
TEM Journal. Volume 13, Issue 3, pages 1881-1888, ISSN 2217-8309, DOI: 10.18421/TEM133-16, August 2024.

TEM Journal – Volume 13 / Number 3 / 2024. 1881

In-Memory Perturbation Optimizer Algorithm
for Data Privacy on an Anonymous Server

Jaroonsak Chaiprasitjinda P

1
P, Chetneti Srisaan P

 1

P

1
PSchool of Digital Innovation Technology, Rangsit University, Pathumthani, Thailand

Abstract – The emergence of data controllers as a
novel term within data privacy laws, such as the
General Data Protection Regulation (GDPR), has
ushered in significant responsibilities. Stricter
regulations prohibit the intentional sharing of personal
records on the Internet. This research focuses on
safeguarding data privacy, specifically in ubiquitous
tabular formats across numerous websites. A novel
approach employing a cell-key perturbation method is
proposed, demonstrating efficacy in tabular formats.
Addressing this challenge, we introduce the in-memory
perturbation optimizer (IMPO) algorithm as a novel
solution. The primary objective is to create and
develop a platform that secures all personal data
through a dispenser server, operating in near real-
time. Also, it emphasizes the importance of balancing
data utility with privacy protection to maintain the
integrity and quality of the dataset. Experimental
results reveal that the IMPO algorithm outperforms in
terms of data accuracy. Additionally, the algorithm
introduces an average time delay of 2 seconds, ensuring
optimal time service for real-time datasets.

Keywords – Data anonymization, privacy-preserving,
outliers, privacy, violation.

DOI: 10.18421/TEM133-16
34TUhttps://doi.org/10.18421/TEM133-16 U34T

Corresponding author: Jaroonsak Chaiprasitjinda,
School of Digital Innovation Technology,
Rangsit University, Pathumthani, Thailand
Email: 34TUjaroonsak.c65@rsu.ac.th U34T

Received: 05 March 2024.
Revised: 17 June 2024.
Accepted: 01 July 2024.
Published: 27 August 2024.

© 2024 Jaroonsak Chaiprasitjinda &
Chetneti Srisaan; published by UIKTEN. This work is
licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 4.0 License.

The article is published with Open Access at
Uhttps://www.temjournal.com/

1. Introduction

In 2018, Thailand introduced its inaugural data
privacy law, the Personal Data Protection Act
(PDPA), which subsequently became enforceable in
2022. The PDPA mandates that all data service
industries, including the government sector, uphold
the secure preservation of personal data. The terms
"data controller" and "data processor" were initially
defined by the GDPR laws in 2016 and applicable in
various organizations. Due to the inherent nature of
data ownership, there is a reluctance to disclose
individual personal records.

According to legal provisions, organizations are
prohibited from sharing personal records on the
Internet, particularly sensitive data such as medical
records and racial information. While most internet
data is anonymized, there exists a distinction in
protecting a user's personal data, allowing for
modification through random perturbing methods
like the cell-key perturbation method [5].

The primary challenge in data privacy lies in data
usage breaches, with numerous instances of
intentionally illegal data usage by hackers and
marketing firms. Our platform aims to prevent
unintentional data breaches through the safeguarding
of unpublished datasets and protection against
intentional hacking techniques such as
reidentification and different methods.

Although attackers may employ various tactics to
deceive users directly, such approaches are
considered less worthwhile in contemporary times.
Recent trends in hacking indicate a shift towards
fewer attacks with greater impact, particularly within
data centers. Despite advancements in hardware
technology capable of processing substantial data
transactions, a bottleneck in processing occurs due to
central databases designed for regular queries rather
than aggregated data queries, such as the group-by-
command.

The random perturbing method necessitates a
basic group-by function to identify potential risk
records. The proposed IMPO platform comprises an
IMPO computation server and an IMPO dispenser, as
illustrated in Figure 1.

mailto:jaroonsak.c65@rsu.ac.th
https://www.temjournal.com/
https://doi.org/10.18421/TEM133-16

TEM Journal. Volume 13, Issue 3, pages 1881-1888, ISSN 2217-8309, DOI: 10.18421/TEM133-16, August 2024.

