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Abstract. Generational collectors are well known as a tool for shorten-
ing pause times incurred by garbage collection and for improving garbage
collection efficiency. In this paper, we investigate how to best use gener-
ations with on-the-fly collectors. On-the-fly collectors run concurrently
with the program threads and induce very short program pauses. Thus,
the motivation for incorporating generations is focused at improving the
throughput; pauses do not matter, since they are already very short. We
propose a new collection approach, denoted age-oriented collection, for
exploiting the generational hypothesis to obtain better efficiency. This
approach is particularly useful when reference counting is used to collect
the old generation, yielding a highly efficient and non-obtrusive on-the-
fly collector. Finally, an implementation is provided demonstrating how
the age-oriented collector outperforms both the non-generational and the
generational collectors’ efficiency.

1 Introduction

Dynamic memory management and garbage collection is arguably a key factor
in supporting fast and reliable large software products. However, naive garbage
collection algorithms may have undesirable effects on program behavior, most
notably long pauses and reduced throughput3. Generational garbage collection
[20, 27] ameliorates both problems by reducing the average pause times and
increasing efficiency. The basic assumption underlying generational collectors
design is the weak generational hypothesis: “most objects have short lifetimes”.
Given this hypothesis, it makes sense to concentrate the effort on young ob-
jects which are most likely to be unreachable. Generational collectors segregate
objects according to their age into two or more groups called generations, and
run frequent collections of the young generation. Keeping the young generation
small yields frequent short collections that make room for further allocations.
The older generation (or the entire heap) is collected infrequently when space is
exhausted. Full heap collections require long pauses, but are infrequent.
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If the generational hypothesis is indeed correct, we get several advantages.
First, reducing pauses is achieved for most collections. Second, collections are
more efficient since they concentrate on the young part of the heap where a high
percentage of garbage is found. Finally, the working set size is smaller both for
the program (because it repeatedly reuses the young area) and for the collector
(because most of the collections trace over a smaller portion of the heap).

On-the-Fly Garbage Collection for Multiprocessors.
Many garbage collectors work while program threads are stopped. On multi-
processor platforms, it is not desirable to stop the program and perform the
collection in a single thread on one processor, as this leads both to long pause
times and poor processor utilization. A concurrent collector runs concurrently
with the program threads. The program threads may be stopped for a short time
to initiate and/or finish the collection. An on-the-fly collector is a concurrent col-
lector that does not need to stop the program threads simultaneously, not even
for the initialization or the completion of the collection cycle. Such collectors are
targeted at multiprocessors, usually employed as server machines.

1.1 This work

In this work, we propose a new way, denoted age-oriented collection, to better
exploit the generational hypothesis with concurrent and on-the-fly garbage col-
lectors. Concurrent collectors already achieve short pause times and therefore
the main interest in using the generational hypothesis is to try and improve the
application throughput. An age-oriented collector is defined as follows.
Definition 1: An age-oriented collector is a collector that

– always collects the entire heap (unlike generational collectors),
– during a collection it treats each generation differently (like generational col-

lectors).

Age-oriented collectors differ from generational collectors because the entire
heap is always collected (infrequently). Like the generational framework, an age-
oriented collector may be instantiated in various ways, depending on the choice
of collector for the young generation and the choice of collector for the old
generation. Reasonable instantiations should handle the young generation with
a collector that is efficient with a high death rate, and handle the old generation
with a collector that is efficient with lower death rates. In particular, our flagship
instantiation of the generic age-oriented collector employs reference counting for
the old generation and mark and sweep for the young generation. The complexity
of reference counting is proportional to the number of pointer updates and the
amount of unreachable space. Therefore, it can handle huge live spaces efficiently.
Mark and sweep benefits from a high death rate since its complexity bottleneck
is the scanning of the live objects4.
4 Avoiding the sweep by using copying collectors may be even better for the young

generation, but concurrent versions of copying collectors are not easy to obtain.



One other instantiation that we have tried (and is now delivered) with the
Jikes RVM is a parallel age-oriented collector denoted copyMS, employing mark
and sweep for the old generation, and copying for the young generation. In this
paper, we focus on the use of concurrent age-oriented collectors, which was most
successful in practice.

We build on three previous on-the-fly collectors.

