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Description

lasso selects covariates and fits linear, logistic, probit, Poisson, and Cox proportional hazards
models. Results from lasso can be used for prediction and model selection.

lasso saves but does not display estimated coefficients. The postestimation commands listed in
[LASSO] lasso postestimation can be used to generate predictions, report coefficients, and display
measures of fit.

For an introduction to lasso, see [LASSO] Lasso intro.

For a description of the lasso-fitting procedure, see [LASSO] lasso fitting.

Quick start
Fit a linear model for y1, and select covariates from x1 to x100 using cross-validation (CV)

lasso linear y1 x1-x100

Same as above, but force x1 and x2 to be in the model while lasso selects from x3 to x100

lasso linear y1 (x1 x2) x3-x100

Same as above, but fit an adaptive lasso with three steps
lasso linear y1 (x1 x2) x3-x100, selection(adaptive, steps(3))

Fit a logistic model for binary outcome y2, and set a random-number seed for reproducibility
lasso logit y2 x1-x100, rseed(1234)

Fit a Poisson model for count outcome y3 with exposure time

lasso poisson y3 x1-x100, exposure(time) rseed(1234)

Calculate the CV function beyond the CV minimum to get the full coefficient paths, knots, etc.
lasso linear y2 x1-x100, selection(cv, alllambdas)

Turn off the early stopping rule, and iterate over λ’s until a minimum is found or until the end of
the λ grid is reached

lasso linear y1 x1-x100, stop(0)

Same as above, but extend the λ grid to smaller values
lasso linear y1 x1-x100, stop(0) grid(100, ratio(1e-5))

Fit a Cox proportional hazards model for t with failure indicator fail, and select covariates from
x1 to x100 using CV

stset t, failure(fail)
lasso cox x1-x100

Same as above, but select covariates by minimizing the Bayesian information criterion (BIC) function
lasso cox x1-x100, selection(bic)
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Menu
Statistics > Lasso > Lasso

Syntax

For linear, logit, probit, and Poisson models

lasso model depvar
[
(alwaysvars)

]
othervars

[
if
] [

in
] [

weight
] [

, options
]

For Cox models

lasso cox
[
(alwaysvars)

]
othervars

[
if
] [

in
] [

, options
]

model is one of linear, logit, probit, or poisson.

alwaysvars are variables that are always included in the model.

othervars are variables that lasso will choose to include in or exclude from the model.

options Description

Model
∗noconstant suppress constant term
selection(sel method) selection method to select a value of the lasso

penalty parameter λ∗ from the set of possible λ’s
offset(varnameo) include varnameo in model with coefficient constrained to 1
exposure(varnamee) include ln(varnamee) in model with coefficient constrained

to 1 (poisson model only)
∗cluster(clustvar) specify cluster variable clustvar

Optimization[
no
]
log display or suppress an iteration log

rseed(#) set random-number seed
grid(#g

[
, ratio(#) min(#)

]
) specify the set of possible λ’s using a logarithmic grid with

#g grid points
stop(#) tolerance for stopping the iteration over the λ grid early
cvtolerance(#) tolerance for identification of the CV function minimum
bictolerance(#) tolerance for identification of the BIC function minimum
tolerance(#) convergence tolerance for coefficients based on their values
dtolerance(#) convergence tolerance for coefficients based on deviance

penaltywt(matname) programmer’s option for specifying a vector of weights for
the coefficients in the penalty term

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
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sel method Description

cv
[
, cv opts

]
select λ∗ using CV; the default

adaptive
[
, adapt opts cv opts

]
select λ∗ using an adaptive lasso

∗plugin
[
, plugin opts

]
select λ∗ using a plugin iterative formula

bic
[
, bic opts

]
select λ∗ using BIC function

none do not select λ∗

cv opts Description

folds(#) use # folds for CV
alllambdas fit models for all λ’s in the grid or until the stop(#) tolerance is reached;

by default, the CV function is calculated sequentially by λ, and estimation
stops when a minimum is identified

serule use the one-standard-error rule to select λ∗

stopok when the CV function does not have an identified minimum and the stop(#)
stopping criterion for λ was reached at λstop, set the selected λ∗ to be
λstop; the default

strict do not select λ∗ when the CV function does not have an identified minimum;
this is a stricter alternative to the default stopok

gridminok when the CV function does not have an identified minimum and the stop(#)
stopping criterion for λ was not reached, set the selected λ∗ to be the
minimum of the λ grid, λgmin; this is a looser alternative to the default
stopok and is rarely used

adapt opts Description

steps(#) use # adaptive steps (counting the initial lasso as step 1)
unpenalized use the unpenalized estimator to construct initial weights
ridge use the ridge estimator to construct initial weights
power(#) raise weights to the # th power

plugin opts Description

heteroskedastic assume model errors are heteroskedastic; the default
homoskedastic assume model errors are homoskedastic
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bic opts Description

alllambdas fit models for all λ’s in the grid or until the stop(#) tolerance is reached;
by default, the BIC function is calculated sequentially by λ, and estimation
stops when a minimum is identified

stopok when the BIC function does not have an identified minimum and the stop(#)
stopping criterion for λ was reached at λstop, set the selected λ∗ to be
λstop; the default

strict do not select λ∗ when the BIC function does not have an identified minimum;
this is a stricter alternative to the default stopok

gridminok when the BIC function does not have an identified minimum and the stop(#)
stopping criterion for λ was not reached, set the selected λ∗ to be the
minimum of the λ grid, λgmin; this is a looser alternative to the default
stopok and is rarely used

postselection use postselection coefficients to compute BIC

∗noconstant, cluster(), and selection(plugin) are not allowed with lasso cox.
You must stset your data before using lasso cox; see [ST] stset.
alwaysvars and othervars may contain factor variables; see [U] 11.4.3 Factor variables.
collect is allowed; see [U] 11.1.10 Prefix commands.
Default weights are not allowed. iweights are allowed with all sel method options. fweights are allowed when

selection(plugin), selection(bic), or selection(none) is specified. See [U] 11.1.6 weight. For lasso
cox, weights must be specified when you stset your data.

penaltywt(matname) does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options
Lasso estimation consists of three steps that the software performs automatically. Understanding the
steps is important for understanding how to specify options. A grid for λ is used for selection methods
cv, adaptive, bic, and none. selection(adaptive) resets the grid in the second and subsequent
lassos. selection(plugin) bypasses steps 1 and 2. It does not require a λ grid.

