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Abstract
The development of scalable architectures at store lev-

els of a layered model has concentrated on processor par-
allelism balanced against scalable memory bandwidth, pri-
marily through distributed memory structures of one kind
or another. A great deal of attention has been paid to hiding
the distribution of memory to produce a single store image
across the memory structure. It is unlikely that the distri-
bution and concurrency aspects of scalable computing can
be completely hidden at that level.

The paper argues for a store layer which respects the
need for caching and replication, and to do so at an ”ob-
ject” level granularity of memory use. These facits are in-
terrelated through atomic processes, leading to an interface
for the store which is strongly transactional in character.
The paper describes the experimental performance of such
a layer on a scalable multi-computer architecture. The be-
haviour of the store supports the view that a scalable cached
”transactional” store architecture is a practical objective
for high performance based on parallel computation across
distributed memories.

1 Introduction
The high performance computing enterprise has

been characterised largely by the development of
highly specialised parallel computing platforms and
the search for effective solutions to problems in com-
putational science and large scale simulation. In the
process, the associated operating systems, file sys-
tems, data-management support, programming lan-
guages and program models became differentiated
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from what is now seen as “commodity” computing
technologies and software engineering practices.

Although high performance computing goals con-
tinue to be pursued through specialised hardware
platforms, considerable progress has been made to
position the enterprise within an integrated “scalable
computing” framework. In the idealised version of
the framework, high performance computing ceases
to exist as a differentiated area. Of course from an
engineering perspective, it seems that there will al-
ways be differentiation due to the tradeoffs between
costs and performance for special purpose comput-
ing. However with general purpose computing ap-
plications in mind, the focus on scalability reflects the
importance of understanding how to design systems
which, wherever possible, do not have to be refash-
ioned when they are migrated to higher performance
platforms.

For our purposes, the problem of scalability is de-
rived simply from a layered view of systems in which
the bottom layers are specific to platform architec-
tures while the top layers are platform independent
problem solutions. The layered model then repre-
sents steps in the abstraction away from architectural
features associated with potential speed of computa-
tion.

The development of scalable architectures at the
lower levels has concentrated on processor paral-
lelism combined with scalable memory bandwidth,
primarily through distributed memory structures of
one kind or another. To this end a great deal of at-
tention has been paid to abstracting away the dis-
tribution of memory through schemes which sup-
port a programming model having a single address
space across the memory structure. The cache co-
herent non-uniform memory access architecture (CC-
NUMA), is perhaps the best known example of this
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work.
Notwithstanding the impressive progress that is

being made with multi-threaded processing and
memory structures of the CCNUMA kind, for quite
fundamental reasons it appears to be unlikely that the
distribution and concurrency aspects of scalable com-
puting can be hidden at that level. This observation
lies at the heart of the work reported in this paper.

Apart from the merits of providing for a single im-
age address space, the paper argues for a store layer
which respects the need for caching and replication,
and to do so at an “object” level granularity of mem-
ory use. Caching and replication appear to be ir-
replaceable for moderating the impact of latency on
performance in the presence of distribution and con-
currency. The ways in which they interact within a
store layer depends on coherency and visibility re-
quirements. In the approach presented in this pa-
per, caching and replication are interrelated through
a model of computation based on atomic processes.
In the model, coherency and visibility requirements
are derived from the atomicity property, leading to
an interface for the store which is strongly transac-
tional in character. The stability of a store, and the
recovery of defined states when abnormal events oc-
cur are critical for an important class of large scale,
high performance systems. The treatment of these
aspects in the paper is based on strategies developed
for database technologies, where they have been in-
tensively researched over the past two decades.

The paper is in two sections; the first places the
control of caching and replication in the context of a
store layer while the second describes the experimen-
tal performance of such a layer on a scalable multi-
computer architecture. The behaviour of the store
supports the thesis that a scalable cached “transac-
tional” store architecture is a practical vision for par-
allel computation across distributed memories.

2 Scalability, Atomicity and Parallel
Program Models

2.1 Scalability
The value of designing computing platforms

which can be scaled to deliver performance at any
point on the wide spectrum of practical computer
systems design has always been recognised. The high
end of the spectrum presents the biggest challenges
for this otherwise deceptively simple idea. In general
terms, increasing the speed of computation requires
increasing processor speed, system communications
and memory bandwidth so as to maintain an over-
all balance allowing performance for particular ap-

plications to scale, potentially at least, with the plat-
form. When, as with current high performance plat-
form technologies, the maintenance of that balance
at increased performance levels depends on signif-
icant architectural changes, the problem of scalabil-
ity becomes one of finding a higher level architecture
which caters for the changes in architecture without
forcing a change in the programming model used for
applications.

At the high end of computation, processing speeds
are typically increased by adding additional proces-
sors and providing the means by which their activ-
ities can be coordinated to increase the degree of
parallelism in the system. Memory bandwidth can
be also be increased by adding memory modules.
However, maintaining the balance between memory
bandwidth and processor speeds under increasing
parallelism leads to increases in latency due to the
distribution of memories and processors. This situ-
ation is intrinsic to scalability at the high end since it
reflects the physics of computation.

There are two generic strategies for hiding the ef-
fects of latency on individual processors. The first
is to increase the degree of concurrency using “in-
dependent” threads so that the effect of latency on
any one thread can be masked by activities on other
threads. The second is to cache information so as to
reduce the distance from any particular processor to
memory. The first, concurrency masked latency, leads
to scalability at the application level if the threads
being swapped are making progress towards the so-
lution of a single application problem. This thread
based contribution to masking latency at a single pro-
cessor holds equally for multiple processor configu-
rations. In a similar vein, the effectiveness of repli-
cating potentially shared data in multiple caches de-
pends on maintaining coherence across the cached
values without causing significant additional latency
costs through the coherence mechanisms.

