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Abstract – The emergence of data controllers as a 
novel term within data privacy laws, such as the 
General Data Protection Regulation (GDPR), has 
ushered in significant responsibilities. Stricter 
regulations prohibit the intentional sharing of personal 
records on the Internet. This research focuses on 
safeguarding data privacy, specifically in ubiquitous 
tabular formats across numerous websites. A novel 
approach employing a cell-key perturbation method is 
proposed, demonstrating efficacy in tabular formats. 
Addressing this challenge, we introduce the in-memory 
perturbation optimizer (IMPO) algorithm as a novel 
solution. The primary objective is to create and 
develop a platform that secures all personal data 
through a dispenser server, operating in near real-
time. Also, it emphasizes the importance of balancing 
data utility with privacy protection to maintain the 
integrity and quality of the dataset. Experimental 
results reveal that the IMPO algorithm outperforms in 
terms of data accuracy. Additionally, the algorithm 
introduces an average time delay of 2 seconds, ensuring 
optimal time service for real-time datasets. 
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1. Introduction

In 2018, Thailand introduced its inaugural data 
privacy law, the Personal Data Protection Act 
(PDPA), which subsequently became enforceable in 
2022. The PDPA mandates that all data service 
industries, including the government sector, uphold 
the secure preservation of personal data. The terms 
"data controller" and "data processor" were initially 
defined by the GDPR laws in 2016 and applicable in 
various organizations. Due to the inherent nature of 
data ownership, there is a reluctance to disclose 
individual personal records. 

According to legal provisions, organizations are 
prohibited from sharing personal records on the 
Internet, particularly sensitive data such as medical 
records and racial information. While most internet 
data is anonymized, there exists a distinction in 
protecting a user's personal data, allowing for 
modification through random perturbing methods 
like the cell-key perturbation method [5]. 

The primary challenge in data privacy lies in data 
usage breaches, with numerous instances of 
intentionally illegal data usage by hackers and 
marketing firms. Our platform aims to prevent 
unintentional data breaches through the safeguarding 
of unpublished datasets and protection against 
intentional hacking techniques such as 
reidentification and different methods. 

Although attackers may employ various tactics to 
deceive users directly, such approaches are 
considered less worthwhile in contemporary times. 
Recent trends in hacking indicate a shift towards 
fewer attacks with greater impact, particularly within 
data centers. Despite advancements in hardware 
technology capable of processing substantial data 
transactions, a bottleneck in processing occurs due to 
central databases designed for regular queries rather 
than aggregated data queries, such as the group-by-
command. 

The random perturbing method necessitates a 
basic group-by function to identify potential risk 
records. The proposed IMPO platform comprises an 
IMPO computation server and an IMPO dispenser, as 
illustrated in Figure 1. 
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Figure 1. IMPO platform 
 

Figure 1 depicts our newly designed architecture 
for personalized online anonymized data. Each user 
receives identical results when querying the same 
dataset, ensuring compliance with GDPR laws where 
data controllers are entities responsible for holding 
other individuals' personal data. In our scenario, the 
data controller unit comprises two servers and one 
database, as illustrated in Figure 1. 

Netflix previously anonymized a dataset by 
eliminating all personal identification and replacing it 
with random identification. Despite this 
anonymization effort, researchers were able to 
combine this dataset with an IMDB dataset 
containing names, linking entries, and successfully 
de-anonymize individuals [3]. The terms "de-
identified data" and "quasi-identifier" were 
introduced by L. Sweeney [4]. A de-identified data 
dataset involves removing explicit identifiers while 
still allowing references back to a single record, as 
shown in Figure 2. On the other hand, a quasi-
identifier is a group of non-direct identifiers that, 
when combined, can uniquely identify a personal 
record. 

 

 
 

Figure 2. Deidentified data 
 

Figure 2 illustrates an instance of de-identified 
data, where only one male graduate from a 
professional school within a specific age range earns 
an annual income exceeding $50,000. The "count" 
field denotes the frequency of each corresponding 
row. Figure 2 represents a dataset comprising 315 
individuals, characterized by marital status, 
education, and gender. There exists a potential 
privacy risk, as hackers may attempt to identify 
individuals by cross-referencing this data with 
another dataset, employing a technique commonly 
known as "reidentification." 