Step 1: Set λ grid
A grid for λ is set. Either the default grid can be used or grid options can be specified to modify
the default. The maximum λ in the grid is λgmax. It is automatically set to the smallest λ yielding
a model with all coefficients zero. The minimum λ in the grid is λgmin. Typically, estimation
ends before λgmin is reached when a minimum of the CV or BIC function is found. If λgmin

is reached without finding a minimum, you may want to make λgmin smaller. You can do this
by setting λgmin or, alternatively, by setting the ratio λgmin/λgmax to a smaller value. See the
grid() option below.

Step 2: Fit the model for next λ in grid
For each λ in the grid, the set of nonzero coefficients is estimated. Estimation starts with λgmax

and iterates toward λgmin. The iteration stops when a minimum of the CV or BIC function is found,
the stop(#) stopping tolerance is met, or λgmin is reached. When the deviance changes by less
than a relative difference of stop(#), the iteration over λ ends. To turn off this stopping rule,
specify stop(0). See the optimization options below.

Step 3: Select λ∗

A λ denoted by λ∗ is selected. selection(sel method) specifies the method used to select λ∗.
The allowed sel methods are cv (the default), adaptive, plugin, bic, and none:

https://www.stata.com/manuals/ststset.pdf#ststset
https://www.stata.com/manuals/u11.pdf#u11.4.3Factorvariables
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/u11.pdf#u11.1.6weight
https://www.stata.com/manuals/ststset.pdf#ststset
https://www.stata.com/manuals/u20.pdf#u20Estimationandpostestimationcommands
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cv, the default, uses CV to select λ∗. After a model is fit for each λ, the CV function is computed.
If a minimum of the CV function is identified, iteration over the λ grid ends. To compute the
CV function for additional λ’s past the minimum, specify the suboption alllambdas. When you
specify this option, step 2 is first done for all λ’s until the stopping tolerance is met or the end of
the grid is reached. Then, the CV function is computed for all λ’s and searched for a minimum.
See the suboptions for selection(cv) below.

adaptive also uses CV to select λ∗, but multiple lassos are performed. In the first lasso, a λ∗ is
selected, and penalty weights are constructed from the coefficient estimates. Then, these weights
are used in a second lasso where another λ∗ is selected. By default, two lassos are performed, but
more can be specified. See the suboptions for selection(adaptive) below.

plugin computes λ∗ based on an iterative formula. Coefficient estimates are obtained only for
this single value of λ.

bic selects λ∗ by using the BIC function. It selects λ∗ with the minimum BIC function value.

none does not select a λ∗. Neither the CV function nor the BIC function is computed. Models
are fit for all λ’s until the stopping tolerance is met or the end of the grid is reached. lasso
postestimation commands can be used to assess different λ’s and select λ∗.

A longer description of the lasso-fitting procedure is given in [LASSO] lasso fitting.

� � �
Model �

noconstant omits the constant term. Note, however, when there are factor variables among the
othervars, lasso can potentially create the equivalent of the constant term by including all levels
of a factor variable. This option is likely best used only when all the othervars are continuous
variables and there is a conceptual reason why there should be no constant term. This option is
not allowed with lasso cox.

selection(cv), selection(adaptive), selection(plugin), selection(bic), and selec-
tion(none) specify the selection method used to select λ∗. These options also allow suboptions
for controlling the specified selection method. selection(plugin) is not allowed with lasso
cox.

selection(cv
[
, cv opts

]
) is the default. It selects λ∗ to be the λ that gives the minimum of

the CV function. It is widely used when the goal is prediction. lasso postestimation commands
can be used after selection(cv) to assess alternative λ∗ values.

cv opts are folds(#), alllambdas, serule, stopok, strict, and gridminok.

folds(#) specifies that CV with # folds be done. The default is folds(10).

alllambdas specifies that models be fit for all λ’s in the grid or until the stop(#) tolerance
is reached. By default, models are calculated sequentially from largest to smallest λ, and
the CV function is calculated after each model is fit. If a minimum of the CV function is
found, the computation ends at that point without evaluating additional smaller λ’s.

alllambdas computes models for these additional smaller λ’s. Because computation time
is greater for smaller λ, specifying alllambdas may increase computation time manyfold.
Specifying alllambdas is typically done only when a full plot of the CV function is wanted
for assurance that a true minimum has been found. Regardless of whether alllambdas is
specified, the selected λ∗ will be the same.

https://www.stata.com/manuals/lassolassopostestimation.pdf#lassolassopostestimation
https://www.stata.com/manuals/lassolassopostestimation.pdf#lassolassopostestimation
https://www.stata.com/manuals/lassolassofitting.pdf#lassolassofitting
https://www.stata.com/manuals/lassolassopostestimation.pdf#lassolassopostestimation
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serule selects λ∗ based on the “one-standard-error rule” recommended by Hastie, Tibshirani,
and Wainwright (2015, 13–14) instead of the λ that minimizes the CV function. The one-
standard-error rule selects the largest λ for which the CV function is within a standard error
of the minimum of the CV function.

stopok, strict, and gridminok specify what to do when the CV function does not have
an identified minimum. A minimum is identified at λ∗ when the CV function at both larger
and smaller adjacent λ’s is greater than it is at λ∗. When the CV function has an identified
minimum, these options all do the same thing: the selected λ∗ is the λ that gives the
minimum. In some cases, however, the CV function declines monotonically as λ gets smaller
and never rises to identify a minimum. When the CV function does not have an identified
minimum, stopok and gridminok make alternative selections for λ∗, and strict makes
no selection. You may specify only one of stopok, strict, or gridminok; stopok is the
default if you do not specify one. With each of these options, estimation results are always
left in place, and alternative λ∗ can be selected and evaluated.

stopok specifies that when the CV function does not have an identified minimum and the
stop(#) stopping tolerance for λ was reached, the selected λ∗ is λstop, the λ that met
the stopping criterion. λstop is the smallest λ for which coefficients are estimated, and
it is assumed that λstop has a CV function value close to the true minimum. When no
minimum is identified and the stop(#) criterion is not met, an error is issued.

strict requires the CV function to have an identified minimum, and if not, an error is
issued.

gridminok is a rarely used option that specifies that when the CV function has no identified
minimum and the stop(#) stopping criterion was not met, λgmin, the minimum of the
λ grid, is the selected λ∗.