It is clear then that concurrency and replication
are key elements of any scalable architecture that ex-
tends to the high end of computation. The extent to
which these two elements enable higher system per-
formance for particular applications depends on be-
ing able to devise effective coherency maintenance
and cache management strategies. Effectiveness in
this context can be measured by the extent to which
they reduce the impact of distribution on speed-up
for particular applications.

There is a very rich research literature concerned
with managing the impact of distribution on par-
allelism. At the risk of oversimplification, perhaps



the strongest application independent themes in this
literature are on the one hand concerned with lan-
guages and program models for parallel computing
and on the other, with creating single image spaces
across distributed memories. A central idea in this
paper is that atomicity is a particularly effective con-
currency control primitive for managing the impact
of distribution, and from that point of view it is un-
der represented as a contributor to parallelism in both
program model and single image space areas.

2.2 Atomicity
Atomicity has a central place in computing as the

basic property of operations which move machines
between well defined states in the presence of concur-
rent operations and shared data. The powerful “all or
nothing” behaviour of an atomic operation provides
a guarantee that all changes to variables made in the
associated execution processes will have occurred at
the termination of the operation, or that none of them
will. When combined with visibility restrictions be-
tween concurrent operations, atomicity provides iso-
lation and well defined points for determining co-
herency conditions.

While atomicity is fundamental for operations at
hardware levels, few programming languages have
provided composition constructs for higher level
atomic operations. Largely this is due to the cost
of the “all or nothing” semantics of atomic opera-
tions weighed against their perceived value, rather
than to the concurrency control and coherency main-
tenance aspects of atomicity per se. The cost of the
“all or nothing” semantics derives from the need to
make the initial state recoverable until the operation
has terminated either by transiting to a new state or
by aborting to the initial state. Sophisticated state
saving mechanisms, mostly involving taking copies
and/or logging incremental changes, have evolved
over the past decade however the cost is still signifi-
cant. This cost is born in systems which which sup-
port failure within non-deterministic “choice points”
as do many AI languages, and of course it is born in
transaction systems where atomicity primarily serves
the paramount need to keep a database in well de-
fined states determined by individual transactions.
In the database world, the cost of state saving is also
set against the need for stable stores and recoverabil-
ity in the face of exceptional events. These concerns
are increasingly being felt in the non-database world
which is responding with technologies for construct-
ing persistent systems [Atkinson and Morrison 1995].

Returning to the role that atomicity can play in
managing the impact of distribution in parallel sys-

tems, it is worthwhile recalling that the use of repli-
cation to mask or reduce latency comes at the cost
of coherence maintenance which in general has the
effect of increasing latency. This coherence induced
latency can be moderated by optimistic strategies in
which an assumption of coherence is tested at some
later point in time thereby masking the latency to an
extent which depends on the truth of the assumption.
The cost of exploiting optimism to enable a higher de-
gree of parallelism is a combination of the state sav-
ing costs mentioned above and the opportunity costs,
if any, of any “wasted” computing resources. From
this point of view, optimistic strategies and failure en-
abled non-determinism have very similar operational
semantics.

A further observation concerning coherence in-
duced latency is that some applications are tolerant to
data which is incoherent in the sense being discussed
here, and that in such cases, coherency tests can be
discarded. This visibility issue is picked up in a later
section of the paper.

The assertion made in the introduction, that atom-
icity as a concurrency control primitive appears to be
particularly well suited to scalability with its replica-
tion requirement, rests on the above arguments and
on the modularity provided for locality of coherence.
This is a safe assertion for some important classes of
application, for example database applications and
related information servers. It is not yet clear how
broad the application area for such atomicity based
stores will prove to be however the fundamentals of
scalability argue that they are likely to have a central
role in the design of high end systems.

2.3 Programming Models
The interplay between replication and concur-

rency in scaling computation to the high end through
their role in weakening latency constraints points to
the value of atomic process modules being visible at
the store layer. With a focus on a broad range of ap-
plications this raises questions about whether current
parallel programming models are suited to deriving
such modules from application programs.

The major programming models for parallelism
are based on data parallel, message passing and
shared variable paradigms. For our purposes, data
parallelism is seen as a highly specialised form of
message passing.

Message passing paradigms have arguably been
the mainstay of applied research into concurrent
computing, due in large part to the CSP framework
[Hoare 1978; Milner 1980]. With the emergence of
MPP technology in the last decade, MPI [Message



Passing Interface Forum 1994] and PVM [Geist and
Sunderam 1992] emerged as practical portable lay-
ers. Both are now standards in the parallel computing
community.

From the perspective of scalability, beyond the
point where replication becomes the key element in
latency moderation, the message passing model ap-
pears to have serious restrictions. The strength of the
model is isolation; there are no shared variables. Pro-
cesses are regarded as localised modules with distri-
bution managed by copying values through message
transmission between processes. The notion of repli-
cated variables, central to the cached architecture ar-
gued for above, is not easily accommodated by ex-
tensions to the paradigm and in any case to do so
would (re)introduce shared variables between other-
wise isolated processes.

Partly due to the absence of support for replica-
tion in the message passing model, atomicity is not
as relevant a concept for the model as it is for cached
architectures. The strength of isolation between pro-
cesses in the message passing model provides one as-
pect of atomicity, however other aspects of coherency
and concurrency control are left to the application
program. It may be of course that the message pass-
ing interface evolves support for cached variables
however that would be to change the programming
model that is currently supported by the paradigm.