1882 TEM Journal – Volume 13 / Number 3 / 2024.

Figure 1. IMPO platform

Figure 1 depicts our newly designed architecture
for personalized online anonymized data. Each user
receives identical results when querying the same
dataset, ensuring compliance with GDPR laws where
data controllers are entities responsible for holding
other individuals' personal data. In our scenario, the
data controller unit comprises two servers and one
database, as illustrated in Figure 1.

Netflix previously anonymized a dataset by
eliminating all personal identification and replacing it
with random identification. Despite this
anonymization effort, researchers were able to
combine this dataset with an IMDB dataset
containing names, linking entries, and successfully
de-anonymize individuals [3]. The terms "de-
identified data" and "quasi-identifier" were
introduced by L. Sweeney [4]. A de-identified data
dataset involves removing explicit identifiers while
still allowing references back to a single record, as
shown in Figure 2. On the other hand, a quasi-
identifier is a group of non-direct identifiers that,
when combined, can uniquely identify a personal
record.

Figure 2. Deidentified data

Figure 2 illustrates an instance of de-identified
data, where only one male graduate from a
professional school within a specific age range earns
an annual income exceeding $50,000. The "count"
field denotes the frequency of each corresponding
row. Figure 2 represents a dataset comprising 315
individuals, characterized by marital status,
education, and gender. There exists a potential
privacy risk, as hackers may attempt to identify
individuals by cross-referencing this data with
another dataset, employing a technique commonly
known as "reidentification."

Balancing data utility and privacy involves making
trade-offs. Achieving perfect data utility is
unattainable when datasets undergo extensive
modifications. The primary technique for
safeguarding privacy is k-anonymity which employs
the concepts of generalization and suppression to
alter the dataset before release [6]. Numerous
research papers indicate that k-anonymity involves
the permanent removal of direct identifiers and
modification of quasi-identifiers to compromise data
utility. Another recent approach is data perturbation,
which does not alter permanent attributes. In this
research, data perturbation aims to restrict access to
datasets or databases to only authorized users. While
not an encryption method, data perturbation
necessitates a decryption mechanism. The process
involves initially modifying and publishing the data,
then "decrypting" it back to its original form upon
reception.

The primary advantage of the cell-key perturbation
method lies in its ability to perturb data at a cell
level. This method allows the data controller to
introduce noise to specific records while retaining
traceability.

Web and database servers have long been the main
sources of data delivery to customers. Web pages or
websites often serve as common platforms for
distributing information in a tabular format. This
research opts for the cell-key perturbation method,
considering its suitability for tabular formats rather
than broader datasets. In the context of tabular format
services, another significant challenge is the differing
techniques.

TEM Journal. Volume 13, Issue 3, pages 1881-1888, ISSN 2217-8309, DOI: 10.18421/TEM133-16, August 2024.

TEM Journal – Volume 13 / Number 3 / 2024. 1883

Figure 3. Histogram of age attributes

Figure 3 presents a histogram depicting age

attributes with a skewed distribution and high
sensitivity. Additionally, a notable outlier is observed
within the age attributes, constituting a significant
percentage. Winkler [7] asserted in his research that
outliers in distributions can contribute to
reidentification problems. Addressing this issue is a
focal point of Section 4 in this paper.

1.1. Perturbation Method

The implementation of a cell-key perturbation

method necessitates the computation of tabular
structures, particularly in the context of
multidimensional tabular data. This method involves
creating a singular, perturbed large dataset from
which various distinct tables can be derived.
Multidimensional tabular data adopts a matrix
structure, requiring a high-speed computing
processor and a substantial memory capacity. The
number of dimensions contributes to the creation of a
larger memory space.

For example, consider the renowned adult dataset
sourced from the UCI machine learning repository,
containing census information from 42 countries. In
Figure 4, the dataset displays 73 unique values for
age, 42 for native country, and 2 for sex. The matrix
formed by these three attributes is of dimensions 73 x
42 x 2. Notably, the dataset encompasses nine
categorical attributes, including age, work class,
education, marital status, occupation, relationship,
race, sex, and native country. The total values
resulting from the Cartesian product of these nine
attributes amount to discrete values numbering
1,944,069,120.