The gridminok selection criterion is looser than the default stopok, which is looser than
strict. With strict, only an identified minimum is selected. With stopok, either the
identified minimum or λstop is selected. With gridminok, either the identified minimum
or λstop or λgmin is selected, in this order.

selection(adaptive
[
, adapt opts cv opts

]
) selects λ∗ using the adaptive lasso selection

method. It consists of multiple lassos with each lasso step using CV. Variables with zero
coefficients are discarded after each successive lasso, and variables with nonzero coefficients
are given penalty weights designed to drive small coefficient estimates to zero in the next
step. Hence, the final model typically has fewer nonzero coefficients than a single lasso. The
adaptive method has historically been used when the goal of lasso is model selection. As with
selection(cv), lasso postestimation commands can be used after selection(adaptive)
to assess alternative λ∗.

adapt opts are steps(#), unpenalized, ridge, and power(#).

steps(#) specifies that adaptive lasso with # lassos be done. By default, # = 2. That is, two
lassos are run. After the first lasso estimation, terms with nonzero coefficients βi are given
penalty weights equal to 1/|βi|, terms with zero coefficients are omitted, and a second lasso
is estimated. Terms with small coefficients are given large weights, making it more likely
that small coefficients become zero in the second lasso. Setting # > 2 can produce more
parsimonious models. See Methods and formulas.

unpenalized specifies that the adaptive lasso use the unpenalized estimator to construct the
initial weights in the first lasso. This option is useful when CV cannot find a minimum.
unpenalized cannot be specified with ridge.

https://www.stata.com/manuals/lassolassopostestimation.pdf#lassolassopostestimation
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ridge specifies that the adaptive lasso use the ridge estimator to construct the initial weights
in the first lasso. ridge cannot be specified with unpenalized.

power(#) specifies that the adaptive lasso raise the weights to the # th power. The default is
power(1). The specified power must be in the interval [0.25, 2].

cv options are all the suboptions that can be specified for selection(cv), namely, folds(#),
alllambdas, serule, stopok, strict, and gridminok. The options alllambdas, strict,
and gridminok apply only to the first lasso estimated. For second and subsequent lassos,
gridminok is the default. When ridge is specified, gridminok is automatically used for the
first lasso.

selection(plugin
[
, plugin opts

]
) selects λ∗ based on a “plugin” iterative formula dependent

on the data. The plugin method was designed for lasso inference methods and is useful when
using lasso to manually implement inference methods, such as double-selection lasso. The
plugin estimator calculates a value for λ∗ that dominates the noise in the estimating equations,
which makes it less likely to include variables that are not in the true model. See Methods and
formulas. This option is not allowed with lasso cox.

selection(plugin) does not estimate coefficients for any other values of λ, so it does not
require a λ grid, and none of the grid options apply. It is much faster than the other selection
methods because estimation is done only for a single value of λ. It is an iterative procedure,
however, and if the plugin is computing estimates for a small λ (which means many nonzero
coefficients), the estimation can still be time consuming. Because estimation is done only for
one λ, you cannot assess alternative λ∗ as the other selection methods allow.

plugin opts are heteroskedastic and homoskedastic.

heteroskedastic (linear models only) assumes model errors are heteroskedastic. It is the
default. Specifying selection(plugin) for linear models is equivalent to specifying
selection(plugin, heteroskedastic).

homoskedastic (linear models only) assumes model errors are homoskedastic. See Methods
and formulas.

selection(bic
[
, bic opts

]
) selects λ∗ by using the BIC function. It selects the λ∗ with the

minimum BIC function value.

bic opts are alllambdas, stopok, strict, gridminok, and postselection.

alllambdas specifies that models be fit for all λ’s in the grid or until the stop(#) tolerance
is reached. By default, models are calculated sequentially from largest to smallest λ, and
the BIC function is calculated after each model is fit. If a minimum of the BIC function is
found, the computation ends at that point without evaluating additional smaller λ’s.

alllambdas computes models for these additional smaller λ’s. Because computation time
is greater for smaller λ, specifying alllambdas may increase computation time manyfold.
Specifying alllambdas is typically done only when a full plot of the BIC function is wanted
for assurance that a true minimum has been found. Regardless of whether alllambdas is
specified, the selected λ∗ will be the same.

stopok, strict, and gridminok specify what to do when the BIC function does not have
an identified minimum. A minimum is identified at λ∗ when the BIC function at both
larger and smaller adjacent λ’s is greater than it is at λ∗. When the BIC function has an
identified minimum, these options all do the same thing: the selected λ∗ is the λ that gives
the minimum. In some cases, however, the BIC function declines monotonically as λ gets
smaller and never rises to identify a minimum. When the BIC function does not have an
identified minimum, stopok and gridminok make alternative selections for λ∗, and strict
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makes no selection. You may specify only one of stopok, strict, or gridminok; stopok
is the default if you do not specify one. With each of these options, estimation results are
always left in place, and alternative λ∗ can be selected and evaluated.

stopok specifies that when the BIC function does not have an identified minimum and the
stop(#) stopping tolerance for λ was reached, the selected λ∗ is λstop, the λ that met
the stopping criterion. λstop is the smallest λ for which coefficients are estimated, and
it is assumed that λstop has a BIC function value close to the true minimum. When no
minimum is identified and the stop(#) criterion is not met, an error is issued.

strict requires the BIC function to have an identified minimum, and if not, an error is
issued.

gridminok is a rarely used option that specifies that when the BIC function has no identified
minimum and the stop(#) stopping criterion was not met, then λgmin, the minimum of
the λ grid, is the selected λ∗.