2.4 Shared Variables
The other major paradigm is the shared variable

model for parallel computation. In this model, pro-
cesses interact through shared variables. The model
is derived from the widespread practices which date
back to the early days of computing, the invention
of semaphores, monitors and many other ideas for
solving generic mutual exclusion problems in single
processors supporting concurrent processing.

Unlike message passing, the shared variable
model does not reflect distribution. In the context of
distributed of parallel memories, implementation of
the model rests on an interface which provides a sin-
gle image of a store. In practical terms the single im-
ages are provided through distributed shared mem-
ory (DSM) technology [Carter 1995; Keleher 1994], or
more directly through hardware which creates single
address spaces (CCNUMA [Lenoski et al. 1992] archi-
tectures for example ). In either case it is not straight-
forward to incorporate the replication and concur-
rency issues in the shared variable model without
making significant changes. For example, caches are
not part of the architecture so any replication that
may be part of the single image mechanism is not

available to layers above the store. An immediate
consequence of hiding replication is that coherency
is also hidden.

Since the model is not “distribution aware”, atom-
icity is not as important as it is in a cache based ar-
chitectures. However it should be noted that cre-
ating atomicity or transactional package on top of
the shared variable model would not deliver the la-
tency moderation role being sought for scalability
since that role relies visibility of particular caches.

3 Scalable Multicomputer Object Spaces
The previous sections describe the problem of scal-

ably providing a single image store in a distributed
memory context, with atomicity, caching, and layered
software identified as properties of fundamental im-
portance to any such architecture.

This section explores the practicalities of imple-
menting such a system by reviewing two experi-
ments in scalable single image object space design
and using the lessons of these experiments to moti-
vation a new design approach which is the subject of
section 4.

3.1 Experiences with Multicomputer Object
Space Design

The two experiments in multicomputer object
space design described below were conducted in the
context of developing persistent single image mul-
ticomputer object spaces with a strong focus on
scalability. The first of these, MC-Texas, is non-
transactional, implementing the single image object
space through a crude transparent DSM mechanism.
The second, MC-DataSafe, is based on a transactional
object storage architecture.

3.1.1 MC-Texas

MC-Texas, a multicomputer variant of the Texas per-
sistent store [Singhal et al. 1992] is one of the early
steps taken on the road to designing and implement-
ing a highly scalable persistent system [Blackburn
and Stanton 1996]. Despite its limitations, MC-Texas
remains a significant example of a DSM-based object
store.

Texas Texas groups persistent objects on pages and
uses standard hardware memory protection mecha-
nisms to detect references to objects that are not cur-
rently in memory. When a page of objects is faulted
into memory via this mechanism, persistent address
pointers in the page are detected and replaced by
pointers into virtual memory according to a map of



persistent to virtual addresses. If a persistent ad-
dress is not in the map, virtual address space is al-
located for the page containing that address and the
new entry inserted into the <persistent, virtual> ad-
dress map. The newly allocated page in the virtual
address space is access protected to trap the first at-
tempt to access the data, at which point the persistent
data is paged in.

Atomicity The absence of any atomicity mecha-
nism in the Texas architecture lead to MC-Texas
adopting a DSM-like non-transactional approach to
distributed cache coherency. The consistency seman-
tics of this system are relatively weak.

The task of committing to disk a consistant image
of the store is made difficult in MC-Texas by the ab-
sence of atomicity. The necessary synchronisation of
distributed process state is left to the user.

Caching The use of page-grained hardware mech-
anisms to detect user demands strongly colours the
behavior of both Texas and MC-Texas. On one hand,
this leaves clients with direct memory access to the
cached data—reducing the access overhead for ‘hot’
data to zero. On the other hand, the grain of access de-
tection is the page, which opens considerable oppor-
tunity for ‘false contention’—accesses on unrelated
objects that happen to be co-located on a single page
may result in needless contention for that page.

Scalable software layer As a software layer, MC-
Texas presents its clients with an abstraction of a sin-
gle shared persistent memory, and as such sits at
a level above dominant programming models such
as basic message passing, which only layer weakly
above the communications level. Although the scal-
ability of the single image abstraction presented by
MC-Texas was limited, the MC-Texas experiment
proved to be a valuable first step in the exploration
of the single image concept.

Key Outcomes The MC-Texas experiment high-
lighted: difficulties associated with a distributed pro-
gramming model that does not support atomicity; the
performance advantages of giving users direct access
to cached data; and the feasability of the single store
image concept.

3.1.2 MC-DataSafe

The goal of the MC-DataSafe experiment was to in-
vestigate scalability of page coherency and recovery

mechanisms. The experiment was conducted in the
context of the DataSafe [Scheuerl et al. 1996] instance
of the Flask object store architecture [Munro et al.
1994].

Flask Flask has a layered architecture in which vari-
ous store components are integrated through well de-
fined interfaces. A property of the Flask architecture
is that conflict detection is undertaken by the upper
layers. This frees, to a large extent, the lower layers
from interference management and increases flexibil-
ity in the choice of concurrency model in the upper
layers. This is in contrast to systems where concur-
rency control mechanisms are more tightly integrated
with the lower layers.

Atomicity Flask supports a transactional coherency
model and supports atomicity as part of the user in-
terface.

The MC-DataSafe page coherency algorithm op-
erates at a transactional grain—consistency checks
are done at commit time. In addition to tightening
the bound on coherency-related traffic, transactional
grain coherency has the advantage of overlapping co-
herency related messaging with commit-related mes-
saging and IO latencies.

Caching Central to the Flask architecture is the ab-
straction of a resilient persistent heap. The lower
levels of the architecture present the upper layers
with this abstraction via a word-grained procedural
interface which performs an address translation for
each access—the cache is thus not directly exposed.
The combination of fine temporal and morphologi-
cal grain with the overhead of procedure calls and
hash-based address translation results in a continu-
ous computational overhead, placing the Flask archi-
tecture at the other end of the granularity spectrum
to Texas, both temporally and morphologically.

