
TEM Journal. Volume 13, Issue 3, pages 2285-2296, ISSN 2217-8309, DOI: 10.18421/TEM133-56, August 2024.

TEM Journal – Volume 13 / Number 3 / 2024. 2285

Building a Graphical Modelling Language
for Efficient Homomorphic Encryption

Schema Configuration: HomoLang
Samar Amil Qassir P

1

P

1
PDepartment of Computer Science, College of Science, Mustansiriyah University, Baghdad, Iraq

Abstract – Homomorphic encryption (HE) is an
emerging technology that enables computing on data
while the data is encrypted. It has advantages, but it
also has a significant difficulty. Programmers that use
General-Purpose Programming Languages (GPPLs)
may find it difficult to handwrite the script code for the
HE correctly. This paper presents the front-end
compiler design for the first graphical modelling
language (DSML) to implement HE schemas, called
HomoLang. It is providing a graphical environment
with graphical building nodes that represent the HE
concepts to enable the building of HE schemas. A high
degree of abstraction and a decrease in grammatical
and runtime errors improved the expressiveness and
efficiency of implementation. Six security tests for
security analysis were provided. The efficiency of the
submitted language was evaluated using four
subjective metrics. This paper provides a detailed
explanation of the attributes, evaluation details, and
design of the submitted HomoLang.

Keywords – Asymmetric cipher, homomorphic
encryption, model-driven engineering, graphical
modelling language, meta-model.

DOI: 10.18421/TEM133-56
39TUhttps://doi.org/10.18421/TEM133-56 U39T

Corresponding author: Samar A. Qassir,
Affiliation: Department of Computer Science, College of
Science, Mustansiriyah University, Baghdad, Iraq
Email: 39TUsamarqassir@uomustansiriyah.edu.iq U39T

Received: 25 April 2024.
Revised: 18 June 2024.
Accepted: 09 August 2024.
Published: 27 August 2024.

© 2024 Samar Amil Qassir; published by
UIKTEN. This work is licensed under the Creative
Commons Attribution-NonCommercial-NoDerivs 4.0
License.

 The article is published with Open Access at
Uhttps://www.temjournal.com/

1. Introduction

Over the previous several years, there has been a
significant increase in the security requirements for
algorithms and data. Technology has grown so
rapidly that it has made it possible for a wide range
of attacks against technological gadgets and digital
commodities. There are several options for safely
accessing and storing data, including secure data
encryption. When one is asked to calculate (publicly)
with encrypted data or to change functions so that
they may still be executed while maintaining our
privacy, the issue gets more complicated.
Homomorphic encryption, or HE, can be applied in
this situation [1]. In recent years, HE has
demonstrated increased performance and practicality
in several real-world applications, including as
database search, cloud computing, and machine
learning [4]. The creation, drafting, and
implementation of effective software that safely
incorporates HE, however, continues to be a
significant practical problem. Creating programs that
are useful and meaningful from atomic HE
operations requires a high level of expertise.
Unfortunately, most programmers are not privy to
this information. It is also impractical to expect
production programmers to pick up the sophisticated
cryptographic expertise needed to implement HE [5].
Different HE schemes have different computing
capacities; there are three different kinds of current
HE constructions: partial HE, leveled HE, and fully
HE. If a cryptosystem has multiplicative or additive
homomorphism qualities, but not both, it is said to be
PHE. On the other hand, addition and multiplication
are permitted in the encrypted domain with LHE. To
provide security, random noise is introduced to
encrypted data in leveled homomorphic encryption
methods, which rely on the learning with errors
(LWE) or ring-learning with errors (RLWE) issue
[6], [7]. The final version of HE, known as FHE,
permits infinite addition and multiplication on
encrypted data. Figure 1 provides an explanation of
the typical HE structure [8].

mailto:samarqassir@uomustansiriyah.edu.iq
https://www.temjournal.com/
https://doi.org/10.18421/TEM133-56

TEM Journal. Volume 13, Issue 3, pages 2285-2296, ISSN 2217-8309, DOI: 10.18421/TEM133-56, August 2024.