Figure 4. The matrix of quasi-identifier attributes

Figure 4 illustrates an example of a matrix
containing three quasi-identifier attributes. In this
research paper, there are a total of nine distinct
categorical attributes designated as quasi-identifiers.
Our algorithm employs a memory-based matrix
construction approach, where all conceivable
combinations of the matrix are technically possible.
However, for this study, we specifically opt for the
inclusion of three attributes in each matrix, as
detailed in Section 3.1.

1.2. In-Memory Architecture

An in-memory database is a database that holds all

its data in the memory (RAM) of a server.
MongoDB, Redis, Memcached, Cassandra, and H2
are examples of commercial products in the market.

Besides, several freely available databases, such as
McObject, SQLite, and CSQL [19], [20], [21], [22],
provide in-memory capabilities. For this research,
eXtremeDB is selected as the HPC hybrid persistent
and in-memory database.

The structure of this paper is as follows: Section 1

is an introduction. Section 2 reviews previous
literature. Section 3 outlines the methodology
employed in this research. Section 4 presents the
experimental demonstrations. Finally, in Section 5,
the paper concludes by summarizing the experiment
and discussing the obtained results.

TEM Journal. Volume 13, Issue 3, pages 1881-1888, ISSN 2217-8309, DOI: 10.18421/TEM133-16, August 2024.

1884 TEM Journal – Volume 13 / Number 3 / 2024.

2. Literature Review

Privacy-preserving terminology was introduced
Agrawal and Srikant in 2000 [1], proposing the
addition of random transactions to perturb databases.
Dwork [2] highlighted differencing techniques as a
potential hacking method, emphasizing the risk of
revealing medical records when large queries are
combined with prior knowledge. Bell, and Koren [3]
demonstrated that reidentification techniques could
reveal original member records even after removing
obvious personal information from Netflix data
records.

Sweeney [4] conducted a linking attack involving
group health insurance, where she successfully
combined information from public voter registration
records to identify a significant portion of
individuals. In a notable instance, she managed to
uncover all the medical records of the governor of
Massachusetts, William Weld. She emphasized that a
combination of ZIP code, gender, and date of birth is
sufficient to identify most people in the U.S.A.,
prompting global data industries to prioritize
carefully protecting their content.

Winkler's [7] research pointed out that outliers in
synthetic data distributions may lead to
reidentifications, underscoring the importance of
addressing outliers.

Kabakus, A. T., & Kara, R. [8] conducted an
experiment that tested NoSQL and RDBMS in an in-
memory database to see who has better memory
management. The in-memory databases used in the
experiment were MongoDB, Redis, Memcached,
Cassandra, and H2. Experimental results show that
NoSQL outperforms RDBMS in all data operations,
even though RDBMS runs on an in-memory
database.

The UK Office for National Statistics
acknowledged the efficacy of cell-key perturbation in
protecting against disclosure risk in their open data
on previous censuses by Dove et al. [9]. Mivule [10]
advocated for data perturbation using noise addition
as a suitable methodology for safeguarding
confidentiality in published datasets.

Sarah Giessing and Reinhard Tent [11]
experimented with the cell-key perturbation method
on continuous variables using the τ-Argus and R
package cell-key software. The results show that an
extended version of this package can work well on
non-integer-valued data.

Bailie and Chien-Hung [12] showcased the
advantages of cell-key perturbation over differential
privacy, while Karwa et al. [13] proposed a new
method for safely sharing open datasets using graph
data and differential privacy.

Narayanan and Shmatikov [14] demonstrated that
even after removing personal identification from the
Netflix dataset, researchers could de-anonymize
individuals by linking it with an IMDb dataset.
Holohan et al. [15] presented the IBM Differential
Privacy Library, an open-source tool written in
Python.

Dankar and Emam [16] reviewed the application of
Laplace noise differential privacy in the healthcare
industry, emphasizing its suitability for sensitive data
with real numbers. Roth [17] explored predicate
queries and introduced the concept of distributional
privacy, highlighting tradeoffs for statistical queries
available both offline and online.