Balancing data utility and privacy involves making 
trade-offs. Achieving perfect data utility is 
unattainable when datasets undergo extensive 
modifications. The primary technique for 
safeguarding privacy is k-anonymity which employs 
the concepts of generalization and suppression to 
alter the dataset before release [6]. Numerous 
research papers indicate that k-anonymity involves 
the permanent removal of direct identifiers and 
modification of quasi-identifiers to compromise data 
utility. Another recent approach is data perturbation, 
which does not alter permanent attributes. In this 
research, data perturbation aims to restrict access to 
datasets or databases to only authorized users. While 
not an encryption method, data perturbation 
necessitates a decryption mechanism. The process 
involves initially modifying and publishing the data, 
then "decrypting" it back to its original form upon 
reception. 

The primary advantage of the cell-key perturbation 
method lies in its ability to perturb data at a cell 
level. This method allows the data controller to 
introduce noise to specific records while retaining 
traceability. 

Web and database servers have long been the main 
sources of data delivery to customers. Web pages or 
websites often serve as common platforms for 
distributing information in a tabular format. This 
research opts for the cell-key perturbation method, 
considering its suitability for tabular formats rather 
than broader datasets. In the context of tabular format 
services, another significant challenge is the differing 
techniques. 
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Figure 3.  Histogram of age attributes 

 
Figure 3 presents a histogram depicting age 

attributes with a skewed distribution and high 
sensitivity. Additionally, a notable outlier is observed 
within the age attributes, constituting a significant 
percentage. Winkler [7] asserted in his research that 
outliers in distributions can contribute to 
reidentification problems. Addressing this issue is a 
focal point of Section 4 in this paper. 

 
1.1.  Perturbation Method 

 
The implementation of a cell-key perturbation 

method necessitates the computation of tabular 
structures, particularly in the context of 
multidimensional tabular data. This method involves 
creating a singular, perturbed large dataset from 
which various distinct tables can be derived. 
Multidimensional tabular data adopts a matrix 
structure, requiring a high-speed computing 
processor and a substantial memory capacity. The 
number of dimensions contributes to the creation of a 
larger memory space. 

For example, consider the renowned adult dataset 
sourced from the UCI machine learning repository, 
containing census information from 42 countries. In 
Figure 4, the dataset displays 73 unique values for 
age, 42 for native country, and 2 for sex. The matrix 
formed by these three attributes is of dimensions 73 x 
42 x 2. Notably, the dataset encompasses nine 
categorical attributes, including age, work class, 
education, marital status, occupation, relationship, 
race, sex, and native country. The total values 
resulting from the Cartesian product of these nine 
attributes amount to discrete values numbering 
1,944,069,120. 

 
 

Figure 4. The matrix of quasi-identifier attributes 

Figure 4 illustrates an example of a matrix 
containing three quasi-identifier attributes. In this 
research paper, there are a total of nine distinct 
categorical attributes designated as quasi-identifiers. 
Our algorithm employs a memory-based matrix 
construction approach, where all conceivable 
combinations of the matrix are technically possible. 
However, for this study, we specifically opt for the 
inclusion of three attributes in each matrix, as 
detailed in Section 3.1. 

 
1.2.  In-Memory Architecture 

 
An in-memory database is a database that holds all 

its data in the memory (RAM) of a server. 
MongoDB, Redis, Memcached, Cassandra, and H2 
are examples of commercial products in the market.  

Besides, several freely available databases, such as 
McObject, SQLite, and CSQL [19], [20], [21], [22], 
provide in-memory capabilities. For this research, 
eXtremeDB is selected as the HPC hybrid persistent 
and in-memory database. 

 
The structure of this paper is as follows: Section 1 

is an introduction. Section 2 reviews previous 
literature. Section 3 outlines the methodology 
employed in this research. Section 4 presents the 
experimental demonstrations. Finally, in Section 5, 
the paper concludes by summarizing the experiment 
and discussing the obtained results. 
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2. Literature Review 
 

Privacy-preserving terminology was introduced 
Agrawal and Srikant in 2000 [1], proposing the 
addition of random transactions to perturb databases. 
Dwork [2] highlighted differencing techniques as a 
potential hacking method, emphasizing the risk of 
revealing medical records when large queries are 
combined with prior knowledge. Bell, and Koren [3] 
demonstrated that reidentification techniques could 
reveal original member records even after removing 
obvious personal information from Netflix data 
records. 

Sweeney [4] conducted a linking attack involving 
group health insurance, where she successfully 
combined information from public voter registration 
records to identify a significant portion of 
individuals. In a notable instance, she managed to 
uncover all the medical records of the governor of 
Massachusetts, William Weld. She emphasized that a 
combination of ZIP code, gender, and date of birth is 
sufficient to identify most people in the U.S.A., 
prompting global data industries to prioritize 
carefully protecting their content. 