2286 TEM Journal – Volume 13 / Number 3 / 2024.

In this paper, the focusing is on partial HE, which
allow either additive or multiplicative homomorphic
operations. Programmers using, HE face significant
challenges that must be overcome for correct,
efficient, and secure computation. One of the main
problems with HE is that designing programs that are
useful and meaningful are made from atomic HE
processes, which requires a great deal of specialist
knowledge. To overcome this obstacle, enhance the
implementation efficiency in addition, improve the
developer friendliness of HE, this paper present
HomoLang. It is a graphical modelling language,
provides a graphical environment for developing HE
schemas utilizing each of Java programming
language, and the Eclipse Modelling Framework
(EMF) [9], [10]. These techniques are based on
Domain-Specific Modelling Language (DSML) and
Model-Driven Development (MDD) approaches
[11]. The six contributions that HomoLang makes are
as follows: Firstly, automating the PHE encryption
and decryption processes by providing graphical
building nodes for each concept in HE; it is
managing the encoding of input and output data. It
enables users to construct one or more PHE schemas
in the same workspace. Second, the submitted DSML
HomoLang offers an interactive visualization
environment with a graphical user interface (GUI)
that allows drag-and-drop functionality. It allows the
users to select parameters for PHE schema, which is
usually done by a HE specialist, and gives them
various options for configuring and rearranging the
PHE structure. Thirdly, there are no runtime issues,
such as incorrect entries, in the HomoLang. Fourthly,
the HomoLang language was developed to be free of
the grammatical faults that happen in GPPL because
of depending DSML approach and graphic concrete
syntax. Fifthly, it is reducing the GPPLs'
programming complexity by makes scaling and
extension possible with little time and effort
expended. Finally, it provides six security tests to
assess the degree of security of the HE schema. As a
result, HomoLang increases the flexibility and
usability of HE for programmers.

This paper's remaining sections are organized as
follows: Related work on DSMLs is covered in
Section 2, while Section 3 presents the design of
HomoLang. The language's implantation and
semantics are given in Section 4. The evaluation
findings are reported in Section 5, and the paper's
conclusion and recommendations for more study are
provided in Section 6.

Figure 1. The typical HE structure [7]

2. Related Work

Programmers may build code for a wide range of

application domains and in any field by using GPPL.
However, every GPPL has unique challenges; some
are sensitive to capital, tiny, or space characters [12].
The design of a program is a real challenge; even a
little program may need to have several variables,
procedures, functions, classes, objects, and so on
named. Therefore, before attempting to create the
code, find and fix all of the flaws, and put the
program into action, a novice programmer must first
become familiar with the syntax of that GPPL [13].

DSML approach provides a number of advantages
over GPPL when it comes to expressing a certain
domain. One benefit is that it offers more
abstractions for the target domain, increasing
production and raising the standard of the
development process [14], [15]. Recently, several
research disciplines have given attention to the
design and use of DSML [16], [18], [19], [20]. These
are some examples of study areas that have
developed and used DSML to solve particular
problems and other diverse application sectors.

Crockett et al. [21] in order to streamline and
expedite the application of FHE, this work provide
Alchemy, a textural DSML with internal
implementation based on the Haskell language.
Without requiring the programmer to have any
particular understanding of FHE, Alchemy assembles
"in-the-clear" calculations on plaintexts into
matching homomorphic computations on cipher
texts. The suggested language restriction had to be
that the compiler generates keys and "key-switching
hints," automatically selects the majority of the
parameters by statistically inferring cipher text noise
rates, and schedules necessary cipher text
"maintenance" operations without allowing the user
to test his selections.

Qassir et al. [22] developed a modelling language
called BCLang, which is supported as a graphical
modelling design for block cipher types. BCLang's
higher abstraction level has the potential to reduce
complexity. Software development performance may
be enhanced by raising the level of abstraction and
automatically producing artifacts. Reducing the
possibility of runtime and language mistakes can
boost efficiency.

TEM Journal. Volume 13, Issue 3, pages 2285-2296, ISSN 2217-8309, DOI: 10.18421/TEM133-56, August 2024.

TEM Journal – Volume 13 / Number 3 / 2024. 2287

The development of the abstract and concrete
syntax, in addition to semantics of BCLang is based
on the process of constructing a metamodel that
permits the construction of valid block cipher
models. Performance analysis, fifty tests of statistical
analysis for randomness analysis, and two
keystream-generating techniques were offered. Based
on the crucial subjective indicators unique to
graphical DSML evaluation, the offered language
was assessed. They used three common block ciphers
algorithms as case studies. The three primary inner
structures of the block cipher type were created by
the work detailed in this paper, which is helpful in
enabling the production of various internal structure
cipher types.