1. The on-the-fly reference counting collector of Levanoni and Petrank [19].
2. The on-the-fly mark and sweep collector of Azatchi et al. [3].
3. The generational on-the-fly collector of Azatchi and Petrank [4] that uses

collector (2) for the young generation and collector (1) for full heap collec-
tions.

The third (generational) collector that builds on the first two collectors, outper-
formed the original collectors. In this paper, we also use the first and second
collector, but we combine them in an age-oriented manner. We show that the
obtained age-oriented collector outperforms even the more efficient third (gen-
erational) collector of [4].
Organization. In Section 2, we introduce the age-oriented framework and our
proposed instantiation. In Section 3, an overview of the original reference count-
ing collector [19] is presented. An overview of the age-oriented collector algo-
rithm is introduced in Section 4. Performance results are described in Section 5.
Related work is discussed in Section 6. We conclude in Section 7.

2 Age-Oriented Collection: Motivation and Overview

Although generational collectors reduce pauses and improve efficiency, they also
impose some overhead. One major overhead is the manipulation of inter-genera-
tional pointers. These are pointers that point from the old generation to the
young generation. If the young generation is collected while the old generation is
not, these pointers must be accounted for: they may be the only evidence that a
young object is reachable. Keeping record of all inter-generational pointers and
using them as roots for the young generation collection poses an overhead. Many
papers investigate reducing this overhead via efficient recording methods (e.g.,
card marking). A second overhead of generational collection is the frequent initi-
ation of young generation collections, which repeatedly involves synchronization
with the program threads, marking of all roots, etc. Using a large young gen-
eration implies less frequent collections and better throughput, but also longer
pauses (for young generation collections).

Previous on-the-fly generational collectors [14, 4] have used a fixed sized
young generation. Using a small fixed sized young generation is useful for the
stop-the-world framework as they shorten most pause times. However, the size
of the young generation does not determine the pause times with on-the-fly col-
lectors5. Hence, we can use a larger young generation in order to achieve better
5 We normally measure pauses induced by on-the-fly collectors when the number of

program threads is smaller than the number of CPU’s. If the number of threads



throughput. It has been noted in [2, 7] that the larger the young generation is,
the more efficient the generational collector gets.

Age-oriented collectors, i.e., collectors which follow definition 1, have the fol-
lowing advantages over generational collectors. Such collectors use the largest
possible young generation as they collect the old generation each time to make
more young generation space. Age-oriented collectors may usually avoid record-
ing inter-generational pointers because the entire heap is collected and inter-
generational pointers may be determined during the collection. Finally, age-
oriented collectors perform fewer collections than a generational collector. All
these properties potentially make an age-oriented collector more efficient than
a generational collector, when instantiated appropriately. Let us now motivate
reference counting for use with age-oriented collection by making a couple of
observations.

First, there is a difference between using tracing and using reference counting
to collect the old generation. A tracing collection work is proportional to the
number of reachable objects, hence there is a (relatively) fixed cost for each full
collection. Delaying a tracing collection of an old generation as far as possible is
desirable as it decreases the accumulated garbage collection work. On the other
hand, the work of reference-counting is proportional to the mutators’ work and
to the number of dead objects. This work is accumulative. Thus, delaying a
reference-counting collection does not decrease the overall garbage collection
work (it only delays and accumulates it).

A second point to note is that on-the-fly collections are triggered way before
the heap gets exhausted in order to let the collection terminate concurrently
before the free space in the heap is exhausted. If the heap does get exhausted,
concurrency is lost as the program threads must wait for the collector to finish
before they can next allocate. Mutators’ halting yields poor processor utilization:
only one processor actually works (while the rest are idle).

Putting the above two observations together we get a good match for using
reference counting with the old generation in an age-oriented collector. First,
when running a collection on-the-fly we may need to trigger it more frequently
to let it terminate on time. Furthermore, whereas a generational collector col-
lects the young generation repeatedly in order to defer as much as possible the
collection of the old generation, an age-oriented collector does not make such
a deferring attempt. When reference counting is used, running a bit more fre-
quent old collections because of the concurrent setting or due to the age-oriented
framework, does not hurt the throughput.

