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Description
tssmooth hwinters is used in smoothing or forecasting a series that can be modeled as a linear

trend in which the intercept and the coefficient on time vary over time.

Quick start
Create smooth using Holt–Winters nonseasonal smoothing over y with tsset data

tssmooth hwinters smooth=y

Same as above, but forecast 10 periods out of sample
tssmooth hwinters smooth=y, forecast(10)

Same as above, but use 111 and 112 as the initial values for the recursion
tssmooth hwinters smooth=y, forecast(10) s0(111 112)

Same as above, but use 0.5 and 0.3 as the smoothing parameters
tssmooth hwinters smooth=y, forecast(10) s0(111 112) parms(.5 .3)

Note: The above commands can also be used to apply the smoother separately to each panel of a
panel dataset when a panelvar has been specified using tsset or xtset.

Menu
Statistics > Time series > Smoothers/univariate forecasters > Holt–Winters nonseasonal smoothing
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Syntax
tssmooth hwinters

[
type

]
newvar = exp

[
if
] [

in
] [

, options
]

options Description

Main

replace replace newvar if it already exists
parms(#α #β) use #α and #β as smoothing parameters
samp0(#) use # observations to obtain initial values for recursion
s0(#cons #lt) use #cons and #lt as initial values for recursion
forecast(#) use # periods for the out-of-sample forecast

Options

diff alternative initial-value specification; see Options

Maximization

maximize options control the maximization process; seldom used
from(#α #β) use #α and #β as starting values for the parameters

You must tsset your data before using tssmooth hwinters; see [TS] tsset.
exp may contain time-series operators; see [U] 11.4.4 Time-series varlists.
collect is allowed; see [U] 11.1.10 Prefix commands.

Options

� � �
Main �

replace replaces newvar if it already exists.

parms(#α #β), 0 ≤ #α ≤ 1 and 0 ≤ #β ≤ 1, specifies the parameters. If parms() is not specified,
the values are chosen by an iterative process to minimize the in-sample sum-of-squared prediction
errors.

If you experience difficulty converging (many iterations and “not concave” messages), try using
from() to provide better starting values.

samp0(#) and s0(#cons #lt) specify how the initial values #cons and #lt for the recursion are
obtained.

By default, initial values are obtained by fitting a linear regression with a time trend using the
first half of the observations in the dataset.

samp0(#) specifies that the first # observations be used in that regression.

s0(#cons #lt) specifies that #cons and #lt be used as initial values.

forecast(#) specifies the number of periods for the out-of-sample prediction; 0 ≤ # ≤ 500. The
default is forecast(0), which is equivalent to not performing an out-of-sample forecast.

� � �
Options �

diff specifies that the linear term is obtained by averaging the first difference of expt and the intercept
is obtained as the difference of exp in the first observation and the mean of D.expt.

If the diff option is not specified, a linear regression of expt on a constant and t is fit.

https://www.stata.com/manuals/d.pdf#dDatatypes
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u13.pdf#u13Functionsandexpressions
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/tstsset.pdf#tstsset
https://www.stata.com/manuals/u11.pdf#u11.4.4Time-seriesvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
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� � �
Maximization �

maximize options controls the process for solving for the optimal α and β when parms() is not
specified.

maximize options: nodifficult, technique(algorithm spec), iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), and nonrtolerance; see [R] Maximize. These options are seldom used.

from(#α #β), 0 < #α < 1 and 0 < #β < 1, specifies starting values from which the optimal values
of α and β will be obtained. If from() is not specified, from(.5 .5) is used.