Nukrongsin and Srisa-An [18] demonstrated the
effectiveness of cell-key perturbation using a data-
swapping concept, where data is swapped per query
to return answers without modifying the original
data.

3. Methodology

This research endeavors to introduce the in-
memory concept for online computation in a web
server, necessitating sufficient memory capacity.

3.1. Proof of In-Memory Space for Matrix Calculation

Instead of employing the group-by function in the

database server, matrix computation is adopted in the
RAM to analyze a risk group, as discussed in Section
4. The initial step in this research is to provide
evidence of in-memory space adequacy for matrix
calculations. The study involves nine different
categorical attributes serving as quasi-identifiers.

To illustrate a matrix formation, we use a
crosstab() function in python to construct a matrix
starting from m=3 (figure5), m=4 (figure6), and m=5
(figure7).

3.1.1. Case 1: Three Quasi-Identifiers in One Matrix

Figure 5. Part of three quasi-identifier attributes matrix
(m=3)

TEM Journal. Volume 13, Issue 3, pages 1881-1888, ISSN 2217-8309, DOI: 10.18421/TEM133-16, August 2024.

TEM Journal – Volume 13 / Number 3 / 2024. 1885

Figure 5 shows a snapshot of the crosstab()
function and depicts the construction of a 3-
dimensional matrix to illustrate the construction of a
3-dimensional matrix involving three quasi-identifier
attributes, resulting in a matrix with a size of 73 rows
× 10 columns. The unique record counts for sex,
race, and age are 2, 5, and 73, respectively. This
specific case is denoted as m=3

In the scenario of m=3, the largest matrix
dimensions are 42 (native-country), 73 (age), and 16
(education), containing a total of 40,059 integer
numbers. The size of this matrix in memory at a
given time per query is 392,448 bits (40,056 × 8).

Considering there are n(93)=168 queries from nine
different quasi-identifiers, the total memory size
required for one round of computation is 66 Mbits
(168 × 392,448 bits) or approximately 9 Mbytes per
round, continuously stored in memory. With this
size, the computation can effectively be performed
online.

3.1.2. Case 2: Four Quasi-Identifiers in One Matrix

Figure 6. The snapshot of crosstab() function in Python
creates a matrix (m=4)

Figure 6 shows a snapshot of the crosstab()

function and depicts the construction of a 4-
dimensional matrix involving four quasi-identifier
attributes, resulting in a matrix with a size of Age (73
rows) × Sex (2) x Race (5) x Work class (9) columns,
[Age (73 rows) × {Sex, Race, Work class}
(2x5x9=90 columns)] matrix (m=4). The unique
record counts for sex, race, work class, and age are 2,
5, 9, and 73, respectively. This specific case is
denoted as m=4.

In this m=4 scenario, the largest matrix dimensions
are 42 (native-country), 73 (age), occupation (15),
and 16 (education), containing a total of 40,059
integer numbers. The size of this matrix in memory
at a given time per query is 735,840 bytes.

Considering there are n(95)=126 queries from nine
different quasi-identifiers, the total memory size
required for one round of computation is 100 Mbytes
(126 × 735,840 bytes) per round, continually stored
in memory.

3.1.3. Case 3: Five Quasi-Identifiers in One Matrix

Figure 7. The snapshot of crosstab() function in Python
creates a matrix (m=5)

Figure 7 illustrates the construction of a 5-

dimensional matrix using crosstab() function
involving five quasi-identifier attributes, resulting in
a matrix with a size of 73 rows × 630 columns. The
unique record counts for sex, race, work class,
education, and age are 2, 5, 9, 16, and 73,
respectively. This specific case is denoted as m=5.

In this m=5 scenario, the largest matrix
dimensions are 42 (native-country), 73 (age),
occupation (15), work class (9), and 16 (education),
containing a total of 6,622,560 integer numbers. In
this case (m=5), the matrix size is 6,622,560 bytes in
memory at a given time per query (worst case).
Considering there are n(95)=126 queries from nine
different quasi-identifiers, the total memory size
required for one round of computation is 835 Mbytes
(126 × 6,622,560 bytes) per round, continually stored
in memory. However, with this size, the calculation
cannot be completed online in memory.