To summarize this motivational discussion with an overview, we instantiate
the age-oriented generic collector by choosing reference counting for the old
generation and mark and sweep for the young generation. We build on a previous
generational collector of [4]. The underlying techniques come from [19], which is
reviewed in the next section.

exceeds the number of processors, than large pause are induced by threads losing
the CPU to one another. The lengths of such pauses depend on the operating system
scheduler and is not attributed to the garbage collector.



3 Reviewing the original reference-counting collector

Section 4 describes our age-oriented collector. For completeness, we start with
a review of the sliding-views reference-counting collector [19]. The age-oriented
collector is constructed by adding some simple modifications to this collector.

The sliding-views collector [19] is an on-the-fly collector. It is a reference-
counting collector that eliminates many of the reference count updates by the
following coalescing strategy. Consider a pointer slot p that is assigned the values
o0, o1, o2, . . . , on between two garbage collections. All previous reference counting
collectors execute 2n reference count updates for these assignments: RC(o0)−−,
RC(o1)++, RC(o1)−−, RC(o2)++, . . . , RC(on)++. However, only two updates
are required: RC(o0)−− and RC(on)++.

Suppose the reference counts we have represent the heap view at the previous
collection time and we would like to update them for the current collection time.
In light of the observation above, it suffices to do the following. For each pointer
p that was modified between the two collections:

1. find p’s referent in the previous collection time (corresponding to o0 above)
and decrement its reference count, and

2. find p’s referent in the current collection time (corresponding to on above)
and increment its reference count.

It remains to devise a mechanism that records all pointers that were modified
after the previous collection. Furthermore, this mechanism should provide, for
each such pointer, its referent at the previous collection time and its referent
at the current collection time. To achieve this, a program thread maintains a
local buffer, denoted Updates buffer, in which all updated pointers are logged.
For efficiency, all pointers of an updated object are logged rather than each
single updated pointer. To make sure that each object is logged only once, a
dirty bit per object is employed to signify whether the object is logged. During
a collection, all objects are marked not dirty. Then, at the first time a thread
modifies an object, it marks the object dirty and it logs all its pointers’ previous
referents in the Updates buffer. Further modification to the (dirty) object will
not be recorded. When a new collection begins, the Updates buffer provides all
the information required to update the reference counts: it lists all modified
pointers, and keeps a record of their values before the first modification (these
are the referents of these pointers in the previous collection time). In the current
collection, the collector finds the current referent of the pointer on the heap.

A special case of modified objects are newly created objects. Such objects do
not have referents at the previous collection time since they did not exist then.
Newly created objects are created dirty (to prevent logging in the Updates buffer)
and are logged (upon creation) in a special buffer, denoted the YoungObjects
buffer. The collector increments the reference counts of their referents at the
current collection time, but does not need to do any related decrements.

An example appears in Figure 1. It depicts the heap and the buffers in two
subsequent collections, where the view of the former collection appears on the
left side. The YoungObjects buffer contains the six objects that were created
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1. Roots := programRoots ∪ SnoopedObjects
2. for each object logged in Updates do
3. - decrement rc of its previous sliding-view descendants
4. - increment rc of its current sliding-view descendants
5. for each object logged in Y oungObjects do
6. increment rc of its current sliding-view descendants
7. reclaim objects with zero rc which do not belong to Roots recursively

Fig. 4. Reference-Counting: Collection Cycle

after the last collection. Between the two collections a pointer in A was modified
to reference C. Hence, A was logged in the Updates buffer, together with its
previous referent B (which appears next to A in a smaller font). The collector
uses this information in the following way. It iterates over the objects logged in
the Updates buffer and finds A. It decrements the reference count of B, which is
A’s descendant in the previous collection, and it increments the reference count
of C, A’s descendant at the current collection time. It then iterates over the six
objects in the YoungObjects buffer. It increments the reference counts of their
descendants at the current collection time. For example, for the object F the
reference count of H is incremented.