The gridminok selection criterion is looser than the default stopok, which is looser than
strict. With strict, only an identified minimum is selected. With stopok, either the
identified minimum or λstop is selected. With gridminok, either the identified minimum
or λstop or λgmin is selected, in this order.

postselection specifies to use the postselection coefficients to compute the BIC function.
By default, the penalized coefficients are used.

selection(none) does not select a λ∗. Lasso is estimated for the grid of values for λ, but
no attempt is made to determine which λ should be selected. The postestimation command
lassoknots can be run to view a table of λ’s that define the knots (the sequential sets of
nonzero coefficients) for the estimation. The lassoselect command can be used to select a
value for λ∗, and lassogof can be run to evaluate the prediction performance of λ∗.

When selection(none) is specified, neither the CV function nor the BIC function is computed.
If you want to view the knot table with values of the CV function shown and then select λ∗,
you must specify selection(cv). Similarly, if you want to view the knot table with values
of the BIC function shown, you must specify selection(bic). There are no suboptions for
selection(none).

offset(varnameo) specifies that varnameo be included in the model with its coefficient constrained
to be 1.

exposure(varnamee) can be specified only for the poisson model. It specifies that ln(varnamee)
be included in the model with its coefficient constrained to be 1.

cluster(clustvar) specifies the cluster variable clustvar. Specifying a cluster variable will affect how
the log-likelihood function is computed and the sample split in cross-validation. The log-likelihood
function is computed as the sum of the log likelihood at the cluster levels. If option selection(cv)
is specified, the cross-validation sample is split by the clusters defined by clustvar. That is, the
subsample in each fold is drawn on the cluster level. Therefore, all observations in a cluster are
kept together in the same subsample. This option is not allowed with lasso cox.

� � �
Optimization �[

no
]
log displays or suppresses a log showing the progress of the estimation.

rseed(#) sets the random-number seed. This option can be used to reproduce results for se-
lection(cv) and selection(adaptive). The other selection methods, selection(plugin),
selection(bic), and selection(none), do not use random numbers. rseed(#) is equivalent
to typing set seed # prior to running lasso. See [R] set seed.

https://www.stata.com/manuals/lassolassoknots.pdf#lassolassoknots
https://www.stata.com/manuals/lassolassoselect.pdf#lassolassoselect
https://www.stata.com/manuals/lassolassogof.pdf#lassolassogof
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/rsetseed.pdf#rsetseed
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grid(#g
[
, ratio(#) min(#)

]
) specifies the set of possible λ’s using a logarithmic grid with #g

grid points.

#g is the number of grid points for λ. The default is #g = 100. The grid is logarithmic with
the ith grid point (i = 1, . . . , n = #g) given by lnλi = [(i − 1)/(n − 1)] ln r + lnλgmax,
where λgmax = λ1 is the maximum, λgmin = λn = min(#) is the minimum, and r =
λgmin/λgmax = ratio(#) is the ratio of the minimum to the maximum.

ratio(#) specifies λgmin/λgmax. The maximum of the grid, λgmax, is set to the smallest λ
for which all the coefficients in the lasso are estimated to be zero (except the coefficients of
the alwaysvars). λgmin is then set based on ratio(#). When p < N , where p is the total
number of othervars and alwaysvars (not including the constant term) and N is the number of
observations, the default value of ratio(#) is 1e−4. When p ≥ N , the default is 1e−2.

min(#) sets λgmin. By default, λgmin is based on ratio(#) and λgmax, which is computed from
the data.

stop(#) specifies a tolerance that is the stopping criterion for the λ iterations. The default is 1e−5.
This suboption does not apply when the selection method is selection(plugin). Estimation
starts with the maximum grid value, λgmax, and iterates toward the minimum grid value, λgmin.
When the relative difference in the deviance produced by two adjacent λ grid values is less than
stop(#), the iteration stops and no smaller λ’s are evaluated. The value of λ that meets this
tolerance is denoted by λstop. Typically, this stopping criterion is met before the iteration reaches
λgmin.

Setting stop(#) to a larger value means that iterations are stopped earlier at a larger λstop. To
produce coefficient estimates for all values of the λ grid, stop(0) can be specified. Note, however,
that computations for small λ’s can be extremely time consuming. In terms of time, when using
selection(cv), selection(adaptive), or selection(bic), the optimal value of stop(#) is
the largest value that allows estimates for just enough λ’s to be computed to identify the minimum
of the CV or BIC function. When setting stop(#) to larger values, be aware of the consequences
of the default λ∗ selection procedure given by the default stopok. You may want to override the
stopok behavior by using strict.

cvtolerance(#) is a rarely used option that changes the tolerance for identifying the minimum CV
function. For linear models, a minimum is identified when the CV function rises above a nominal
minimum for at least three smaller λ’s with a relative difference in the CV function greater than
#. For nonlinear models, at least five smaller λ’s are required. The default is 1e−3. Setting # to
a bigger value makes a stricter criterion for identifying a minimum and brings more assurance
that a declared minimum is a true minimum, but it also means that models may need to be fit for
additional smaller λ, which can be time consuming. See Methods and formulas for [LASSO] lasso
for more information about this tolerance and the other tolerances.

bictolerance(#) is a rarely used option that changes the tolerance for identifying the minimum
BIC function. A minimum is identified when the BIC function rises above a nominal minimum for
at least two smaller λ’s with a relative difference in the BIC function greater than #. The default is
1e−2. Setting # to a bigger value makes a stricter criterion for identifying a minimum and brings
more assurance that a declared minimum is a true minimum, but it also means that models may
need to be fit for additional smaller λ, which can be time consuming. See Methods and formulas
in [LASSO] lasso for more information about this tolerance and the other tolerances.

tolerance(#) is a rarely used option that specifies the convergence tolerance for the coefficients.
Convergence is achieved when the relative change in each coefficient is less than this tolerance.
The default is tolerance(1e-7).
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dtolerance(#) is a rarely used option that changes the convergence criterion for the coefficients.
When dtolerance(#) is specified, the convergence criterion is based on the change in deviance
instead of the change in the values of coefficient estimates. Convergence is declared when the
relative change in the deviance is less than #. More-accurate coefficient estimates are typically
achieved by not specifying this option and instead using the default tolerance(1e-7) criterion
or specifying a smaller value for tolerance(#).