3.1.4. Case 4: Worst case (m=9)

The dataset encompasses nine categorical

attributes: 1. age, 2. work class, 3. education, 4.
marital status, 5. occupation, 6. relationship, 7. race,
8. sex, and 9. native country.

TEM Journal. Volume 13, Issue 3, pages 1881-1888, ISSN 2217-8309, DOI: 10.18421/TEM133-16, August 2024.

1886 TEM Journal – Volume 13 / Number 3 / 2024.

The total values resulting from the Cartesian
product of these nine attributes amount to discrete
values numbering 1,944,069,120.

However, the sheer magnitude of values,
equivalent to approximately 1,944 Mbytes (1.9
GBytes) in memory, renders online computation
impossible. The authors recognize the impracticality
of processing such large datasets online, with a
noteworthy difference in the number of quasi-
identifiers between n=3 and n=5, representing an
approximately 92-fold increase in complexity.

Acknowledging the limitations of memory
capacities, the authors have set a pragmatic upper
limit of 10 gigabytes for integer values per query in
one round of computation. This decision is
influenced by the common constraint of laptops
having 8 GB of RAM, and for web servers, a
maximum of 10 GB of RAM consumption is deemed
feasible.

3.2. Our Methodology

Our algorithm comprises five essential steps:
Step 1: Identification of all possible outliers in the

dataset.
Step 2: Computation of the frequency table matrix

utilized to search a risk group.
Step 3: Combination of results obtained from Steps

1 and 2 to form a risk group.
Step 4: Perturbation of the records within the

identified risk group using the cell-key perturbation
method.

Step 5: Compilation of all anonymized records into
a single microdata and subsequent publication
through an anonymizer server.

The implementation details are presented in
Section 4. For demonstration purposes, we utilize the
adult dataset, which is particularly suitable due to its
abundance of quasi-identifier attributes and large
number of records. The dataset consists of 32,561
records with 15 columns. It should be noted that the
dataset was published prior to the announcement of
GDPR laws and lacks direct identifiers but does
contain quasi-identifiers such as sex, marital status,
education, income, etc.

4. Experiment

To illustrate the functionality of the IMPO
algorithm, a sample Python code is presented herein.
It is imperative to note that in actual software
development scenarios, development teams
extensively employ various tools such as React, PHP,
and PostgreSQL databases. However, for the sake of
simplicity, these tools are not explicitly mentioned in
this paper.

4.1. Step 1: Identification of Potential Outliers in a
Dataset

Initiating the algorithm involves assigning a
unique row ID to each data point. For this
demonstration, a row ID in Python is utilized. This
unique row ID serves as the key for decryption in the
final step of the algorithm.

The dataset under consideration contains outliers,
and the following steps outline the process for
extracting these outliers. The interquartile rule is
employed for outlier identification, as demonstrated
in Figure 8, where the range calculation is presented.

Figure 8. Interquartile rule (IQR) method

The age range in the dataset is bounded from zero
as the lower limit to 75 as the upper limit, as depicted
in Figure 9. Consequently, any records with an age
exceeding 75 are extracted and saved into the CSV
file illustrated in Figure 10. This extraction results in
a total of 3,856 rows within the exported file.

Figure 9. Outliner file

To substantiate the research findings of Winkler
and Williams [7], a straightforward group-by
function is applied to the extracted dataset, using the
attributes {marital-status, 'race', 'sex', 'age', 'native-
country'}.

TEM Journal. Volume 13, Issue 3, pages 1881-1888, ISSN 2217-8309, DOI: 10.18421/TEM133-16, August 2024.

TEM Journal – Volume 13 / Number 3 / 2024. 1887

The outcome reveals that all records fall within a
high-risk group, warranting the need for perturbation.

Figure10. Excerpt of a risk group from Outliner

Figure 10 delineates that a high-risk group is

derived from the outliers. Among the 3,856 records,
91 belong to this risk group and necessitate
protection through data swapping or masking.