Marah et al. [23] proposed a DSML known as
DSML4TinyOS for developing the tiny operating
system that is used by wireless sensor networks. The
proposed language is based on model-driven
engineering MDE methodology, which defines the
language's syntax and model transformations that
apply between input and target models. There are
two roles of RTE. The first is to provide a forward
engineering process for Tiny OS applications.
Reverse engineering (RE) technologies in the second
part of the RTE enable software models to be
retrieved from an existing Tiny OS application. To
illustrate the usage of DSML4TinyOS and how it
boosts productivity, a case study was covered. This
case study shows how to utilize DSML4TinyOS to
achieve synchronization between TinyOS models
and the related code. The proposed language and the
associated IDE may be used by both inexperienced
and seasoned Tiny OS application developers.

Giovanni and Gerardo [24] for the purpose of
creating both software and hardware cryptography
systems, have put out a texturing DSML. It was
developed as an internal language using the popular
Python GPPL as a foundation. Its purpose is to
provide compact support for native constructions and
the representation of algebraic structures like fields,
rings, and groups. The goal was to provide an easier
transition between the phases of designing the
cryptographic algorithm and implementing it on the
target platform. The Blowfish block cipher technique
was used as a case study to demonstrate the
flexibility and increased abstraction of the suggested
DSL. In comparison to the written C language, it had
less code lines when it was resubmitted.

Ladeira et al. [3] have presented the RoBMEX
technique, which consists of three complimentary
DSMLs, in an attempt to minimize the work required
in the present open source technologies for the design
and implementation of drone behaviors of ROS and
MAVLink. They have limits in addition to their
degree of modularity and reusability, particularly in
terms of the time and effort required for non-experts
to acquire the skills required to utilize them for their
intended purposes. ROSProML, a DSML created for
algorithm experts, can model the process of
transforming input signals into the desired outputs
using basic operations, function calls, comparisons,
and logic blocks. ROSModL, the framework that was
submitted, is the foundation for being able to
describe the structure of a general ROS system and
each of its execution nodes. Using ROSMiLan, the
DSML in charge of mission design, the link between
execution nodes may be created by providing a non-
expert end-user with a more straightforward language
that does not require any knowledge of drone
technology. A variation of ROSModL that is based
on the current system MAVROS was created as an
example. Additionally, two instances of ROSProML
were created using fictitious jobs, and the majority of
their C/C++ code was generated automatically.
Python is one of the other targets for the code
creation in addition to C/C++.

3. Design of HomoLang DSML

A thorough description of the submitted language's

design is given in this section. 1) The abstract syntax
defined by the meta-model serves as the foundational
structure upon which the graphical representation of
building nodes within the HomoLang language is
built. Abstract syntax is based on HE fundamental
concepts and the rules guiding their encryption and
decryption operations. 2) Significant icons that
specify the HE fundamentals are used to establish the
concrete syntax [14], [15]. Figure 2 shows the front-
end compiler design of the graphical DSML. The
seventeen classes that comprise the meta-model of
the HomoLang are connected via an association
connection, directed association relation, or
inheritance, as Figure 3 shows. A detailed description
of each of these classes can be found below:

TEM Journal. Volume 13, Issue 3, pages 2285-2296, ISSN 2217-8309, DOI: 10.18421/TEM133-56, August 2024.

2288 TEM Journal – Volume 13 / Number 3 / 2024.

Figure 2. Front-end compiler design of DSML [14]

3.1. The Abstract Syntax

The abstract syntax of a DSML describes the
fundamental concepts of the application domain and
how they relate to one another without considering
meaning. The abstract syntax for MDD Ecore, a
graphical DSML implemented on the Eclipse
platform, specifies how schemas are constructed in
the HE domain and is constructed using a meta-
model. As a result, the classes (meta-building nodes)
that make up the language meta-model that was
supplied are covered in this paragraph. In Figure 3,
seventeen classes are explained, and their
relationships are resubmitted by the connections
between them, representing a single concept of the
HE domain principles per class; the GUI of
HomoLang is shown in Figure 4. The following
describes each of these classes:
• Originaltext Class: The basic operation of the

HE process will begin with Originaltext building
node; The original input text is accepted by this
class, which encodes it into a byte array before
converting each byte into a bit array. After
encoding in transformation format Unicode
character encoding method-8 (UTF-8), the data
is changed to an integer number in order to get it
ready for HE process.