Virtually, the above algorithm uses a snapshot of the heap. A snapshot at
time t is a copy of the content of each object in the heap at time t. To get an on-
the-fly collector, the program threads are not stopped simultaneously and thus
a snapshot cannot be used. Instead, a collection works with a sliding view of the
heap. A sliding view of the heap is associated with a time interval [t1,t2] (rather



1. Roots := programRoots ∪ SnoopedObjects
2. youngGenerationRoots := Y oungObjects ∩ Roots
3. for each object logged in Updates do
4. - decrement rc of its previous sliding-view descendants
5. - increment rc of its current sliding-view descendants, while adding

young objects whose rc is incremented into youngGenerationRoots
6. trace young objects reachable from youngGenerationRoots, while
7. incrementing the rc of each object traced
8. reclaim young objects with zero rc which do not belong to Roots
9. reclaim old objects with zero rc which do not belong to Roots recursively

Fig. 5. Age-Oriented: Collection Cycle

than a single point in time). It provides the content of each object in the heap at
an arbitrary time t, satisfying t1 ≤ t ≤ t2. In contrast to a snapshot, objects are
not all viewed at the same time. Figure 2 depicts the difference between a sliding
view and a snapshot. Using a sliding view for collection introduces a correctness
danger: objects reachability may not be reflected correctly in the view. Figure 3
shows such example, where the reachability of Z is missed in the sliding view,
although it is reachable. A solution to this problem is a snooping mechanism. The
snooping mechanism (via the write-barrier) records any object to which a new
reference is created in the heap during the time interval [t1,t2]. Snooped objects
are considered roots, and are not reclaimed in the current collection cycle.

The main phases of the sliding views algorithm (a simplified version) are
presented in Figure 4. Further details are irrelevant for this paper and can be
found in the original paper [19].

4 The Age-oriented collector

This section presents our age-oriented collector. Full details (including pseudo-
code) are omitted for lack of space, and appear in our technical report [22]. Our
age-oriented collector extends the reference counting collector of [19] by using it
for the old generation and adding a tracing collection for the young generation.
The tracing collection is in the spirit of the tracing collector in [3].

The original reference counting collector of [19] iterates over all the young
objects recorded in the YoungObjects buffer, incrementing the reference counts
of their descendants, only to find out later that most of them are dead (assuming
the weak generational hypothesis). Thus, it then decrements the reference counts
of all their descendants (before deleting them). The source of this inefficiency
is that the collector does not know in advance which of the young objects are
dead, and which are reachable. The age-oriented collector avoids this problem
by wisely detecting the roots of the young generation and tracing only the small
number of reachable young objects, updating the reference counts of reachable
young objects and their descendants during the trace.



The main phases of the age-oriented collector (ignoring irrelevant on-the-fly
issues) are presented in Figure 5. As with generational collectors, one needs to
identify all young objects directly referenced by the program roots and by old ob-
jects. We denote these objects youngGenerationRoots. The age-oriented collector
obtains these roots for free from the data structure of the original collector. An
old object that references a young object must have been modified after the pre-
vious collection, as the young object did not exist earlier. All modified objects are
logged in the Updates buffer. After locating the roots, the tracing of the young
generation uses the current sliding views as explained in Section 3. Dead young
objects are freed via sweep on the Y oungObjects buffer and dead old objects
are freed as usual by recursive freeing of the reference counting algorithm.

Example. We use Figure 1 to present the principles of the age-oriented
collector. The previous sliding view is depicted on the left side, and the current
sliding view is depicted on the right. The roots are depicted above the heap and
the old generation (containing A and B) is visibly separated on the left side of
the heap from the young generation, which is depicted on the right side of the
heap. When the age-oriented collector scans the objects logged in the Updates
buffer (line 3 in the pseudo-code of Figure 5), it finds A. It decrements the
reference count of B, its descendant in the previous sliding view (line 4 in the
pseudo-code), and increments the reference count of C, its current sliding-view
values (line 5). The incremented values that belong to the young generation (C)
are considered roots for the young generation tracing (line 5). An additional
young generation root is D which is directly referenced by the program roots
(line 2). Hence, the age-oriented collector traces the young generation from C
and D (line 6). In comparison, the original reference counting collector would
have iterated over the six young objects incrementing the reference counts of
their current sliding view, only to find out later that the work spent on F , G
and H was redundant.

As with any reference counting collector, this age-oriented algorithm cannot
reclaim cyclic data structures in the old generation (cyclic structures in the young
generation are collected immediately). To reclaim such structures, the tracing
sliding view algorithm of [3] is run infrequently on the full heap.