The following option is available with lasso but is not shown in the dialog box:

penaltywt(matname) is a programmer’s option for specifying a vector of weights for the coefficients
in the penalty term. The contribution of each coefficient to the lasso penalty term is multiplied
by its corresponding weight. Weights must be nonnegative. By default, each coefficient’s penalty
weight is 1.

Remarks and examples stata.com

We assume you have read the lasso introduction [LASSO] Lasso intro.

Remarks are presented under the following headings:

Lasso fitting and selection methods
selection(cv): Cross-validation
The CV function
Penalized and postselection coefficients
predict
Selecting lambda by hand using lassoselect
More lasso examples

Lasso fitting and selection methods

Lasso finds a vector of coefficient estimates, β, such that

1

2N
(y −Xβ′)′(y −Xβ′) + λ

p∑
j=1

|βj |

is minimized for a given value of λ. The first thing to note is that for every λ there is a β. The
second thing is that some of the coefficients, βj , will be zero. The third thing is that the larger the
value of λ, the fewer number of nonzero coefficients there will be.

The goal is to select a λ such that the set of variables corresponding to the nonzero coefficients
for that λ has some sort of desirable property. We term the selected λ∗. But remember whenever we
talk about the selected λ∗, we are really thinking about the properties of the corresponding set of
variables with nonzero coefficients.

Different criteria can be used to select λ∗. The lasso command has options for four different selec-
tion methods: selection(cv), selection(adaptive), selection(plugin), selection(bic),
and selection(none).

selection(cv) comes in two variants: the default, which selects λ∗ as the value of λ that
minimizes the CV function; and selection(cv, serule), which selects a λ∗ that is one standard
error from the minimum in the direction of larger λ’s (so fewer selected variables than using the
minimum in most cases).

selection(adaptive) fits multiple lassos, typically just two, with each lasso using CV. The
selected λ∗ is the λ selected by the last lasso. See Adaptive lasso in [LASSO] lasso examples.

http://stata.com
https://www.stata.com/manuals/lassolassointro.pdf#lassoLassointro
https://www.stata.com/manuals/lassolassoexamples.pdf#lassolassoexamplesRemarksandexamplesAdaptivelasso
https://www.stata.com/manuals/lassolassoexamples.pdf#lassolassoexamples
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selection(plugin) selects λ∗ based on an iterative formula. It comes in two variants, the
default selection(plugin, heteroskedastic) and selection(plugin, homoskedastic). It
is intended to be used as a tool for implementing inferential models. It is not intended to be used for
prediction. See [LASSO] Lasso inference intro.

selection(bic) selects the λ∗ that minimizes the BIC function. Zhang, Li, and Tsai (2010) show
that the λ selected by minimizing the BIC will select a set of covariates close to the true set under
the conditions described in their article. See BIC in [LASSO] lasso examples.

selection(none) does not select λ∗. Afterward, you can select λ using the command lassos-
elect. See Selecting lambda by hand using lassoselect below.

We will first explain CV.

selection(cv): Cross-validation

We will illustrate CV using Stata’s auto dataset. This is an unrealistic dataset to use with lasso
because the number of variables and the number of observations are small. Lasso was invented with
the idea of using hundreds or thousands of variables. See [LASSO] lasso examples for examples with
a large dataset. The small size of the auto dataset, however, is convenient because it does not produce
lots of output, and it illustrates some important concepts perfectly.

We load the data.

. sysuse auto
(1978 automobile data)

We want to model the variable mpg, which is a car’s miles per gallon. Choices for type of lasso
model are linear, logit, probit, poisson, and cox. Obviously, linear is the only appropriate
type of model for mpg. We follow mpg in the command specification with all the other numeric variables
in the dataset. foreign and rep78 are categorical variables, so we specify them using factor-variable
operator i. to create indicators for their categories. We do not specify the selection() option
because selection(cv) is the default.

https://www.stata.com/manuals/lassolassoinferenceintro.pdf#lassoLassoinferenceintro
https://www.stata.com/manuals/lassolassoexamples.pdf#lassolassoexamplesRemarksandexamplesBIC
https://www.stata.com/manuals/lassolassoexamples.pdf#lassolassoexamples
https://www.stata.com/manuals/lassolassoexamples.pdf#lassolassoexamples
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Before we run lasso, we set the random-number seed. CV uses random numbers, so if we want
to be able to reproduce our results, we must first set the seed.

. set seed 1234

. lasso linear mpg i.foreign i.rep78 headroom weight turn gear_ratio
> price trunk length displacement

10-fold cross-validation with 100 lambdas ...
Grid value 1: lambda = 4.69114 no. of nonzero coef. = 0
Folds: 1...5....10 CVF = 33.97832
Grid value 2: lambda = 4.274392 no. of nonzero coef. = 2
Folds: 1...5....10 CVF = 31.62288

(output omitted )
Grid value 44: lambda = .0858825 no. of nonzero coef. = 10
Folds: 1...5....10 CVF = 13.39785
Grid value 45: lambda = .0782529 no. of nonzero coef. = 11
Folds: 1...5....10 CVF = 13.45168
... cross-validation complete ... minimum found

Lasso linear model No. of obs = 69
No. of covariates = 15

Selection: Cross-validation No. of CV folds = 10

No. of Out-of- CV mean
nonzero sample prediction

ID Description lambda coef. R-squared error

1 first lambda 4.69114 0 -0.0018 33.97832
41 lambda before .1135316 8 0.6062 13.3577

* 42 selected lambda .1034458 8 0.6066 13.3422
43 lambda after .0942559 9 0.6060 13.36279
45 last lambda .0782529 11 0.6034 13.45168

* lambda selected by cross-validation.

. estimates store autolasso

After lasso finished, we typed estimates store autolasso to keep the results in memory.
This lasso was quick to compute, but lassos with lots of observations and lots of variables can take
some time to compute, so it is a good idea to store them.

lasso almost always produces a long iteration log. In this example, it iterated from grid value 1
with λ = 4.691140 to grid value 45 with λ = 0.078253. By default, selection(cv) sets up a grid
of 100 λ’s, which are spaced uniformly on a logarithmic scale. It ended at grid value 45 and did not
do any calculations for the 55 smallest λ gird points.