Winkler's [7] research pointed out that outliers in 
synthetic data distributions may lead to 
reidentifications, underscoring the importance of 
addressing outliers.  

Kabakus, A. T., & Kara, R. [8] conducted an 
experiment that tested NoSQL and RDBMS in an in-
memory database to see who has better memory 
management. The in-memory databases used in the 
experiment were MongoDB, Redis, Memcached, 
Cassandra, and H2. Experimental results show that 
NoSQL outperforms RDBMS in all data operations, 
even though RDBMS runs on an in-memory 
database. 

The UK Office for National Statistics 
acknowledged the efficacy of cell-key perturbation in 
protecting against disclosure risk in their open data 
on previous censuses by Dove et al. [9]. Mivule [10] 
advocated for data perturbation using noise addition 
as a suitable methodology for safeguarding 
confidentiality in published datasets. 

Sarah Giessing and Reinhard Tent [11] 
experimented with the cell-key perturbation method 
on continuous variables using the τ-Argus and R 
package cell-key software. The results show that an 
extended version of this package can work well on 
non-integer-valued data. 

Bailie and Chien-Hung [12] showcased the 
advantages of cell-key perturbation over differential 
privacy, while Karwa et al. [13] proposed a new 
method for safely sharing open datasets using graph 
data and differential privacy.  

 

Narayanan and Shmatikov [14] demonstrated that 
even after removing personal identification from the 
Netflix dataset, researchers could de-anonymize 
individuals by linking it with an IMDb dataset. 
Holohan et al. [15] presented the IBM Differential 
Privacy Library, an open-source tool written in 
Python. 

Dankar and Emam [16] reviewed the application of 
Laplace noise differential privacy in the healthcare 
industry, emphasizing its suitability for sensitive data 
with real numbers. Roth [17] explored predicate 
queries and introduced the concept of distributional 
privacy, highlighting tradeoffs for statistical queries 
available both offline and online. 

Nukrongsin and Srisa-An [18] demonstrated the 
effectiveness of cell-key perturbation using a data-
swapping concept, where data is swapped per query 
to return answers without modifying the original 
data. 

 
3. Methodology 
 

This research endeavors to introduce the in-
memory concept for online computation in a web 
server, necessitating sufficient memory capacity. 

 
3.1.  Proof of In-Memory Space for Matrix Calculation 

 
Instead of employing the group-by function in the 

database server, matrix computation is adopted in the 
RAM to analyze a risk group, as discussed in Section 
4. The initial step in this research is to provide 
evidence of in-memory space adequacy for matrix 
calculations. The study involves nine different 
categorical attributes serving as quasi-identifiers. 

To illustrate a matrix formation, we use a 
crosstab() function in python to construct a matrix 
starting from m=3 (figure5), m=4 (figure6), and m=5 
(figure7).  

 
3.1.1.  Case 1: Three Quasi-Identifiers in One Matrix 
 

 
 

Figure 5. Part of three quasi-identifier attributes matrix 
(m=3) 
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Figure 5 shows a snapshot of the crosstab() 
function and depicts the construction of a 3-
dimensional matrix to illustrate the construction of a 
3-dimensional matrix involving three quasi-identifier 
attributes, resulting in a matrix with a size of 73 rows 
× 10 columns. The unique record counts for sex, 
race, and age are 2, 5, and 73, respectively. This 
specific case is denoted as m=3 

In the scenario of m=3, the largest matrix 
dimensions are 42 (native-country), 73 (age), and 16 
(education), containing a total of 40,059 integer 
numbers. The size of this matrix in memory at a 
given time per query is 392,448 bits (40,056 × 8). 

Considering there are n(93)=168 queries from nine 
different quasi-identifiers, the total memory size 
required for one round of computation is 66 Mbits 
(168 × 392,448 bits) or approximately 9 Mbytes per 
round, continuously stored in memory. With this 
size, the computation can effectively be performed 
online. 

 
3.1.2.  Case 2: Four Quasi-Identifiers in One Matrix 
 

 
 

Figure 6. The snapshot of crosstab() function in Python 
creates a matrix (m=4) 

 
Figure 6 shows a snapshot of the crosstab() 

function and depicts the construction of a 4-
dimensional matrix involving four quasi-identifier 
attributes, resulting in a matrix with a size of Age (73 
rows) × Sex (2) x Race (5) x Work class (9) columns, 
[Age (73 rows) × {Sex, Race, Work class} 
(2x5x9=90 columns)] matrix (m=4). The unique 
record counts for sex, race, work class, and age are 2, 
5, 9, and 73, respectively. This specific case is 
denoted as m=4. 