Since the on-the-fly collector we build on [19] does not move objects, the
partitioning to young and old generations is logical (as in [10, 14, 4]). A bit per
object indicates whether the object is young or old. If a young object survives a
collection, it is considered old in the next collection.

The new collector retains the characteristics of the original collector. In par-
ticular, it is adequate for a multithreaded environment and a multiprocessor
platform, it retains the short pauses of the original collectors, and it has the
potential to be efficient (which indeed is shown in the measurements below).

5 Platforms, Benchmarks, and Measurements

An Implementation for Java. The age-oriented collector was implemented
in the Jikes RVM [1] (using the baseline compiler of version 2.0.3), a research
Java virtual machine. The collector is suitable for any other JVM as well.



Platform and benchmarks. We run measurements on a 4-way IBM Netfin-
ity 8500R server with a 550MHz Intel Pentium III Xeon processor and 2GB
of physical memory. The benchmarks used were the SPECjvm98 benchmark
suite and the SPECjbb2000 benchmark (described in [24]). The multithreaded
SPECjbb2000 benchmark is more important, as the SPECjvm98 are mostly
single-threaded and our algorithm, being on-the-fly, is targeted at multithreaded
programs running on multi-processors. SPECjbb2000 runs in a single JVM in
which threads represent terminals in a warehouse. It is run with one terminal
per warehouse, thus, the number of warehouses signifies the number of threads.

Testing procedure. We used the benchmark suite using the test harness,
performing standard automated runs of all the benchmarks in the suite. Each
benchmark was run five times for each of the JVM’s involved (each implementing
a different collector). The average of this 5 runs is reported. Finally, each JVM
was run on varying heap sizes. For the SPECjvm98 suite, we started with a
24MB heap size and extended the sizes by 8MB increments until a final large
size of 96MB. For SPECjbb2000 we started from 256MB heap size and extended
by 64MB increments until a final large size of 704MB. It should be noted that
Jikes requires larger sizes than other JVMs because the same heap is used both
for the application and for the data structures of the JVM itself.

The compared collectors. The age-oriented collector was tested against
3 collectors. First, against the original reference counting collector [19], denoted
the original collector. Second, against the generational collector of [4], denoted
the generational collector. And finally, against the Jikes parallel stop-the-world
mark and sweep collector. Recall that the second (generational) collector of
[4] is a collector that builds on exactly the same two collectors of [19, 3], but
it combines them in the standard generational manner, whereas we combined
them according to the age-oriented framework.

5.1 Comparison with Related On-the-Fly Collectors

SPECjbb2000. In Figure 6 we report the throughput results for the genera-
tional collector and the age-oriented collector against the original collector with
the SPECjbb2000 benchmark. With 1-3 warehouses, the collectors do not dif-
fer much, as they run concurrently on a spare processor (on our 4-way ma-
chine), and usually manage to handle all their work while mutators are running.
With 4-8 warehouses, the collector shares a processor with the program threads
(yet, given a higher priority). Thus, the efficiency of the collector influences the
throughput of the whole system. The results show that the age-oriented collec-
tor substantially outperforms the generational collector, which already performs
better than the original collector. The superiority of the age-oriented collector
is usually higher with (relatively) small heaps where more garbage collections
are required. The generational collector is less efficient on tight heaps, since full
collections cannot be postponed much. The improvements of the age-oriented
are less visible with larger heaps simply because there are fewer collections, and
less time spent on collections.
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Fig. 6. SPECjbb2000 on a multiprocessor: throughput ratio of the generational and the
age-oriented collector for 1-8 warehouses. The higher the ratio, the better the measured
collector performs compared to the original reference counting collector. jbbi stands
for running with i terminals, i.e., i program threads.



20 30 40 50 60 70 80 90 100
0.95

1

1.05

1.1

1.15

R
un

 ti
m

e 
ra

tio
: a

ge
 o

rie
nt

ed
/L

ev
an

on
i−

P
et

ra
nk

heap size[MB]

SPECjvm98 − Multiprocessor

Jess
Db
Javac
Mtrt2
Jack

20 30 40 50 60 70 80 90 100
0.95

1

1.05

1.1

1.15

R
un

 ti
m

e 
ra

tio
: a

ge
 o

rie
nt

ed
/g

en
er

at
io

na
l

heap size[MB]

SPECjvm98 − Multiprocessor

Jess
Db
Javac
Mtrt2
Jack

Fig. 7. SPECjvm98 on a multiprocessor: run-time ratio of the age-oriented collector
compared to the original collector (left) and compared to the generational collector
(right). The higher the ratio, the better the age-oriented collector performs compared
to the other collector.