4.2. Step 2: Computation of the Frequency Table Matrix

for Risk Group Identification

To alleviate the load on the central database
server, the search for a risk group within the dataset
commences by constructing a sizable matrix in
memory. A cross-table matrix formulation on a web
server proves more memory-efficient compared to a
group-by function on the database server. In an effort
to conserve memory, the frequency table matrix is
created with three quasi-identifier attributes at a time,
as expounded in Section 3.

Despite isolating the outliers into a risk group
during step 2, there remain personal records that
require protection. An illustrative example of this
scenario is presented in Figure 11.

Figure 11. Proof of a risk group

Figure 11 underscores the persistence of issues
despite the progress made in the previous step. At
this juncture, the avoidance of the group-by-
command is motivated by performance concerns.
Instead, a crosstab matrix is meticulously constructed
to identify records with a frequency of one (f=1). The
intricacy lies in creating crosstab matrices ranging
from three attributes up to seven (maximum). Each
matrix is scrutinized for instances of a singular
frequency (f=1). The resultant lists are then
amalgamated with those obtained in Step 2,
culminating in the identification of the final risk
group.

Figure 12. Excerpt of crosstab of three attributes

Figure 12 depicts a singular instance: a female of
Amer-Indian-Eskimo ethnicity, aged 17, among the
entire dataset of 484,125 records.

4.3. Step 3: Integration of Results from Steps 1 and 2 to

Form a Risk Group
By combining the lists obtained in step 2 with

those from step 3, we compile a comprehensive set of
records requiring protection. The subsequent steps
involve determining the method for perturbing the
identified records.

4.4. Step 4: Perturbation of Records in the Risk Group

using Cell-Key Perturbation Method

In Step 4, records within the risk group are
subjected to perturbation through the application of
noise, effectively reversing the results of sensitive
data (such as income) to opposite values. In contrast
to the cell-key perturbation method, our algorithm
opts to modify all records within the risk group for
the sake of simplicity, thereby accelerating the
algorithm's runtime to less than 2 seconds. To
facilitate the decryption process back to the original
data, all record IDs are transmitted in a separate file.

4.5. Step 5: Compilation of Anonymized Records and

Publication via an Anonymous Server

The final step involves aggregating all
anonymized records into a microdata set, which is
subsequently published through an anonymous
server.

TEM Journal. Volume 13, Issue 3, pages 1881-1888, ISSN 2217-8309, DOI: 10.18421/TEM133-16, August 2024.

1888 TEM Journal – Volume 13 / Number 3 / 2024.

5. Conclusion

In the real business sector, both data controllers
and data processors encounter challenges related to
data privacy and security. The majority of data
services offered by these entities are often presented
in a web page format. This research endeavors to
address the safeguarding of data privacy, specifically
in tabular formats, which are ubiquitously employed
across various websites. Our proposed approach
introduces a novel method utilizing cell-key
perturbation tailored to handle tabular data
effectively.

The in-memory concept is integral to optimizing
matrix calculations within random access memory
(RAM). While many queries are typically executed
on central databases, security considerations
necessitate the execution of some queries on a web
server. Using a group-by query in a central database
can potentially strain or even overload the server,
making in-memory matrix calculations on a web
server a more prudent approach. The decision to
utilize three quasi-identifiers in one matrix, as
discussed in Section 3, is rooted in consideration of
RAM limitations, a topic explored in Sections 3 and
4.

The in-memory perturbation optimizer (IMPO)
algorithm is purposefully designed for online services
facilitated by web servers. In contrast to traditional
dataset-centric approaches, our web server enables
users to request data services through an interactive
UX/UI web page, eliminating the need to download
the entire dataset. The end-to-end service time is
impressively minimized to less than 2 seconds.

References:

[1]. Agrawal, R., & Srikant, R. (2000). Privacy-
preserving data mining. In Proceedings of the 2000
ACM SIGMOD international conference on
Management of data, 439-450.

[2]. Dwork, C. (2011). A firm foundation for private data
analysis. Communications of the ACM, 54(1), 86-95.

[3]. Bell, R. M., & Koren, Y. (2007). Lessons from the
Netflix prize challenge. Acm Sigkdd Explorations
Newsletter, 9(2), 75-79.