Remarks and examples stata.com

The Holt–Winters method forecasts series of the form

x̂t+1 = at + btt

where x̂t is the forecast of the original series xt, at is a mean that drifts over time, and bt is a
coefficient on time that also drifts. In fact, as Gardner (1985) has noted, the Holt–Winters method
produces optimal forecasts for an ARIMA(0,2,2) model and some local linear models. See [TS] arima
and the references in that entry for ARIMA models, and see Harvey (1989) for a discussion of the
local linear model and its relationship to the Holt–Winters method. Abraham and Ledolter (1983),
Bowerman, O’Connell, and Koehler (2005), and Montgomery, Johnson, and Gardiner (1990) all
provide good introductions to the Holt–Winters method. Chatfield (2001, 2004) provides helpful
discussions of how this method relates to modern time-series analysis.

The Holt–Winters method can be viewed as an extension of double-exponential smoothing with
two parameters, which may be explicitly set or chosen to minimize the in-sample sum-of-squared
forecast errors. In the latter case, as discussed in Methods and formulas, the smoothing parameters
are chosen to minimize the in-sample sum-of-squared forecast errors plus a penalty term that helps
to achieve convergence when one of the parameters is too close to the boundary.

Given the series xt, the smoothing parameters α and β, and the starting values a0 and b0, the
updating equations are

at = αxt + (1− α) (at−1 + bt−1)

bt = β (at − at−1) + (1− β) bt−1

After computing the series of constant and linear terms, at and bt, respectively, the τ -step-ahead
prediction of xt is given by

x̂t+τ = at + btτ

Example 1: Smoothing a series for specified parameters

Below we show how to use tssmooth hwinters with specified smoothing parameters. This
example also shows that the Holt–Winters method can closely follow a series in which both the mean
and the time coefficient drift over time.

https://www.stata.com/manuals/rmaximize.pdf#rMaximizeSyntaxalgorithm_spec
https://www.stata.com/manuals/rmaximize.pdf#rMaximize
http://stata.com
https://www.stata.com/manuals/tsarima.pdf#tsarima
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Suppose that we have data on the monthly sales of a book and that we want to forecast this series
with the Holt–Winters method.

. use https://www.stata-press.com/data/r18/bsales

. tssmooth hwinters hw1=sales, parms(.7 .3) forecast(3)

Specified weights:
alpha = 0.7000
beta = 0.3000

sum-of-squared residuals = 2301.046
root mean squared error = 6.192799

. tsline sales hw1, title("Holt-Winters forecast with alpha = .7 and beta = .3")
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Time

Sales hw parms(0.700 0.300) = sales

Holt–Winters forecast with alpha = .7 and beta = .3

The graph indicates that the forecasts are for linearly decreasing sales. Given aT and bT , the out-of-
sample predictions are linear functions of time. In this example, the slope appears to be too steep,
probably because our choice of α and β.

Example 2: Choosing the initial values

The graph in the previous example illustrates that the starting values for the linear and constant
series can affect the in-sample fit of the predicted series for the first few observations. The previous
example used the default method for obtaining the initial values for the recursion. The output below
illustrates that, for some problems, the differenced-based initial values provide a better in-sample fit
for the first few observations. However, the differenced-based initial values do not always outperform
the regression-based initial values. Furthermore, as shown in the output below, for series of reasonable
length, the predictions produced are nearly identical.
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. tssmooth hwinters hw2=sales, parms(.7 .3) forecast(3) diff

Specified weights:
alpha = 0.7000
beta = 0.3000

sum-of-squared residuals = 2261.173
root mean squared error = 6.13891

. list hw1 hw2 if _n<6 | _n>57

hw1 hw2

1. 93.31973 97.80807
2. 98.40002 98.11447
3. 100.8845 99.2267
4. 98.50404 96.78276
5. 93.62408 92.2452

58. 116.5771 116.5771
59. 119.2146 119.2146
60. 119.2608 119.2608
61. 111.0299 111.0299
62. 109.2815 109.2815

63. 107.5331 107.5331

When the smoothing parameters are chosen to minimize the in-sample sum-of-squared forecast
errors, changing the initial values can affect the choice of the optimal α and β. When changing the
initial values results in different optimal values for α and β, the predictions will also differ.

