 39.674 

1024 0.655 64.068 187.271 83.998 
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In order to determine the similarity scores for the 
210 most similar files out of the 495 files in each 
party’s collection, a total of 1,980 pairwise 
comparisons must be performed.  

The percentage of comparisons and the 
percentage of matches found using k-means 
clustering are displayed in Table 7. 
 
 

Table 7. Effectiveness of k-means clustering 

 

Figure 2 shows a comparison of the complexity 
costs. The difference in time cost between Protocol 1 
(SPFD) (i.e., without using the clustering algorithm), 
and Protocol 2 (CLCSPFD) (i.e., with the clustering 
algorithm) is presented. Figure 2 shows the CPU 
time required to compare one file against all of the 
other files. CLCSPFD has a very low complexity, 
since it applies a clustering algorithm to improve the 
matching efficiency. 

 
Figure 2. Comparison of CPU execution times for 
Protocol 1 (SPFD) and Protocol 2 (CLCSPFD) 

 
7. Conclusion and Future Work 
 

The process of similarity detection between files 
plays an important role in several real domains. 
Existing systems assume that each file is public and 
that its content can be easily accessed, but if there are 
two entities who do not want to disclose the contents 
of their files, such systems are not useful for 
maintaining privacy.  

Existing protocols leak important data, and do not 
have a low complexity cost. There is therefore a need 
for a new system to solve this problem. The proposed 
system computes the similarity of two file collections 
belonging to two entities who wish to keep the 
contents secret. The protocols presented this study 
are much more efficient than existing secure 
protocols, although some of the procedures used are 
slow for big file sets. Therefore, this scheme 
developed a clustering-based approach that achieved 
90% accuracy while drastically reducing the 
execution time. 

In future work, the scheme will use the N-gram 
method to implement file similarity detection, as this 
has the benefit of finding local similarities with 
overlapping text fragments. In order to calculate the 
similarity under such a model, identifying the set of 
shared grams requires a secure and effective method. 
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