In this m=4 scenario, the largest matrix dimensions 
are 42 (native-country), 73 (age), occupation (15), 
and 16 (education), containing a total of 40,059 
integer numbers. The size of this matrix in memory 
at a given time per query is 735,840 bytes. 

Considering there are n(95)=126 queries from nine 
different quasi-identifiers, the total memory size 
required for one round of computation is 100 Mbytes 
(126 × 735,840 bytes) per round, continually stored 
in memory. 

 
3.1.3.  Case 3: Five Quasi-Identifiers in One Matrix 
 

 
 

Figure 7. The snapshot of crosstab() function in Python 
creates a matrix (m=5) 

 
Figure 7 illustrates the construction of a 5-

dimensional matrix using crosstab() function 
involving five quasi-identifier attributes, resulting in 
a matrix with a size of 73 rows × 630 columns. The 
unique record counts for sex, race, work class, 
education, and age are 2, 5, 9, 16, and 73, 
respectively. This specific case is denoted as m=5. 

In this m=5 scenario, the largest matrix 
dimensions are 42 (native-country), 73 (age), 
occupation (15), work class (9), and 16 (education), 
containing a total of 6,622,560 integer numbers. In 
this case (m=5), the matrix size is 6,622,560 bytes in 
memory at a given time per query (worst case). 
Considering there are n(95)=126 queries from nine 
different quasi-identifiers, the total memory size 
required for one round of computation is 835 Mbytes 
(126 × 6,622,560 bytes) per round, continually stored 
in memory. However, with this size, the calculation 
cannot be completed online in memory. 
 
3.1.4.  Case 4: Worst case (m=9) 

 
The dataset encompasses nine categorical 

attributes: 1. age, 2. work class, 3. education, 4. 
marital status, 5. occupation, 6. relationship, 7. race, 
8. sex, and 9. native country.  
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The total values resulting from the Cartesian 
product of these nine attributes amount to discrete 
values numbering 1,944,069,120. 

However, the sheer magnitude of values, 
equivalent to approximately 1,944 Mbytes (1.9 
GBytes) in memory, renders online computation 
impossible. The authors recognize the impracticality 
of processing such large datasets online, with a 
noteworthy difference in the number of quasi-
identifiers between n=3 and n=5, representing an 
approximately 92-fold increase in complexity. 

Acknowledging the limitations of memory 
capacities, the authors have set a pragmatic upper 
limit of 10 gigabytes for integer values per query in 
one round of computation. This decision is 
influenced by the common constraint of laptops 
having 8 GB of RAM, and for web servers, a 
maximum of 10 GB of RAM consumption is deemed 
feasible. 
 
3.2.  Our Methodology 

 
Our algorithm comprises five essential steps: 
Step 1: Identification of all possible outliers in the 

dataset. 
Step 2: Computation of the frequency table matrix 

utilized to search a risk group. 
Step 3: Combination of results obtained from Steps 

1 and 2 to form a risk group. 
Step 4: Perturbation of the records within the 

identified risk group using the cell-key perturbation 
method. 

Step 5: Compilation of all anonymized records into 
a single microdata and subsequent publication 
through an anonymizer server. 

The implementation details are presented in 
Section 4. For demonstration purposes, we utilize the 
adult dataset, which is particularly suitable due to its 
abundance of quasi-identifier attributes and large 
number of records. The dataset consists of 32,561 
records with 15 columns. It should be noted that the 
dataset was published prior to the announcement of 
GDPR laws and lacks direct identifiers but does 
contain quasi-identifiers such as sex, marital status, 
education, income, etc. 
 
4. Experiment 
 

To illustrate the functionality of the IMPO 
algorithm, a sample Python code is presented herein. 
It is imperative to note that in actual software 
development scenarios, development teams 
extensively employ various tools such as React, PHP, 
and PostgreSQL databases. However, for the sake of 
simplicity, these tools are not explicitly mentioned in 
this paper. 

 

4.1.  Step 1: Identification of Potential Outliers in a 
Dataset 
 

Initiating the algorithm involves assigning a 
unique row ID to each data point. For this 
demonstration, a row ID in Python is utilized. This 
unique row ID serves as the key for decryption in the 
final step of the algorithm. 

The dataset under consideration contains outliers, 
and the following steps outline the process for 
extracting these outliers. The interquartile rule is 
employed for outlier identification, as demonstrated 
in Figure 8, where the range calculation is presented. 

 

 

Figure 8. Interquartile rule (IQR) method 
 

The age range in the dataset is bounded from zero 
as the lower limit to 75 as the upper limit, as depicted 
in Figure 9. Consequently, any records with an age 
exceeding 75 are extracted and saved into the CSV 
file illustrated in Figure 10. This extraction results in 
a total of 3,856 rows within the exported file. 