When the Holt–Winters model fits the data well, finding the optimal smoothing parameters
generally proceeds well. When the model fits poorly, finding the α and β that minimize the in-sample
sum-of-squared forecast errors can be difficult.

Example 3: Forecasting with optimal parameters

In this example, we forecast the book sales data using the α and β that minimize the in-sample
squared forecast errors.
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. tssmooth hwinters hw3=sales, forecast(3)
computing optimal weights

Iteration 0: Penalized RSS = -2632.2073 (not concave)
Iteration 1: Penalized RSS = -1982.8431
Iteration 2: Penalized RSS = -1976.4236
Iteration 3: Penalized RSS = -1975.9172
Iteration 4: Penalized RSS = -1975.9036
Iteration 5: Penalized RSS = -1975.9036

Optimal weights:
alpha = 0.8209
beta = 0.0067

penalized sum-of-squared residuals = 1975.904
sum-of-squared residuals = 1975.904
root mean squared error = 5.738617

The following graph contains the data and the forecast using the optimal α and β. Comparing
this graph with the one above illustrates how different choices of α and β can lead to very different
forecasts. Instead of linearly decreasing sales, the new forecast is for linearly increasing sales.

. tsline sales hw3, title("Holt-Winters forecast with optimal alpha and beta")
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Sales hw parms(0.821 0.007) = sales

Holt–Winters forecast with optimal alpha and beta

Stored results
tssmooth hwinters stores the following in r():

Scalars
r(N) number of observations r(N pre) number of observations used
r(alpha) α smoothing parameter in calculating starting values
r(beta) β smoothing parameter r(s2 0) initial value for linear term
r(rss) sum-of-squared errors r(s1 0) initial value for constant term
r(prss) penalized sum-of-squared errors, r(linear) final value of linear term

if parms() not specified r(constant) final value of constant term
r(rmse) root mean squared error

Macros
r(method) smoothing method r(timevar) time variables specified in tsset
r(exp) expression specified r(panelvar) panel variables specified in tsset
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Methods and formulas
A truncated description of the specified Holt–Winters filter is used to label the new variable. See

[D] label for more information on labels.

An untruncated description of the specified Holt–Winters filter is saved in the characteristic named
tssmooth for the new variable. See [P] char for more information on characteristics.

Given the series, xt; the smoothing parameters, α and β; and the starting values, a0 and b0, the
updating equations are

at = αxt + (1− α) (at−1 + bt−1)

bt = β (at − at−1) + (1− β) bt−1

By default, the initial values are found by fitting a linear regression with a time trend. The time
variable in this regression is normalized to equal one in the first period included in the sample. By
default, one-half of the data is used in this regression, but this sample can be changed using samp0().
a0 is then set to the estimate of the constant, and b0 is set to the estimate of the coefficient on the
time trend. Specifying the diff option sets b0 to the mean of D.x and a0 to x1 − b0. s0() can also
be used to specify the initial values directly.

Sometimes, one or both of the optimal parameters may lie on the boundary of [ 0, 1 ]. To keep the
estimates inside [ 0, 1 ], tssmooth hwinters parameterizes the objective function in terms of their
inverse logits, that is, in terms of exp(α)/{1 + exp(α)} and exp(β)/{1 + exp(β)}. When one of
these parameters is actually on the boundary, this can complicate the optimization. For this reason,
tssmooth hwinters optimizes a penalized sum-of-squared forecast errors. Let x̂t(α̃, β̃) be the
forecast for the series xt, given the choices of α̃ and β̃. Then the in-sample penalized sum-of-squared
prediction errors is

P =

T∑
t=1

[
{xt − x̂t(α̃, β̃)}2 + I|f(α̃)|>12)

(|f(α̃)| − 12)2 + I|f(β̃)|>12)
(|f(β̃)| − 12)2

]
where f(x) = ln {x(1− x)}. The penalty term is zero unless one of the parameters is close to the
boundary. When one of the parameters is close to the boundary, the penalty term will help to obtain
convergence.
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