• EncDecPro Class: The second class is
EncDecPro, which performs modular
exponentiation operations for encryption and
decryption HE processes.

It is related to Originaltext, Decodedtext,
PublicK, and PrivateK, classes with directed
association relations.

• Server Class: it is the third class; this class
received the result of the HE encryption process
as an integer number and used it for the
decryption process.

• Decodedtext Class: it is the fourth class, the
final building node in the HE schema that
receives the result of decryption as an integer
number and converts it to clear text based on
UTF-8 decoding. It is related to EncDecPro
building node with directed association relation.

• PublicK Class: in this class, the key is computed
based on the values of two primes P and Q. It is
related to the EncDecPro class and Privatek
classes based on directed association relations
and to the SelectPQ and SelectP classes based
on association relations.

• PrivateK Class: in this class, the key is
computed based on the PublicK class. It is
related to the EncDecPro class and the PublicK
class based on the directed association
relationship.

• SelectP Class: in this class, the ability to
generate one large prime based on the given
length of bits is provided. It is related to PublicK
class with directed association relation.

• SelectPQ Class: it is used to generate two large
prime numbers based on the given length of bits.
It is related to PublicK class with directed
association relation.

• Factorization Class: This class of security tests
applies mathematical operations to determine
whether the modulus number is sufficiently
large; to withstand an attempt to factor it in an
acceptable amount of time, hence preventing a
factorization attack. There should be more than
300 decimals for the n that is calculated by (P *
Q). It only has a directed association link with
the Server class.

• EncryptionExponent Class: It is another type of
security test, which determines whether or not
encryption exponents are vulnerable to
encryption exponent attacks. It is advised to use
a prime that is somewhat near to this number,
(65537). It only has a directed association link
with the Server class.

• Plaintext Class: the homomorphic encryption
and decryption operation carried out on an
integer number in the same period. This test
does two different kinds of checks. Firstly, it
determines if the original text is short or not. To
prevent this kind of attack, random bits must be
inserted at the beginning and conclusion of the
brief messages.

TEM Journal. Volume 13, Issue 3, pages 2285-2296, ISSN 2217-8309, DOI: 10.18421/TEM133-56, August 2024.

TEM Journal – Volume 13 / Number 3 / 2024. 2289

The second verification focuses on cycling:
determining if the ciphertext is a variation of the
original plaintext. It only has a directed
association link with the server class.

• Modulus Class: The produced module n is
compared to a common modulus in this security
test. This kind of attack must be prevented by
not sharing the modulus. Every entity must
determine its own modulus. It only has a
directed association link with the Server class.

• Timing Class: The submitted language for this
security test is based on a fast-exponential
method, which checks the relevant bit in the
private exponent d to determine whether or not
it satisfies the assumption. It only has a directed
association link with the server class.

• DecryptionExponent Class: This type of security
test determines whether or not there is a
possibility of an attack on the decryption
exponent. It verifies whether private exponent <
1/3n1/4. It only has a directed association link
with the Server class.

• Mult Class: This class does a homomorphic
multiplication operation between two
ciphertexts. Based on association relations, it
configures two EncDecPro Classes of two homo
cipher schemas.

• Add Class: The addition homomorphic
operation between two ciphertexts is carried out
by this class. Based on association relations, it is
configuring two EncDecPro classes of two
homo cipher schemas.

Figure 3. The Meta-model of the submitted DSML HomoLang language

TEM Journal. Volume 13, Issue 3, pages 2285-2296, ISSN 2217-8309, DOI: 10.18421/TEM133-56, August 2024.

2290 TEM Journal – Volume 13 / Number 3 / 2024.

Figure 4. The GUI of submitted DSML HomoLang language

3.2. The Concrete Syntax

While abstract syntax specification is established
by meta-building nodes, concrete syntax (CS)
definition provides a mapping between meta-building
nodes and their representations for the HE schema.
CS is the set of symbols used in the construction and
presentation of the HE schema. CS comes in two
primary kinds: graphical and textual [14].

First kind is used in the language that was given.
For the meta-building nodes, a set of suitable

iconography from the homomorphic domain was
chosen. The graphical notations for the abstract
syntax meta-building nodes were specified before the
geometric characteristics and descriptions of the
icons were established using the Eclipse platform.
The artifacts achieved are the graphical editor within
which cryptographer developers can configure HE
schemas. Tables 1, 2, 3, and 4 list the CS used for the
submitted HomoLang, respectively.