 

Figure 9. Outliner file 
 

To substantiate the research findings of Winkler 
and Williams [7], a straightforward group-by 
function is applied to the extracted dataset, using the 
attributes {marital-status, 'race', 'sex', 'age', 'native-
country'}.  
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The outcome reveals that all records fall within a 
high-risk group, warranting the need for perturbation. 

 

 
Figure10. Excerpt of a risk group from Outliner 

 
Figure 10 delineates that a high-risk group is 

derived from the outliers. Among the 3,856 records, 
91 belong to this risk group and necessitate 
protection through data swapping or masking. 

 
4.2.  Step 2: Computation of the Frequency Table Matrix 

for Risk Group Identification 
 

To alleviate the load on the central database 
server, the search for a risk group within the dataset 
commences by constructing a sizable matrix in 
memory. A cross-table matrix formulation on a web 
server proves more memory-efficient compared to a 
group-by function on the database server. In an effort 
to conserve memory, the frequency table matrix is 
created with three quasi-identifier attributes at a time, 
as expounded in Section 3. 

Despite isolating the outliers into a risk group 
during step 2, there remain personal records that 
require protection. An illustrative example of this 
scenario is presented in Figure 11. 

 

 
Figure 11. Proof of a risk group 

 

Figure 11 underscores the persistence of issues 
despite the progress made in the previous step. At 
this juncture, the avoidance of the group-by-
command is motivated by performance concerns. 
Instead, a crosstab matrix is meticulously constructed 
to identify records with a frequency of one (f=1). The 
intricacy lies in creating crosstab matrices ranging 
from three attributes up to seven (maximum). Each 
matrix is scrutinized for instances of a singular 
frequency (f=1). The resultant lists are then 
amalgamated with those obtained in Step 2, 
culminating in the identification of the final risk 
group.  

 

 
 

Figure 12. Excerpt of crosstab of three attributes 
 

Figure 12 depicts a singular instance: a female of 
Amer-Indian-Eskimo ethnicity, aged 17, among the 
entire dataset of 484,125 records. 

 
4.3.  Step 3: Integration of Results from Steps 1 and 2 to 

Form a Risk Group 
By combining the lists obtained in step 2 with 

those from step 3, we compile a comprehensive set of 
records requiring protection. The subsequent steps 
involve determining the method for perturbing the 
identified records. 

 
4.4.  Step 4: Perturbation of Records in the Risk Group 

using Cell-Key Perturbation Method 
 

In Step 4, records within the risk group are 
subjected to perturbation through the application of 
noise, effectively reversing the results of sensitive 
data (such as income) to opposite values. In contrast 
to the cell-key perturbation method, our algorithm 
opts to modify all records within the risk group for 
the sake of simplicity, thereby accelerating the 
algorithm's runtime to less than 2 seconds. To 
facilitate the decryption process back to the original 
data, all record IDs are transmitted in a separate file. 

 
4.5.  Step 5: Compilation of Anonymized Records and 

Publication via an Anonymous Server 
 

The final step involves aggregating all 
anonymized records into a microdata set, which is 
subsequently published through an anonymous 
server. 
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5. Conclusion 
 

In the real business sector, both data controllers 
and data processors encounter challenges related to 
data privacy and security. The majority of data 
services offered by these entities are often presented 
in a web page format. This research endeavors to 
address the safeguarding of data privacy, specifically 
in tabular formats, which are ubiquitously employed 
across various websites. Our proposed approach 
introduces a novel method utilizing cell-key 
perturbation tailored to handle tabular data 
effectively. 

The in-memory concept is integral to optimizing 
matrix calculations within random access memory 
(RAM). While many queries are typically executed 
on central databases, security considerations 
necessitate the execution of some queries on a web 
server. Using a group-by query in a central database 
can potentially strain or even overload the server, 
making in-memory matrix calculations on a web 
server a more prudent approach. The decision to 
utilize three quasi-identifiers in one matrix, as 
discussed in Section 3, is rooted in consideration of 
RAM limitations, a topic explored in Sections 3 and 
4. 

The in-memory perturbation optimizer (IMPO) 
algorithm is purposefully designed for online services 
facilitated by web servers. In contrast to traditional 
dataset-centric approaches, our web server enables 
users to request data services through an interactive 
UX/UI web page, eliminating the need to download 
the entire dataset. The end-to-end service time is 
impressively minimized to less than 2 seconds. 
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