If we look at the output table, we see that the λ at grid value 1 has 0 nonzero coefficients
corresponding to it. This is how the first λ is calculated. It is the smallest λ that gives 0 nonzero
coefficients. The λ at grid value 100 is set by the grid() suboption ratio(#), which specifies the
ratio of the last (minimum) λ to the first (maximum) λ. The default for ratio(#) in this case is
1e−4.

https://www.stata.com/manuals/rsetseed.pdf#rsetseed
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For each value of λ, coefficients are estimated. The entire list of λ’s can be viewed at any time using
the postestimation command lassoknots with the option alllambdas. It shows what happened at
every iteration.

. lassoknots, alllambdas

No. of CV mean
nonzero pred. Variables (A)dded, (R)emoved,

ID lambda coef. error or left (U)nchanged

1 4.69114 0 33.97832 U
2 4.274392 2 31.62288 A weight length
3 3.894667 2 28.65489 U
4 3.548676 2 26.0545 U
5 3.233421 2 23.8774 U
6 2.946173 2 22.07264 U
7 2.684443 2 20.57514 U
8 2.445964 2 19.30795 U
9 2.228672 2 18.23521 U

10 2.030683 2 17.43067 U
11 1.850282 2 16.78884 U
12 1.685908 2 16.32339 U
13 1.536137 2 15.97483 U
14 1.399671 2 15.70143 U
15 1.275328 3 15.48129 A 5.rep78
16 1.162031 3 15.34837 U
17 1.0588 3 15.30879 U
18 .9647388 3 15.30897 U
19 .8790341 4 15.3171 A turn
20 .8009431 5 15.32254 A gear_ratio
21 .7297895 6 15.31234 A price
22 .664957 6 15.28881 U
23 .6058841 6 15.26272 U
24 .552059 6 15.20981 U
25 .5030156 6 15.1442 U
26 .4583291 6 15.04271 U
27 .4176124 6 14.92838 U
28 .3805129 6 14.877 U
29 .3467091 6 14.83908 U
30 .3159085 7 14.77343 A 0.foreign
31 .287844 8 14.67034 A 3.rep78
32 .2622728 8 14.53728 U
33 .2389732 8 14.35716 U
34 .2177434 8 14.15635 U
35 .1983997 8 13.95308 U
36 .1807744 8 13.77844 U
37 .1647149 8 13.62955 U
38 .1500821 8 13.519 U
39 .1367492 8 13.43867 U
40 .1246008 8 13.39141 U
41 .1135316 8 13.3577 U

* 42 .1034458 8 13.3422 U
43 .0942559 9 13.36279 A 1.rep78
44 .0858825 10 13.39785 A headroom
45 .0782529 11 13.45168 A displacement

* lambda selected by cross-validation.

As λ gets smaller, there are more nonzero coefficients. As the nonzero coefficients change, variables
are added to the model. Sometimes, variables are removed from the model. That is, a coefficient
once nonzero becomes zero at a smaller λ. In this example, once added to the model, no variable

https://www.stata.com/manuals/lassolassoknots.pdf#lassolassoknots
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was ever removed. When there are more potential variables, you will typically see some variables
removed as other variables are added.

Usually, the number of nonzero coefficients increases monotonically as λ gets smaller, but not
always. Occasionally, the net number of variables in the model goes down, rather than up, in an
iteration to a smaller λ.

The λ’s at which variables are added or removed are called knots. By default, lassoknots shows
only the knots—and the λ that minimizes the CV function if it is not a knot. This λ is denoted by
λ∗ and is indicated in the table with an *.

. lassoknots

No. of CV mean
nonzero pred. Variables (A)dded, (R)emoved,

ID lambda coef. error or left (U)nchanged

2 4.274392 2 31.62288 A weight length
15 1.275328 3 15.48129 A 5.rep78
19 .8790341 4 15.3171 A turn
20 .8009431 5 15.32254 A gear_ratio
21 .7297895 6 15.31234 A price
30 .3159085 7 14.77343 A 0.foreign
31 .287844 8 14.67034 A 3.rep78

* 42 .1034458 8 13.3422 U
43 .0942559 9 13.36279 A 1.rep78
44 .0858825 10 13.39785 A headroom
45 .0782529 11 13.45168 A displacement

* lambda selected by cross-validation.

The CV function

After coefficients are estimated for each λ, the value of the CV function is calculated. CV is done
by dividing the data randomly into folds, by default, 10 of them. (This is the step where random
numbers are used.)

One fold is chosen, and then a linear regression is fit on the other nine folds using the variables
in the model for that λ. Then, with these new coefficient estimates, a prediction is computed for the
data of the chosen fold. The mean squared error (MSE) of the prediction is computed. This process is
repeated for the other nine folds. The 10 MSEs are then averaged to give the value of the CV function.
On the output, the CV function is labeled CV mean prediction error.

By default, selection(cv) looks for a minimum of the CV function and then stops once it
has found one. We see that models for three λ’s past the minimum were fit. For linear models,
selection(cv) needs to see three smaller λ’s with larger values of the CV function to declare that
it has found a minimum. It sets the selected λ∗ to the λ that gave the minimum and stops.
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We can plot the CV function using cvplot.

. cvplot
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λCV = .1 is the cross-validation minimum λ; # coefficients = 8.

Cross-validation plot

If we want to see more values of the CV function, we can run lasso again using selection(cv,
alllambdas).

. set seed 1234

. lasso linear mpg i.foreign i.rep78 headroom weight turn gear_ratio
> price trunk length displacement, selection(cv, alllambdas)

Evaluating up to 100 lambdas in grid ...
Grid value 1: lambda = 4.69114 no. of nonzero coef. = 0
Grid value 2: lambda = 4.274392 no. of nonzero coef. = 2

(output omitted )

Grid value 76: lambda = .004375 no. of nonzero coef. = 13
Grid value 77: lambda = .0039863 no. of nonzero coef. = 13
... change in deviance stopping tolerance reached

10-fold cross-validation with 77 lambdas ...
Fold 1 of 10: 10....20....30....40....50....60....70...
Fold 2 of 10: 10....20....30....40....50....60....70...