SPECjvm98. Figure 7 presents comparison of the age-oriented collector
with the original collector and with the generational collector over all the suite’s
benchmarks6. When running the SPECjvm98 benchmarks on a multiprocessor,
the collector thread can run on a designated processor and hardly influence the
throughput7. The results show that the age-oriented collector performs slightly
better than both the original collector and the generational collector. Large vari-
ations in performance are especially noticeable with 213 javac. The reason for
these fluctuations is that 213 javac creates many garbage cycles in the old gen-
eration. All three collectors (the age-oriented, the generational and the original)
rely on a backup tracing collector to collect these cycles. Collection of these
cycles is triggered at irregular times resulting in the observed fluctuations.

5.2 Comparison to a Stop-the-World Collector

Using an on-the-fly collector leads to extremely short pause times, but has a
throughput cost. To measure this cost, we have compared the performance of the
age-oriented collector against the Jikes parallel stop-the-world mark and sweep
collector. In this comparison, the multithreaded SPECjbb2000 was run on a 4-
way platform, and SPECjvm98 benchmarks were run on a uniprocessor. The
results, appearing in figure 8, show that unless the heap is tight (and then the
mutators exhaust the heap before the concurrent collector is done) the overhead
incurred by running the collector concurrently is up to 10%. Obtaining short
pauses normally require a pay in the throughput. A 10% throughput reduction
is considered a small pay for a two orders of magnitude reduction in the pause

6 Measurements of 222 mpegaudio and 201 compress are not presented.
222 mpegaudio does not perform meaningful allocation activity. 201 compress
heavily depends on a tracing collector as it creates substantial garbage cycles, so its
measurements are not relevant for a comparison to a reference counting collector.

7 Further uniprocessor results are given in our technical report [22].



250 300 350 400 450 500 550 600 650 700 750
0.8

0.85

0.9

0.95

1

1.05

T
hr

ou
gh

pu
t r

at
io

Heap size[MB]

SPECjbb2000 − Against Jikes parallel

jbb1
jbb2
jbb3
jbb4
jbb5
jbb6
jbb7
jbb8

30 40 50 60 70 80 90 100
0.8

0.85

0.9

0.95

1

1.05

1.1

R
un

 ti
m

e 
ra

tio

heap size[MB]

SPECjvm98 − Against Jikes parallel

Jess
Db
Javac
Mtrt
Jack

Fig. 8. SPECjbb2000 on a multiprocessor (left) and SPECjvm98 on a uniprocessor
(right): comparison against Jikes parallel mark and sweep collector. The higher the
ratio, the better the age-oriented collector performs compared to Jikes collector.

times (see pause time measurements in Section 5.3 below). The tight conditions
highlight the advantage of parallel collectors in this setting. Parallel collectors
always exploit all CPUs, while our on-the-fly collector uses only one processor
while all program threads wait for free space to allocate. An exception is seen
with the 213 javac benchmark. This benchmark creates cycles that are promoted
to the old generation and die there. Since the age-oriented collector employs
reference-counting with the old-generation, it does not collect these garbage
cycles, causing frequent garbage collection invocations.

5.3 Pause times

Table 1 presents the maximum pause times of the age-oriented collector and
Jikes parallel collector. Pauses were measured with a 64MB heap for SPECjvm98
benchmarks, and a 256MB heap for SPECjbb2000 with 1, 2, and 3 warehouses.
For this number of threads, no thread gets swapped out, and so pauses are due
to the garbage collection only. If we run more program threads, large pause
times (whose lengths depend on the operating system scheduler) appear because
threads lose the CPU to other threads.

The maximum pause time of 2.1ms, measured for the age-oriented collector,
is two orders of magnitude shorter than that of Jikes parallel collector. The
length of the age-oriented pause time is dominated by the time it takes to scan
the roots of a single thread (occurring in one of the handshakes). This operation
also dominates the pause time of the previous on-the-fly collectors [19, 4], and
thus their pause times are similar (see [19, 4] for specific measurements of pause
times for these collectors). Hence, the age-oriented collector achieves a significant
throughput improvement over the original reference counting collector and over
the generational collectors, while retaining the short pause times.