The Flask architecture goes beyond the simple no-
tion of cache offered by Texas, and supports the no-
tion of ‘workspaces’—potentially inconsistent repli-
cated data—thereby facilitiating optimistic computa-
tion.

Scalable software layer MC-DataSafe takes the
concept of building scalable layered abstractions a
few steps further than MC-Texas by presenting the
clients with an even richer, if less general, environ-
ment that exhibits a high degree of scalability [Black-
burn et al. 1997]. MC-DataSafe builds a transactional



storage layer from the scalable resources of the par-
allel file system, message passing and distributed
memory available on the Fujitsu AP1000

Key Outcomes The MC-DataSafe experiment high-
lighted among other things: the natural affinity be-
tween the transactional model of computation and
scalable single image persistent systems; and the
value of controlled inconsistency in replication as
means of facilitiating optimism.

4 A Reference Architecture: The
Transactional Object Cache

The previous sections have identified the chal-
lenge of developing scalable architectures and have
highlighted some of the lessons of the MC-Texas and
MC-DataSafe experiments in scalable multicomputer
object store design. In response to this, a reference
architecture for scalable multicomputer object space
construction—the transactional object cache—is now
presented.

From the perspective of the future development of
scalable object spaces, perhaps the three most impor-
tant lessons of the MC-Texas and MC-DataSafe exper-
iments are these:

� The importance and appropriateness of a trans-
actional model of concurrent computation when
working in a distributed object space.

� The impact of temporal and morphological grain
on performance.

These lessons can be interpreted as indicating a need
for an architecture for scalable object spaces which:

1. Embodies a transactional model of concurrency
control.

2. Offers an object-grained interface to clients
which minimizes the need for copying of data.

The transactional object cache architecture (fig-
ure 1) is one which satisfies these criteria. The basic
architecture consists of five key components: an ap-
plication program; an (optional) language run-time
system (RTS); a cache; an object store; and a trans-
actional interface. The basic model is that of the ap-
plication program operating (via direct memory ac-
cess) over a cached image of the store. The validity
(in transactional terms) of the cached image seen by
the application is ensured by appropriate use of the
transactional interface.

The first of the above criteria is addressed by virtue
of the transactional framework in which all cache

Transactional
InterfaceCache

Object Store

Application
Program

Language
Run-time

Figure 1: The transactional object cache architecture.
The architecture of the object store is transparent to
the application.

consistency actions occur—the architecture is intrin-
sically transactional. The second criterion two is met
by virtue of the direct cache access given to the appli-
cation and the object grained nature of the interface.

The remainder of this section describes key charac-
teristics of the transactional object cache architecture.

Morphological and Temporal Granularity of In-
teraction Interface operations are object-grained1

rather than page or word grained, allowing the prob-
lem of false sharing to be avoided while overheads
associated with procedure calls to the interface are
minimized. The extent to which problems of false
sharing are avoided in a given implementation will
depend on the algorithms employed in that imple-
mentation. The choice of appropriate morphologi-
cal grain for data transfer, concurrency control, and
replica management has been the subject of extensive
study and experimentation [Bernstein et al. 1987; Za-
harioudakis and Carey 1997], the results of which are
directly applicable to transactional object cache im-
plementations.

By presenting its clients with a buffer to which
they have direct memory access, the object cache
treads the middle ground between Flask and Texas.
Explicit client interaction with the cache interface is
limited to notification of demand for read or write ac-
cess to an object—fine-grained accesses are done via
direct memory loads and stores. This approach re-
quires minimal user/store interaction while avoiding
the problem of false contention due to temporal exag-
geration of user needs.

1Finer-grained operations are sometimes desirable, for example
in the case of operations on indexes [Blackburn 1997].



A Transactional Interface There are a number of
important consequences of working with a cache ar-
chitecture which is intrinsically transactional, partic-
ularly with respect to concurrency control.

Firstly, transactional semantics are distribution-
independent—in the sense that ACID2 semantics en-
capsulate a notion of isolation that will hold indepen-
dent of whether the underlying store is distributed.
This means that the architecture may be distributed
transparently with respect a client interface that guar-
antees ACID semantics. The transactional object
cache architecture is thus sympathetic to our objec-
tive of delivering users a single image address space.

Secondly, the substantial body of work on trans-
actional cache coherency algorithms [Franklin 1996]
is directly applicable to the architecture. The imple-
menter is thus able to experiment with a wide range
of algorithms including recent developments such
as the avoidance-based PS-AA algorithm [Zahari-
oudakis and Carey 1997] and detection-based AOCC
[Adya et al. 1995].

Client-Server Architecture The transactional object
cache architecture is naturally client-server, client
RTSs caching data provided by server stores, which
are responsible for stability and coherency. As
with all client-server systems, the transactional object
cache can be implemented as client-peer simply by
co-locating clients and servers (figure 2).
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store client
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app. RTS

store client

cache

app. RTS

store client

cache

app. RTS
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cache
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app. RTS

store client

cache
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store client

cache

app. RTS

store client

cache

app. RTS

server server

server server

Figure 2: Client-server (left) and client-peer (right)
transactional object cache architectures. In both cases
the distributed nature of the underlying architecture
is transparent to the run-time systems and applica-
tions.

2The term ACID refers to the fundamental properties of trans-
action models: Atomicity, Consistency, Isolation, and Durability
[Gray and Reuter 1993].