(output omitted )

Fold 9 of 10: 10....20....30....40....50....60....70...
Fold 10 of 10: 10....20....30....40....50....60....70...
... cross-validation complete

Lasso linear model No. of obs = 69
No. of covariates = 15

Selection: Cross-validation No. of CV folds = 10

No. of Out-of- CV mean
nonzero sample prediction

ID Description lambda coef. R-squared error

1 first lambda 4.69114 0 -0.0018 33.97832
41 lambda before .1135316 8 0.6062 13.3577

* 42 selected lambda .1034458 8 0.6066 13.3422
43 lambda after .0942559 9 0.6060 13.36279
77 last lambda .0039863 13 0.5765 14.36306

* lambda selected by cross-validation.

https://www.stata.com/manuals/lassocvplot.pdf#lassocvplot
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The iteration log is in a different order than it was earlier. Here we see messages about all the grid
values first and then the folds of the CV. Earlier, we saw grid values and then folds, and then grid
values and then folds, etc. With alllambdas, coefficient vectors for all the λ’s are estimated first,
and then CV is done. When we are not going to stop when a minimum is found, this is a slightly
faster way of doing the computation.

The selected λ∗ and the values of the CV function and R2 are exactly the same—if we set the
random-number seed to the same value we used before. Had we forgotten to set the random-number
seed or set it to a different value, the values of the CV function and R2 would be slightly different,
and frequently, even the selected λ∗ is different.

Let’s plot the CV function again with these additional λ’s.

. cvplot
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λCV = .1 is the cross-validation minimum λ; # coefficients = 8.

Cross-validation plot

The suboption alllambdas lied to us. It did not give us all λ’s. There are 100 λ’s in the grid.
It showed us 77 of them this time, not all 100.

There is another rule that determines when the iteration over λ’s ends. It is the stopping tolerance
set by the option stop(#). When the deviance calculated from the estimated coefficients changes
little from one λ to the next, the iteration stops. The idea behind this stopping rule is that it means the
CV function would flatten out at this point, and there is no reason to continue estimating coefficients
for smaller λ’s. If you really want to see the smallest λ, specify stop(0) like so:

. lasso linear . . ., selection(cv, alllambdas) stop(0)

Note that stop(#) is not specified as a suboption of the selection(cv) option. The stop(#)
stopping rule has nothing to do with CV. It is based solely on the change in deviance produced by
the coefficient estimates.

Why do we have all these rules for ending the iteration over λ as soon as possible? The reason is
because the smaller the λ, the longer the computation time. If you have lots of observations and lots
of variables, you still see the iteration log going slower and slower with each successive λ. There is
no point in burning lots of computer time—except if you want to draw a prettier picture of the CV
function.

Advanced note: If you want more evidence that the identified minimum is the true minimum, you
are better off setting the option cvtolerance(#) to a larger value than specifying alllambdas.
You will get assurance in much shorter time.
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Another advanced note: Setting stop(0) without specifying alllambdas is sometimes useful.
See [LASSO] lasso fitting for details.

Penalized and postselection coefficients

We have discussed how lasso fitting and CV works without even mentioning the purpose of lasso.
But you read [LASSO] Lasso intro, right? The purposes of lasso are covered there. We are assuming
here that our purpose for this lasso is to build a predictive model for mpg.

To get predictions after lasso, we use predict, just as we use predict after regress. But
we have two choices after lasso. After lasso, we can use penalized coefficients to compute our
predictions, or we can use postselection coefficients.

Actually, there are three types of coefficients after lasso. What we refer to as standardized,
penalized, and postselection.

Before we minimize the objective function

1

2N
(y −Xβ′)′(y −Xβ′) + λ

p∑
j=1

|βj |

we standardize the columns of X (that is, the potential variables in the model) so that they each have
mean 0 and standard deviation 1. Otherwise, the term

p∑
j=1

|βj |

would be dependent on the scales of the variables.

standardized refers to the coefficients of the standardized variables exactly as estimated by the
minimization of the objective function.

When we are doing lasso for prediction, we are not supposed to care about the values of the
coefficients or look at them. (Read [LASSO] Lasso intro!) However, even we could not follow our
own advice, so we developed a command, lassocoef, especially for listing the coefficients.

https://www.stata.com/manuals/lassolassofitting.pdf#lassolassofitting
https://www.stata.com/manuals/lassolassointro.pdf#lassoLassointro
https://www.stata.com/manuals/lassolassopostestimation.pdf#lassolassopostestimationpredict
https://www.stata.com/manuals/lassolassointro.pdf#lassoLassointro
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Let’s list the coefficients of the standardized variables.

. lassocoef, display(coef, standardized)

active

0.foreign 1.49568

rep78
3 -.3292316
5 1.293645

weight -.2804677
turn -.7378134

gear_ratio 1.378287
price -.2809065

length -2.942432
_cons 0

Legend:
b - base level
e - empty cell
o - omitted

The coefficients of the standardized variables seem to be the same order of magnitude as we expect.

penalized refers to the coefficients from the minimization of the objective function with the
standardization unwound. standardized, strictly speaking, gives the penalized coefficients of the
standardized variables. penalized gives the penalized coefficients of the unstandardized variables.
Let’s list them.

. lassocoef, display(coef, penalized)

active

0.foreign 3.250554

rep78
3 -.6641369
5 3.533896

weight -.0003563
turn -.167352

gear_ratio 3.000733
price -.0000972

length -.1303001
_cons 42.62583

Legend:
b - base level
e - empty cell
o - omitted
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The third type, postselection, is computed by taking the selected variables, estimating a linear
regression with them, and using those coefficients.

. lassocoef, display(coef, postselection)

active

0.foreign 4.769344

rep78
3 -1.010493
5 4.037817

weight -.000157
turn -.2159788

gear_ratio 3.973684
price -.0000582

length -.1355416
_cons 40.79938

Legend:
b - base level
e - empty cell
o - omitted

We can duplicate these results with regress.