[4]. Sweeney, L. (2000). Simple demographics often
identify people uniquely. Health (San
Francisco), 671(2000), 1-34.

[5]. Turgay, S., & İlter, İ. (2023). Perturbation methods
for protecting data privacy: A review of techniques
and applications. Automation and Machine
Learning, 4(2), 31-41.

[6]. Kanokngamwitroj, K., Srisa-An, C., &
Kasemsawasdi, S. (2022). The effect of data
anonymization on a data science project. In 2022 6th
International Conference on Information Technology
(InCIT), 201-206. IEEE.

[7]. Winkler, W. E. (2004). Re-identification methods for
masked microdata. In International Workshop on
Privacy in Statistical, 216-230. Berlin, Heidelberg:
Springer Berlin Heidelberg.

[8]. Kabakus, A. T., & Kara, R. (2017). A performance
evaluation of in-memory databases. Journal of King
Saud University-Computer and Information
Sciences, 29(4), 520-525.

[9]. Dove, I., Ntoumos, C., & Spicer, K. (2018).
Protecting Census 2021 Origin-Destination Data
Using a Combination of Cell-Key Perturbation and
Suppression. In Privacy in Statistical Databases:
UNESCO Chair in Data Privacy, International
Conference, PSD 2018, Valencia, Spain, September
26–28, 2018, Proceedings, 43-55. Springer
International Publishing.

[10]. Mivule, K. (2012). Utilizing Noise Addition for Data
Privacy, an Overview. In Proceedings of the
International Conference on Information and
Knowledge Engineering (IKE 2012), 65-71

[11]. Giessing, S., & Tent, R. (2019). Concepts for
generalising tools implementing the cell key method
to the case of continuous variables. Joint
UNECE/Eurostat Work Session on Statistical Data
Confidentiality (The Hague, 29-31 October 2019).

[12]. Bailie, J., & Chien, C. H. (2019). ABS perturbation
methodology through the lens of differential
privacy. Joint UNECE/Eurostat work session on
statistical data confidentiality.

[13]. Karwa, V., Raskhodnikova, S., Smith, A., &
Yaroslavtsev, G. (2014). Private analysis of graph
structure. ACM Transactions on Database Systems
(TODS), 39(3), 1-33.

[14]. Narayanan, A., & Shmatikov, V. (2008). Robust de-
anonymization of large sparse datasets. In 2008 IEEE
Symposium on Security and Privacy (sp 2008), 111-
125. IEEE.

[15]. Holohan, N., Braghin, S., Aonghusa, P.M., and
Levacher, K. (2019). Diffprivlib: The IBM
Differential Privacy Library. arXiv: Cryptography
and Security, 1-5

[16]. Dankar, F. K., & Emam, K. E. (2013). Practicing
differential privacy in health care: A
review. Transactions on Data Privacy, 6(1), 35-67.

[17]. Roth, A. (2010). New algorithms for preserving
differential privacy. Carnegie Mellon University.

[18]. Nukrongsin, S., & Srisa-An, C. (2023), Cell-key
Perturbation Data Privacy Procedure for Security
Operations Center Team. 2023 20th International
Joint Conference on Computer Science and Software
Engineering (JCSSE2023), 190-195.

[19]. SQLite. (n.d.). Most Widely Deployed and Used
Database Engine. SQLite. Retrieved
from: http://www.sqlite.org/mostdeployed.html
[accessed: 01 March 2024].

[20]. CSQL. (n.d.). CSQL Product Family. CSQL.
Retrieved from: http://csql.sourceforge.net/
[accessed: 02 March 2024].

[21]. MonetDB. (n.d.). Analyze and manage your data
with standard SQL. MonetDB. Retrieved
from: http://www.monetdb.org/Home.
[accessed: 02 March 2024].

[22]. McObject. (n.d.). The eXtremeDB Database
Management Family - McObject LLC. McObject.
Retrieved from:
http://www.mcobject.com/extremedbfamily.shtml.
[accessed: 03 March 2024].

http://www.sqlite.org/mostdeployed.html
http://csql.sourceforge.net/
http://www.monetdb.org/Home
http://www.mcobject.com/extremedbfamily.shtml