 Table 1. Encryption tools section

Building Node It
Name

Its Input and output

OriginlText It receives the input data and is linked to the
EncDecPro building node only.

Server It receives a link from an EncDecPro
building node and is linked to the

EncDecPro building node.

DecodedText It receives a link from the EncDecPro
building node and displays the decoded

results.

EncDecPro It receives a link from the OriginText
building node and is linked to the Server

building node in the encryption process; it is
also linked to the DecodedText building

node for the decryption process.

TEM Journal. Volume 13, Issue 3, pages 2285-2296, ISSN 2217-8309, DOI: 10.18421/TEM133-56, August 2024.

TEM Journal – Volume 13 / Number 3 / 2024. 2291

Table 2. Key Generation Tools

Building Node It
Name

Its Input and output

PublicK It receives a link from the SelectPQ building
node and is linked to each of the EncDecPro

and PrivateK building nodes for the encryption
process.

PrivateK It receives a link from the publick building
node and is linked to the EncDecPro building

node for the decryption process.

SelectPQ It receives the number of bits for two numbers
and is linked to the PublicK building node.

SelectP It receives the number of bits and is linked to
the PublicK building node.

Table 3. HE Functions

Building Node It
Name

Its Input and output

HEMulti It receives a link from the EncDecPro
building node of the first HE schema and
is linked to the EncDecPro building node

of the second HE schema in the
workspace.

HEAdd It receives a link from the EncDecPro
building node of the first HE schema and
is linked to the EncDecPro building node

of the second HE schema in the
workspace.

Table 4. Security Tests

Building Node It
Name

Its Input and output

Plaintext It receives a link from the Server building
node and display the testing results.

Factorization It receives a link from the Server building
node and display the testing results.

Decryption Exponent It receives a link from the Server building
node and display the testing results.

Timing It receives a link from the Server building
node and display the testing results.

Modulus It receives a link from the Server building
node and display the testing results.

Encryption Exponent It receives a link from the Server building
node and display the testing results.

TEM Journal. Volume 13, Issue 3, pages 2285-2296, ISSN 2217-8309, DOI: 10.18421/TEM133-56, August 2024.

2292 TEM Journal – Volume 13 / Number 3 / 2024.

4. Semantics and Implantation of HomoLang

The provision of concepts is one of the main issues

with language development. Just as crucial as the
syntax of concepts is their meaning. HomoLang is
built on static semantics based on constraint checks.
When a connection is made incorrectly or an
unapproved component is attempted to be hooked,
the language response either displays an error
message or takes the user back to the previous
workspace. The semantic is formed by determining
how to manage and alert users when there are
erroneous or missing links. Together, these
requirements comprise a valid meta-model that is
implemented with Ecore and a graphical HomoLang
DSML that is implemented using the Eclipse
platform.

These constraint checks that pertain to the meta-
model are explained as follows:

4.1. Condition Check on Class Number

Control the number of building nodes in the HE

schema. There should be just one "OriginalText" for
every schema of encryption.

4.2. Condition Check on the Number of Class

Relationships

There can only be a single connection between the

"OriginalText" and "EncDecPro" building nodes
since the meta-model has a one-to-one link that
controls the interactions between the building nodes.

4.3. Condition Check for Start and Finish Points

Handle the direction of the relationship to define

the start and finish building nodes of that HE schema.
Linking the "EncDecPro" and "Server" building
nodes before forming a connection with the
"OriginalText" building node is not practical.

4.4. Condition Check Inheritance Relation

Manage the inheritance links that have been

specified. In a HE schema, of course, every property
and relationship of a superclass is also present in its
subclass.

4.5. Condition Check Relation Direction

Manage the association direction connection as

specified in the language that was submitted.
Naturally, a class in the meta-model only ever makes
use of another class in one direction.

As seen in Figure 5, an incorrect connection or
invalid input results in either a step-backward
workspace refresh or the display of an error message.

Figure 5. The response for an invalid input

5. Case Study

This section will provide a case study that

demonstrates how the submitted language executes
homomorphic features based on the RSA asymmetric
cipher method [2]. The RSA algorithm definition
uses two exponents: e and d, which stand for the
public and private keys, respectively. As seen in
Figure 6, the SelectPQ building node generates these
two large primes by figuring out how many bits they
require.