5 An Abstraction of the Transactional
Object Cache Architecture

The role of the transactional object cache architec-
ture as the basis for the design of multicomputer ob-
ject spaces has been made clear in the previous sec-
tion. Its importance comes as a consequence of its
embodiment of three fundamentals of scalable object
space design, namely caching, atomicity, and a layered
architecture. The last of these is seen in the strong sep-
aration of concerns it embodies. Such a separation
of concerns opens opportunities for a focusing of ex-
pertise and increased collaboration between research
groups.

Effectively realizing these opportunities will de-
pend on the existence of a well defined interface
which captures the separation of concerns in a man-
ner that does not rob the RTS implementer of ef-
ficiency or functionality, nor deny the store imple-
menter of flexibility in approach. The first step in
the design of such an interface is to identify a clear
abstraction of the transactional object cache architec-
ture. The value of such abstractions as a means of
meaningfully capturing the behavior of such systems
is exemplified by schemes such as ACTA [Chrysan-
this and Ramamritham 1994] and CACS [Stemple
and Morrison 1992]. In the absence of a pre-existing
abstraction of the transactional object cache, one must
be developed—which is the purpose of this section.

We begin with an identification of key architec-
tural concerns before examining transactional object
cache semantics in terms of these concerns.

5.1 Architectural Elements
Although the key building blocks for a transac-

tional interface may be fairly clear (begin, commit,
abort etc.), the goal of flexibility both above and be-
low the interface makes the identification of the pre-
cise semantics of these operations with respect to the
various areas of store management more difficult. For
example, a number of questions are raised by a sim-
ple write to the cache. When may the buffer associ-
ated with that data be freed? When will that change
be made visible to other transactions? Formulating
answers to these questions is made all the more dif-
ficult by a tendency for the various concerns to be
blurred in the literature.

In order to help meet the objective of flexibility in
the interface design, two key concerns of a transac-
tional object cache are separated and identified3:

� visibility,
3In the case where the store is persistent, ‘stability’ becomes an

additional concern. See section 7 and [Blackburn 1997].



� and cache management,

The first is unambiguously central to a transactional
storage interface, the second is included in a prag-
matic response to the demands of efficient object
space construction.

By establishing abstract interfaces to both of these
concerns, a store interface can be built up and de-
scribed precisely in terms of its semantics with re-
spect to each of the concerns. The remainder of this
section will focus on the development of abstract in-
terfaces with respect to visibility and cache manage-
ment. Having developed the models and abstract in-
terfaces to them, there will be a discussion on how
the concerns come together to form a rich abstraction
of the transactional object cache architecture.

5.2 Visibility
Visibility is an issue of fundamental importance to

transaction models. ACID transactions ensure isola-
tion by restricting visibility of changes made by un-
committed transactions. Extended transaction mod-
els often allow the controlled relaxation of isolation.
There are a wide range of approaches to implement-
ing visibility control, the design space for which
spans many dimensions [Franklin 1996].

Central to an understanding of visibility is the no-
tion of transactions operating over potentially invalid
images of the state of a store. The responsibility
of the visibility control mechanism is to ensure that
no transaction exposed to an invalid image of the
store be allowed to commit. As outlined by Franklin
[1996], there are two broad implementation alterna-
tives: avoidance based schemes, where transactions
are prevented from ever being exposed to invalid im-
ages of the store; and detection based schemes, where
exposure to an invalid image of the store is detected
and the transaction prevented from committing. In
either case, the visibility control mechanism must be
able to determine the validity of the image of a store
seen by a given transaction. Transactional validity is
usually defined in terms of serializability—a transac-
tion is valid only if it can be serialized with respect to
all previously validated transactions.

In order to describe visibility semantics concisely,
a reference model for visibility will first be described.

The visibility semantics of a transactional system
can be described in terms a single history, hv, of visi-
bility events, ei :

hv= e0:e1:e2 : : :en

A transaction, t, is then modeled as a sub-history of
hv, hvt , and the store image seen by t is defined by the

visibility events composing hvt . T denotes the set of
all transactions in hv, where all transactions are dis-
joint with respect to hvand T completely covers hv:

(e2 hv)) ((9ti 2 Tj(e2 ti))^ (8t j 2 T; i 6= j e 62 t j)))

The notion of irrevocability, which is central to
modeling transactions, is introduced by defining
irrevocable(e) to denote that e is irrevocably part of hv.
More generally, immutable(t) is defined such that hvt

is a fixed sub-history of hv (i.e. membership of hvt is
static) and immutable(t)) ((e2 hvt)) irrevocable(e)).
The property of immutability can be used to cap-
ture the notion of transaction commit—all commit-
ted transactions are immutable while uncommitted
transactions are mutable (both revocable and ap-
pendable).

The visibility events which compose the histories
must capture sufficient semantic detail such that the
validity of the store image as projected by a given
sub-history can be determined. Furthermore, the
events must capture the range of visibility scenarios
possible in a cached store, most notably: shared ac-
cess to an image of an object and the possibility of
multiple ‘versions’ of objects existing as a result of
replication. These facets of visibility are covered by
the definition of read and write begin and end events
with respect to versions, v, of objects, o, in particular
workspaces, w: rov;w, r̄ow, wow, and w̄ov;w.

The concept of workspace is used here to refer
to a single, potentially shared, image of an object.
Interactions and potential conflicts between transac-
tions sharing a single image of an object (for space
efficiency reasons, for example) can thus be mod-
eled. Object version numbers, v, monotonically in-
crease and are incremented as part of each w̄ov event
(which corresponds to the new version of o becom-
ing visible in some scope). Read events, rov;w, may be
with respect to any existing version, v, of o and any
workspace w.