It is important to note that the pauses induced by the collector do not hap-
pen frequently. If pauses of 2ms occurred once every 3ms, then pause times
would loose their meaning and we should look at mutator’s minimum utilization



(MMU). However, in our case, the pauses form a negligible part of the collection
cycle, and are split far apart from each other.

Maximum pause time(ms) compress jess db javac mtrt jack jbb-1 jbb-2 jbb-3

Age-oriented 1.0 1.7 1.1 2.1 1.4 1.2 1.1 1.4 1.9

Jikes Parallel 195 261 188 643 225 376 322 417 511
Table 1. Maximum pause time in milliseconds

6 Related work

Generational garbage collection was introduced by Lieberman and Hewitt [20],
and the first published implementation was by Ungar [27]. Both algorithms aimed
to reduce the running time of most collections by focusing on the young objects.

Appel [2] presented a generational collector with variable young generation
size: all its free space is devoted to the young generation. When the young gen-
eration becomes full, it collects the young generation, copying surviving objects
to the older generation, and reducing the young generation size by this space.
Major collections are executed only when the old generation occupies the entire
heap. We push this idea further by proposing to always collect the old generation
together with the young generation to make room for a large young generation.

Demers, et al. [10] presented a generational collector which does not move
objects, hence appropriate for conservative garbage collection. They partition the
heap logically (instead of physically separating between generations) by keeping a
bit per object indicating whether it is young or old. We adopt this idea. However,
their collector is not concurrent.

The study of on-the-fly garbage collectors was initiated by Steele and Dijk-
stra, et al. [25, 26, 11] and continued in a series of papers culminating in [14, 5, 17,
19, 3]. The advantage of an on-the-fly collector over a parallel collector and other
types of concurrent collectors [6, 23, 9, 15, 16, 18], is that it avoids the operation
of stopping all the program threads and incurs very short pauses.

Incorporations of generational collectors into on-the-fly collectors were done
by Domani et al. [14], and by Azatchi and Petrank [4]8. Both works employed
fixed-sized young generation and both showed that combining generations with
on-the-fly collectors may be useful. Domani et al. used the Doligez-Leroy-Gonthier
mark and sweep collector [13, 12] both for the collection of the young generation
and the collection of the full heap. The generational collector of [4] used the same
basic collectors that we use here for the age-oriented collector. Results show that
using these collectors for an age-oriented collection is more efficient than using
them for a generational collection.

Blackburn and McKinley [8] implemented a uniprocessor stop-the-world gen-
erational collector with reference counting for the old generation and copying for

8 A partial incorporation of generations with an on-the-fly collector was used by
Doligez, Leroy, and Gonthier [13, 12]. The whole scheme depends on the fact that
many objects in ML are immutable. This is not true for Java and other imperative
languages. Furthermore, the collection of the young generation is not concurrent.



the young. Their goal was to shorten the pauses a stop-the-world reference count-
ing incurs, while obtaining good throughput. They run part of the old generation
collection together with the young collection in order to avoid the need for a full
collection that requires a long pause. The (controlled) pause times they obtain
are an order of magnitude larger than those obtained by on-the-fly collectors.

7 Conclusion

We have proposed a framework of garbage collectors called age-oriented collec-
tors. These collectors exploit the generational hypothesis in a different manner
than standard generational collectors. Instead of running frequent young gener-
ation collections, the entire heap is collected infrequently, but young objects are
treated differently from old objects. An age-oriented collector does not need to
record inter-generational pointers, and avoids the overhead of initiating frequent
young generation collections. The most fitting use of age-oriented collectors is
with on-the-fly collectors and particularly when the old generation is collected
via reference counting.

We have designed and implemented an instantiation of an age-oriented collec-
tor, based on the reference counting collector of [19] and the tracing collector of
[3], in which reference counting collects the old objects and mark and sweep col-
lects the young objects. This age-oriented collector was implemented on the Jikes
RVM. Our measurements show that this collector maintains the short pauses of
the original collectors and significantly outperforms both the original reference
counting collector as well as the generational variant.
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