Figure 6. Dialog box of SelectPQ building node

The encryption method computes the equivalent
ciphertext (ci), ci = msge mod n, provided as input a
message msg from the clear text Zn. Without
knowing p and q, it is impossible to link this number,
ci ∈ Zn, to the original message. The OriginalText,
PublicK, and Server building nodes are connected to
by the EncDecPro building node using the submitted
HomoLang. In order to calculate the set of keys
based on the two large primes that may be obtained
by utilizing the SelectPQ building node for the
encryption process, the PublicK also establishes a
connection with the SelectPQ building node. The
user enters original content that conveys a clear
message. The EncDecPro building node, which uses
the public key value to execute fast_exponentiation
on a clear message and return the ciphertext that the
Server building node had got, is configured by the
user to perform encryption operations. The formula
for decryption is msg = ci d mod n, whereby the
private key (d, n) and the text of the cipher (ci) are
sent into it as inputs. This is the original message in
the language that was sent; the EncDecPro building
node connects to the Server, PrivateK, and
Decodedtext building nodes. This is because d is the
inverse of e in Zn. In order to get the original input
for the decryption procedure, fast_exponentiation is
being applied on the ciphertext and PrivateK.

TEM Journal. Volume 13, Issue 3, pages 2285-2296, ISSN 2217-8309, DOI: 10.18421/TEM133-56, August 2024.

TEM Journal – Volume 13 / Number 3 / 2024. 2293

Without ever having to decode it, the homomorphic
characteristic of RSA demonstrates the following
Enc (msg1 ∗ msg2) immediately. RSA algorithm
supports multiplicative over homomorphic
encryption. Assume two messages msg1 and msg2,
ci1 = msg1

e mod n, ci2 = msg2
e mod n. The RSA

algorithm's HE characteristic is (ci1 * ci2) = (msg1
e *

msg2
e mod n). By the submitted language, the

HEMulti building node that perform this
homomorphic property is connected to EncDecPro
building nodes of the two HE schemas; Figure 7
provides an explanation of the PHE encryption and
decryption schemas implemented by HomoLang.

Figure 7. The PHE encryption and decryption schemas implemented by HomoLang

6. Evaluation

Based on objective question metric paradigm

(OQMP) [17], a qualitative analysis of subjective
criteria; four OQMP was carried out to assess the the
front-end compiler design of the submitted
HomoLang. The four criteria that were employed
were: graphical nature; paradigm assistance and
functionality; scalability; and, lastly, usability and
ease of understanding. These criteria are delineated
in Figures 8, 9, 10, and 11, respectively, and each of
these needs is evaluated using sub-metrics of more
specific metrics. The graphical nature requirements
concentrate on the language's ability to represent
concepts and relations visually. This criterion uses
the following metrics: clear usage completeness,
illustration kind, graphics utilization, efficient use of
space, and color effectiveness. Another criterion that
assesses the language's capacity to handle the
characteristics required for modelling HE schemas is
paradigm assistance and functionality. Support for a
paradigm, the domain of support, flawless
functioning, and naturalness of implementation are
among the metrics for this criteria. The language's

capacity to manage big, intricate systems is the focus
of the scalability requirement. This criterion's metrics
include the capacity to describe complicated systems,
support for various modelling methods, and support
for various abstraction levels. The degree to which
software can be used by particular users to achieve
quantifiable goals in a quantifiable context of usage
with efficacy, efficiency, and satisfaction, as well as
the usability and easy-to-understand criteria takes
user enjoyment, the beginner friendliness, and the
clarity of the building nodes and their relations into
account. It evaluates how simple it is to comprehend
and utilize HomoLang.

All things considered, the examination of these
parameters suggests that HomoLang is a graphical
DSML that shows promise for HE schemas.
HomoLang supports the addition and multiplication
operations characteristics of HE schemas and
provides an accurate and consistent graphical
representation of concepts and their relationships. All
users, regardless of experience level, may easily
understand and utilize it, and it solely supports the
graphical modelling paradigm.

TEM Journal. Volume 13, Issue 3, pages 2285-2296, ISSN 2217-8309, DOI: 10.18421/TEM133-56, August 2024.