Having constructed such a model of visibility, a
number of functions are defined that will enable a
user to reason about the validity of an image of the
store as seen by a particular transaction t. The first of
these is a termination function T (hvi) which tests ter-
mination on all reads and writes within a sub-history
hvi (the notation a! b is used to denote a preceding
b in hv):

T (hvi) = (8ro 2 hvi (9r̄o 2 hvi (ro! r̄o))) ^

(8wo 2 hvi (9w̄o 2 hvi (wo ! w̄o)))

In addition, a workspace isolation function,
W (hvi;hvj), is defined such that it is true only if



no read events composing a given sub-history hvi

overlap with any write events in sub-history hvj and
are with respect to a common workspace image of an
object:

W (hvi
;hvj) =

(8row; r̄ow 2 hvi (6 9wow 2 hvj (row ! wow ! r̄ow))) ^

(8wow;w̄ow 2 hvj (6 9row 2 hvi (wow ! row ! w̄ow)))

Finally, a serializability function S(hvi;hvj ;hvk) is de-
fined such that S(hvi;hvj ;hvk) is true only if the store
image as seen by hvi is consistent (serializable) with
respect to hvj , where hvk denotes a sub-history of all
events with which conflicts are ignored:

S(hvi
;hvj

;hvk) =

8rov 2 hvi (((9w̄ov 2 hvj) _ (9w̄ov 2 (hvi[hvk))) ^

( 6 9w̄ov0
2 hvj (w̄ov ! w̄ov0

)))

The inclusion of hvk is necessary because given a de-
cision to ignore conflicts between events in hvi and
hvk, update events in hvk form part of the valid store
image seen by hvi.

With the visibility model and the three validity
functions defined, an abstract interface with respect
to visibility in a transactional object cache can now
be defined. The model is sufficiently rich to allow
the user of the abstract interface to assess the transac-
tional validity of a very wide range of visibility sce-
narios. The most restrictive set of primitives (those
needed to support basic ACID transactions) is de-
scribed first, with subsequent primitives adding gen-
erality. The complete set of well-defined primitives
are sufficient to fully describe the visibility semantics
of a transactional object cache.

Core
BeginVisibility
ReadIntention
ReadComplete
WriteIntention
WriteComplete
AbortVisibility
Terminated

Finalize
Expose

Logging
CheckpointVisibilty
RollbackVisibility

Extended Trans.
DelegateVisibility

IgnoreConflict

Table 1: Visibility primitives.

In the following description, a number of conven-
tions will be used:

� Appending an event to a sub-history implies ap-
pending the event to hv: (hvt 0 = hvt :ei)) hv:ei.

� Truncating a sub-history implies removal of
events from hv: (hvt 0

:ei = hvt) ) (hv0 = hvn ei),
where n denotes history difference.

� The operation hvi [ hvj denotes the order-
preserving merging (union) of two sub-histories.

Furthermore, by definition any manipulation of a
sub-history corresponding to an immutable transac-
tion is not permitted.

5.2.1 Visibility and Core Functionality

Using the above model of visibility, the following
primitives are sufficient to describe the visibility se-
mantics of a simple flat ACID transaction, t:

BeginVisibility(t) hvt = empty ^ T 0 = T[ftg

ReadIntention(t,o) hvt 0 = hvt :ro

ReadComplete(t,o) hvt 0 = hvt
:r̄o

WriteIntention(t,o) hvt 0 = hvt :wo

WriteComplete(t,o) hvt 0 = hvt :w̄ov

AbortVisibility(t) (hv0 = hvn hvt) ^ (T 0 = T n ftg),
where the symbol n denotes history difference
and set difference respectively (i.e. the events
composing sub-history hvt are removed from hv).

Terminated(t,o) T (hvto), where hvto refers to a sub-
history of hv consisting of all events in transac-
tion t relating to object o.

Finalize(t) (T (hvt) ^ S(hvt;hvi ;hvict ) ^ W (hvt;hvw)),
where hvi is the sub-history of hvconsisting of all
irrevocable events, hvict is the sub-history of hv
consisting of all events with which t is ignoring
conflicts, and hvw = hvn (hvt[hvict ).

Expose(t) immutable(t) = true

5.2.2 Visibility and Logging

Rollback must be handled by the visibility mecha-
nism. After a rollback, the client should see no evi-
dence of any updates or reads that were rolled back.
The following calls are required to support rollback
with respect to visibility:

CheckpointVisibility(t) hvt 0 = hvt :mi

RollbackVisibility(t,i) hvt 0

:mi :Er = hvt , where Er =
er0:er1 : : :ern



5.2.3 Visibility and Extended Transaction Models

Chrysanthis and Ramamritham [1994] have shown
delegation to be a powerful facility that can be used
as basis for extended transaction models. Delegation
refers to the delegation of responsibility for the vis-
ibility of some operation/s from one transaction to
another.

When operations are delegated, visibility of those
operations is transferred to the target transaction (i.e.
visibility events are removed from the sub-history of
one transaction and become part of the sub-history of
another transaction—their place in the history hv is
unchanged). The following primitives define visibil-
ity semantics with respect to two transactions ti and
t j and some object, o:

DelegateVisibility(t i ,tj ,o) hvti 0 = hvti nhvtio ^ hvt j 0 =
hvt j [hvtio , where hvtio is a sub-history of hvti con-
sisting of all events eo relating to a change in state
of o. These semantics are complex unless T (hvtio)
holds.

IgnoreConflict(t i ,tj ,o) (hvicti
0

= hvicti [ hvt jo) ^

(hvict j
0

= hvict j [hvtio): Thus for all events relating
to object o, ti and t j are added to each other’s ‘ig-
nore conflict’ sub-histories (hvict ). A subsequent
call to Finalize will thus ignore conflicts between
hti and ht j for those events.