2294 TEM Journal – Volume 13 / Number 3 / 2024.

It can also handle huge and complicated systems
since it is scalable and efficient. The experiment was
carried out by students in the science college of
Mustansiriyah University's fourth cyber security
computer science course, who also assessed the
usefulness and effectiveness of the provided
language. 39 of the 46 were able to reliably and
efficiently configure HE schemas. Positive post-
study ratings were given by participants to
HomoLang, particularly regarding its use as a
graphical modelling language for the design and
analysis of HE schemas. Additionally, using and
learning HomoLang was easy. The submitted

language received a score of about 90% on the
graphic nature scale since it fully utilized icons to
convey HE principles, made suitable use of color,
and made the best use of the available workspace.
Furthermore, it was discovered that the usability,
ease of understanding, and ease of understanding
ratios were all the same. A total of about 10% were
acquired for each of the capabilities and paradigm aid
measures since the OOP paradigm was the only one
employed and offered, and because the capabilities
evaluation only required the representation of HE
principles. The evaluation and rates of these four
metrics are displayed in Figures 8–11, respectively:

Figure 8. The OQMP for graphical properties

Figure 9. The OQMP for paradigm assistance and functionality

TEM Journal. Volume 13, Issue 3, pages 2285-2296, ISSN 2217-8309, DOI: 10.18421/TEM133-56, August 2024.

TEM Journal – Volume 13 / Number 3 / 2024. 2295

Figure 10. The OQMP for scalability

Figure 11. The OQMP for usability and ease of understood

7. Conclusion

HomoLang, the graphical DSML language that was
submitted, has many advantages for the creation of
HE schemas. HomoLang provides a high degree of
abstraction and a flexible and efficient way to do
tasks in the HE domain. It is easy for a variety of
users to use and comprehend because of its highly
expressive GUI and drag-and-drop features. Along
with security tests: factorization, encryption
exponent, decryption exponent, plaintext, modulus,
and timing, all in a graphical manner, HomoLang
also includes the essential building blocks of
encryption and decryption processes: OriginalText,
DecodedText, EncDecPro, and Server.

The key generation building nodes are: Publick,
PrivateK, SelectPQ, and selectp. The HE has two
main operations: addition and multiplication. This
facilitates the modelling process and helps hide the
implementation specifics. The submitted language's
capability to alter and reconfigure the HE schema as
it is being executed is another essential attribute. All
things considered, HomoLang offers a productive
and adaptable method for representing and evaluating
HE schemas, making it an important resource for
scholars and industry professionals. HomoLang can
be expanded for use in security testing and the
construction of nodes for alternative homomorphic
types in future research.

TEM Journal. Volume 13, Issue 3, pages 2285-2296, ISSN 2217-8309, DOI: 10.18421/TEM133-56, August 2024.

2296 TEM Journal – Volume 13 / Number 3 / 2024.

Acknowledgements

The author would like to thank Mustansiriyah

University, Baghdad-Iraq for its support in the present
work.

References:

[1]. Abdullah, S. M., & Abduljaleel, I. Q. (2021). Speech
Encryption Technique using S-box based on Multi
Chaotic Maps. TEM Journal, 10(3), 1429.

[2]. Geetha, V., Singh, P., Patil, N. S., & Reddy, S. S. S.
(2023). Introduction to Cryptography and Network
Security. AG PUBLISHING HOUSE (AGPH Books).

[3]. Ladeira, M., Ouhammou, Y., & Grolleau, E. (2021).
RoBMEX: ROS-based modelling framework for end-
users and experts. Journal of Systems
Architecture, 117, 102089.

[4]. Alloghani, M., Alani, M. M., Al-Jumeily, D., Baker,
T., Mustafina, J., Hussain, A., & Aljaaf, A. J. (2019).
A systematic review on the status and progress of
homomorphic encryption technologies. Journal of
Information Security and Applications, 48, 102362.

[5]. Archer, D. W., Calderón Trilla, J. M., Dagit, J.,
Malozemoff, A., Polyakov, Y., Rohloff, K., & Ryan,
G. (2019, November). Ramparts: A programmer-
friendly system for building homomorphic encryption
applications. In Proceedings of the 7th acm workshop
on encrypted computing & applied homomorphic
cryptography, 57-68.

[6]. Sharma, D. K., Singh, N. C., Noola, D. A., Doss, A.
N., & Sivakumar, J. (2022). A review on various
cryptographic techniques & algorithms. Materials
Today: Proceedings, 51, 104-109.

[7]. Alaya, B., Laouamer, L., & Msilini, N. (2020).
Homomorphic encryption systems statement: Trends
and challenges. Computer Science Review, 36,
100235.

[8]. Aslett, L. J., Esperança, P. M., & Holmes, C. C.
(2015). A review of homomorphic encryption and
software tools for encrypted statistical machine
learning. arXiv preprint arXiv:1508.06574.

[9]. Martínez-Lasaca, F., Díez, P., Guerra, E., & de Lara, J.
(2023). Dandelion: A scalable, cloud-based graphical
language workbench for industrial low-code
development. Journal of Computer Languages, 76,
101217.

[10]. Jäger, S., Maschotta, R., Jungebloud, T., Wichmann,
A., & Zimmermann, A. (2016, April). Creation of
domain-specific languages for executable system
models with the eclipse modeling project. In 2016
Annual IEEE Systems Conference (SysCon),1-8. IEEE

[11]. Arslan, S., & Kardas, G. (2020). DSML4DT: A
domain-specific modeling language for device tree
software. Computers in Industry, 115, 103179.

[12]. Steffen, B., Gossen, F., Naujokat, S., & Margaria, T.
(2019). Language-driven engineering: from general-
purpose to purpose-specific languages. Computing
and Software Science: State of the Art and
Perspectives, 311-344.

[13]. Kosar, T., Gaberc, S., Carver, J. C., & Mernik, M.
(2018). Program comprehension of domain-specific
and general-purpose languages: replication of a family
of experiments using integrated development
environments. Empirical Software Engineering, 23,
2734-2763.

[14]. Shen, L., Chen, X., Liu, R., Wang, H., & Ji, G.
(2021). Domain-specific language techniques for
visual computing: a comprehensive study. Archives of
Computational Methods in Engineering, 28, 3113-
3134.

[15]. Boubeta-Puig, J., Ortiz, G., & Medina-Bulo, I. (2015).
ModeL4CEP: Graphical domain-specific modeling
languages for CEP domains and event patterns. Expert
Systems with Applications, 42(21), 8095-8110.

[16]. Méndez-Acuña, D., Galindo, J. A., Degueule, T.,
Combemale, B., & Baudry, B. (2016). Leveraging
software product lines engineering in the development
of external dsls: A systematic literature
review. Computer Languages, Systems &
Structures, 46, 206-235

[17]. Kiper, J. D., Howard, E., & Ames, C. (1997). Criteria
for evaluation of visual programming
languages. Journal of Visual Languages &
Computing, 8(2), 175-192.

[18]. Qassir, S. A., Gaata, M. T., & Sadiq, A. T. (2023).
SCLang: Graphical Domain-Specific Modeling
Language for Stream Cipher. Cybernetics and
Information Technologies, 23(2), 54-71

[19]. Alaca, O. F., Tezel, B. T., Challenger, M., Goulão,
M., Amaral, V., & Kardas, G. (2021). AgentDSM-
Eval: A framework for the evaluation of domain-
specific modeling languages for multi-agent
systems. Computer Standards & Interfaces, 76,
103513.

[20]. Vještica, M., Dimitrieski, V., Pisarić, M., Kordić, S.,
Ristić, S., & Luković, I. (2021). Multi-level
production process modeling language. Journal of
Computer Languages, 66, 101053

[21]. Crockett, E., Peikert, C., & Sharp, C. (2018).
Alchemy: A language and compiler for homomorphic
encryption made easy. In Proceedings of the 2018
ACM SIGSAC Conference on Computer and
Communications Security, 1020-1037.

[22]. Qassir, S. A., Gaata, M. T., Sadiq, A. T., & Al
Alawy, F. (2023). Designing a Graphical Domain-
Specific Modeling Language for Efficient Block
Cipher Configuration: BCLang. TEM Journal, 12(4),
2038.

[23]. Marah, H., Kardas, G., & Challenger, M. (2021).
Model-driven round-trip engineering for TinyOS-
based WSN applications. Journal of Computer
Languages, 65, 101051.

[24]. Agosta, G., & Pelosi, G. (2007). A Domain Specific
Language for Cryptography. In FDL, 159-164.

	Figure 1. The typical HE structure [7]
	While abstract syntax specification is established by meta-building nodes, concrete syntax (CS) definition provides a mapping between meta-building nodes and their representations for the HE schema. CS is the set of symbols used in the construction an...
	First kind is used in the language that was given. For the meta-building nodes, a set of suitable iconography from the homomorphic domain was chosen. The graphical notations for the abstract syntax meta-building nodes were specified before the geometr...
	Table 1. Encryption tools section
	6. Evaluation