A meaningful implementation of IgnoreConflict
would allow participating transactions to use the
same workspace for accesses to o. This will present
implementation challenges in the context of a dis-
tributed cache as some form of transparent, coherent
distributed shared memory (DSM) would need to ex-
ist with respect to those transactions and the set of
objects.

5.3 Cache Management
The second key dimension4 of the transactional

cache architecture is cache management. A cached
object space design is motivated by the desire to hide
latency and introduce replication through caching.
While visibility is concerned with the state of the
store as it might be seen by a given transaction, cache
management is concerned with the availability of that
image to the transaction.

Cache management can be modeled in terms of
each active transaction, t, operating over a logically
distinct cache ct within which are present some set of

4See footnote 3.

objects: ct = fo0;o1; : : : ;ong. An object is only avail-
able to a transaction if present in that transaction’s
(logically distinct) cache.

Core
Fix

Unfix

Table 2: Caching primitives.

Only two primitives are necessary for the imple-
mentation of a cache management scheme:

Fix(t,o) c0

t = ct [o

Unfix(t,o) c0

t = ct no

With these the client can notify the store of when
it requires access to a given object. The state of the
available objects is a function of the visibility control
mechanism.

5.4 Generality and Completeness
Both of the orthogonal abstractions outlined above

are general—in the sense that they are premised
only by the intrinsics of scalable object space design,
namely caching, atomicity by way of transactions, and
layered software abstractions—and complete in so far as
they support the wide range of scenarios derivable
from a combination of ACID transactions, delegation,
isolation relaxation, and checkpoint/rollback. When
brought together, the abstractions yield a full abstrac-
tion of the transactional object cache with the same
generality and completeness.

By and large the integrated semantics of the full
abstraction are straight-forward. However, it should
be emphasized that the cache is merely a means of
accessing the store image as defined by the visibility
model. Any access to the cache outside the context
of a fix(t,o), unfix(t,o) pair is not meaningful and any
access within the context of a fix(t,o), unfix(t,o) pair is
only meaningful insofar the visibility model indicates
the validity of such an access.

Finally it should be noted that although the ab-
straction is presented in terms of object-grained se-
mantics, it is applicable to data movement and co-
herency at any granularity and may be trivially
adapted to account for such.

6 Scalability of the Transactional Object
Cache

Having identified the transactional object cache as
a basis for scalable multicomputer object space de-



sign, results that point to the scalability of the archi-
tecture are now presented. The reader is referred to
[Blackburn 1997] for a more detailed analysis of the
experiments.

6.1 PSI/AOCC Scalability Experiments
The basis for the following experiments is an im-

plementation of PSI, a transactional object cache in-
terface whose semantics have been defined in terms
of the abstractions presented in section 5 and [Black-
burn 1997]. The generality of the abstraction upon
which PSI is based allows it to be implemented us-
ing a wide range of approaches to concurrency con-
trol. The experiments reported below were with
respect to PSI/AOCC, an implementation of the
AOCC (Adaptive Optimistic Concurrency Control)
‘detection-based’ transactional cache coherency algo-
rithm [Adya et al. 1995] within the PSI framework.
AOCC is the most recently published and apparently
the best performing ‘detection-based’ algorithm. Our
plans include the implementation of PS-AA [Franklin
1996; Zaharioudakis and Carey 1997], the leading
‘avoidance-based’ algorithm, within the PSI frame-
work and conduct a comparitive study.

6.1.1 AOCC

The Adaptive Optimistic Concurrency Control
(AOCC) algorithm [Adya et al. 1995] falls within
a class of detection-based client-server cache con-
sistency protocols which defer consistency actions
until commit [Franklin 1996]. Clients operate over
locally cached objects and check the consistency of
their cache with the server only at commit time.
In addition to commit-time checks, the server may
piggy-back invalidations on top of other communi-
cations with the client (for example, a response to a
client object fault). Object invalidation and faulting is
done at an adaptive grain—pages are used for initial
faults but object-grain updates are sent in response
to subsequent invalidations.

AOCC is designed for a client-server setting, and
in the context of multiple cooperating servers it
adopts a two-phase commit protocol. The use of
the two-phase commit protocol is significant because
it has important ramifications for the scalability of
AOCC [Blackburn 1997]. For this reason, the two
phase commit protocol is described here.

Each client preparing to commit first sends prepare
notices to each server ‘owning’ an object in the com-
mitting transaction’s read or write set. The prepare
notice includes a time stamp and read and write sets.
Each participating server replies with either a tenta-

tive commit or an abort depending whether the pro-
posed commit conflicts with any transaction that is
already committed or is in receipt of a tentative com-
mit at that server. The preparation phase happens
concurrently—the client sends all requests before re-
ceiving any replies. If a client receives tentative com-
mits from all participating servers, it goes ahead with
the commit, sending acks and updated objects to all
servers ‘owning’ objects in the transaction’s write set.
Otherwise, the client aborts and sends nacks to all
servers that offered a tentative commit.

6.1.2 Experimental Framework

In order to establish the scalability characteristics of
PSI/AOCC, the store was subjected to a range of
workloads under various levels of contention.

The HOTCOLD workload [Carey et al. 1994] was
adopted as the basis for the PSI/AOCC scalability ex-
periments. This workload was chosen both because
of its suitability for modeling low to moderate levels
of contention in a page serving object cache architec-
ture and because of its familiarity within the database
community. The HOTCOLD workload models con-
tention by assigning each client a disjoint range of
pages within the object space which that client will
tend to access most frequently, called a ‘hot range’.
The remainder of the database is referred to as that
client’s ‘cold range’. By varying the probability of hot
and cold accesses, various levels of contention can be
modeled.

In a multi-server context, the overall level of com-
munication and the number of servers involved in a
given commit are a function of both locality in the
hot/cold sense, and the locality of the hot ranges with
respect to servers. The HOTCOLD workload was
thus extended to include a notion of hot range/server
locality.

Localized HOTCOLD workload Localized HOT-
COLD can be thought of as a best-case scenario for
hot range/server locality. The hot range for each
client is chosen so that it is ‘owned’ by just one server
(skewing was used in the experiments to ensure that
the ‘owner’ was not the local server). In this situ-
ation, the overall level of communication and num-
ber of servers involved in the two-phase commit will
only grow as the number of accesses to objects in the
cold range grows and so will be relatively low.

Scattered HOTCOLD workload Scattered HOT-
COLD can be thought of as worst-case. Here the hot



range for each client is chosen so that the pages are
distributed across all servers. The level of commu-
nication and the number of servers involved in each
commit is therefore generally high and is largely in-
dependent of the level of contention.

In both cases, per-processor throughput is mea-
sured for different levels of contention and a constant
per-processor workload (i.e. the workload scales with
the number of nodes). In addition, the transaction
length is varied. As the transaction size increases the
read and write sets for each transaction grow. Con-
sequently the probability of conflict rises and a larger
number of servers are involved in each commit.

6.2 PSI/AOCC Scalability Results
PSI/AOCC was tested with the localized and scat-

tered HOTCOLD workloads under a wide range of
values across various dimensions of the HOTCOLD
parameter space. The results of these tests (amount-
ing to more than 2000 execution runs on the AP1000)
are summarized in figure 3. The precise details of the
workload parameter settings are presented in [Black-
burn 1997] along with more detailed results.

The graphs demonstrate that PSI/AOCC scales
very well under most conditions and that scalability
is sensitive to the probability of cold accesses, trans-
action length, and hot range/server locality.

The scalability results in figure 3 are presented in
terms of the effective number of processors seen when
using 128 processors under a range of conditions.
The effective number of processors is a measure of
the throughput seen in the 128 processor case relative
to the throughput for the base case5. If the system
were to scale perfectly the effective processor measure
would be 128. Figure 3 is therefore only a compari-
son of 128 processor throughput against base case for
a range of conditions. The results in [Blackburn 1997],
from which these were drawn, present per-processor
throughput as a function of N.

Although the results suggest that PSI/AOCC
scales well, closer analysis of the workloads re-
veals that biases built into the workloads result in
the graphs in figure 3 understating the scalability of
PSI/AOCC [Blackburn 1997].

The key finding of the PSI/AOCC scalability
experiments—that the PSI/AOCC architecture ex-
hibits a high degree of scalability under a wide range
of conditions—is qualified by the following:

� Client-server locality is very important in the
context of long, read-write transactions. In this

5The client-server nature of the AOCC algorithm dictates a base
case of N= 2.
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Figure 3: Scalability of PSI/AOCC on a 128 node Fu-
jitsu AP1000. Top to bottom: localized read-only; lo-
calized read-write; scattered read-only; and scattered
read-write.



context poor client-server locality leads to ex-
posure of inscalability in the two phase commit
protocol used by PSI/AOCC (compare second
top and bottom, figure 3).

� Transaction length and hot range/cold range lo-
cality impact on the scalability of PSI/AOCC by
increasing in the number of servers involved in
commits, which results in scale-dependent false
abort problems.

� The results reported here represent only one,
fairly general, workload. For a more complete
picture of PSI/AOCC scalability to emerge, the
system will have to be examined in the context
of a wider range of workloads.

It is noteworthy that once biases in the workloads
are taken into account [Blackburn 1997], significant
scalability problems are evident in only three out of
the sixteen cases presented in figure 3. In the thirteen
remaining cases, scalability ranges from very good to
outstanding. Furthermore, the scalability of practi-
cal applications is unlikely to ever fall as low as the
worst results reported here, as no practical applica-
tions is likely to be so heavily network I/O bound
(the experiments set the time spent on computation
other than cache coherency, ThinkTime, at 0, which is
clearly unrealistic for normal applications).

7 Persistence

The persistence of objects held in the store, the cen-
tral component of the transactional object cache archi-
tecture, has not been addressed in the previous sec-
tions of this paper. In fact, persistence can be con-
sidered as an orthogonal property of the architecture,
the transactional object cache abstraction (section 4)
being straightforwardly extened through a ‘stability’
abstraction. The semantics of the transactional object
cache can thus be described in terms of three orthog-
onal concerns [Blackburn 1997]:

� visibility,
� cache management,

� and stability.

Blackburn [1997] uses this extended abstraction as the
basis for the development of PSI (Persistent Store In-
terface), a pinning down of the transactional interface
that is central to the transactional object cache archi-
tecture. PSI is the cornerstone of a new approach to
scalable persistent object system design.

8 Conclusions
Our work on scalable object stores is a contribution

to the challenge of finding architectural principles
for cost effective scalable computing more generally.
High end computing has a special role in scalability
research since it provides performance benchmarks
against which new ideas can be tested. Although
such benchmarks are highly dependent on applica-
tion layer programs, there are lower levels which ide-
ally are scalable for a very wide range of problems.
With this in mind we have shown that practical scal-
able object stores can be constructed on a parallel
computer platform using a transactional cache archi-
tecture and that its performance scales to a high end
platform. Our results include a reference architecture
and interface for such stores. The problem of distri-
bution in high end parallel platforms is met by sup-
porting atomicity at the interface. The atomic prop-
erty of processes operating in the store is effective
for concurrency and coherency control among dis-
tributed caches.
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