. regress mpg 0bn.foreign 3bn.rep78 5bn.rep78 weight turn gear_ratio
> price length

Source SS df MS Number of obs = 69
F(8, 60) = 22.14

Model 1748.04019 8 218.505024 Prob > F = 0.0000
Residual 592.162704 60 9.86937839 R-squared = 0.7470

Adj R-squared = 0.7132
Total 2340.2029 68 34.4147485 Root MSE = 3.1416

mpg Coefficient Std. err. t P>|t| [95% conf. interval]

foreign
Domestic 4.769344 1.596469 2.99 0.004 1.575931 7.962757

rep78
3 -1.010493 .8775783 -1.15 0.254 -2.765911 .7449251
5 4.037817 1.262631 3.20 0.002 1.512178 6.563455

weight -.000157 .0021651 -0.07 0.942 -.0044878 .0041739
turn -.2159788 .1886946 -1.14 0.257 -.5934242 .1614665

gear_ratio 3.973684 1.603916 2.48 0.016 .7653732 7.181994
price -.0000582 .0001996 -0.29 0.772 -.0004574 .0003411

length -.1355416 .0595304 -2.28 0.026 -.2546201 -.0164632
_cons 40.79938 9.206714 4.43 0.000 22.38321 59.21555

What are you doing looking at the p-values! If we are not supposed to look at the coefficients,
surely this applies many times over to p-values. We looked, too. And we see that the lasso selected a
bunch with big p-values. Lasso does not care about p-values. Its sole goal is to build a model that is
good for prediction, and it thought these variables would help do that. Maybe it is just fitting random
noise, and CV as a selection method is known to do that. Adding extra variables that are fitting only
random noise is called “overselecting”.
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We want to point out that although rep78 has five categories, lasso selected only two of them,
rep78 = 3 and rep78 = 5, to be in the final model. See Factor variables in lasso in [LASSO] lasso
examples and [LASSO] Collinear covariates.

predict

The options penalized and postselection carry over to predict. We can

predict yhat, penalized

Or we can

predict yhat, postselection

If we simply type

predict yhat

we get penalized.

For linear models, postselection coefficients give predictions that are theoretically slightly better
than those given by penalized coefficients. In practice, however, the difference in the prediction is
small.

For logit, probit, Poisson, and Cox models, there is no theory for the postselection predictions.
Only the penalized predictions have a theoretical basis. So the default, penalized, is recommended
for these models.

See [LASSO] lasso postestimation.

Selecting lambda by hand using lassoselect

We can change the selected λ∗ if we want. It is easy to do. Recall that we stored our original
lasso results in memory using

. estimates store name

We can then compare these results with those from other lassos. We show examples of this in
[LASSO] lasso examples. Note, however, that estimates store only saves them in memory. To save
the results to disk, use

. estimates save filename

See [LASSO] estimates store.

We restore our previous results.

. estimates restore autolasso
(results autolasso are active now)

https://www.stata.com/manuals/lassolassoexamples.pdf#lassolassoexamplesRemarksandexamplesFactorvariablesinlasso
https://www.stata.com/manuals/lassolassoexamples.pdf#lassolassoexamples
https://www.stata.com/manuals/lassolassoexamples.pdf#lassolassoexamples
https://www.stata.com/manuals/lassocollinearcovariates.pdf#lassoCollinearcovariates
https://www.stata.com/manuals/lassolassopostestimation.pdf#lassolassopostestimation
https://www.stata.com/manuals/lassolassoexamples.pdf#lassolassoexamples
https://www.stata.com/manuals/lassoestimatesstore.pdf#lassoestimatesstore
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Let’s run lassoknots again with options to show R2. There are two types of R2 available. See
[LASSO] lassoknots for a discussion. The one labeled out-of-sample is the better one to look at.

. lassoknots, display(cvmpe r2 osr2)

CV mean Out-of-
pred. sample In-sample

ID lambda error R-squared R-squared

2 4.274392 31.62288 0.0676 0.1116
15 1.275328 15.48129 0.5435 0.6194
19 .8790341 15.3171 0.5484 0.6567
20 .8009431 15.32254 0.5482 0.6627
21 .7297895 15.31234 0.5485 0.6684
30 .3159085 14.77343 0.5644 0.7030
31 .287844 14.67034 0.5675 0.7100

* 42 .1034458 13.3422 0.6066 0.7422
43 .0942559 13.36279 0.6060 0.7431
44 .0858825 13.39785 0.6050 0.7439
45 .0782529 13.45168 0.6034 0.7449

* lambda selected by cross-validation.

That λ with ID = 15 looks almost as good as the one CV picked. Let’s select it.

. lassoselect id = 15
ID = 15 lambda = 1.275328 selected

The new selected λ∗ is shown on cvplot.

. cvplot
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λCV = .1 is the cross-validation minimum λ; # coefficients = 8.
λLS = 1.3 is the lassoselect specified λ; # coefficients = 3.

Cross-validation plot

https://www.stata.com/manuals/lassolassoknots.pdf#lassolassoknots
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We can look at the coefficients and compare them with the earlier results.

. lassocoef autolasso ., display(coef, postselection)

autolasso active

0.foreign 4.769344

rep78
3 -1.010493
5 4.037817 2.782347

weight -.000157 -.0024045
turn -.2159788

gear_ratio 3.973684
price -.0000582

length -.1355416 -.1120782
_cons 40.79938 49.23984

Legend:
b - base level
e - empty cell
o - omitted

The earlier lasso was stored as autolasso. When we use lassoselect, it is just like running
a new lasso. New estimation results are created. The period (.) used as an argument to lassocoef
means the current estimation results. If we want to compare these results with others in the future,
we can use estimates store and store them under a new name. Then we can use this name with
lassocoef.

Our new selected λ∗ certainly gives a more parsimonious model. Too bad we do not have any
theoretical basis for choosing it.

More lasso examples

We have yet to give examples for many important features. They include using split samples to
evaluate predictions, fitting logit, probit, Poisson, and Cox models, and selecting λ∗ using adaptive
lasso.

In [LASSO] lasso examples, we illustrate these capabilities using a dataset with lots of variables.
We also show how to use the vl commands, a system for managing large variable lists.

Stored results
lasso stores the following in e():

Scalars
e(N) number of observations
e(N clust) number of clusters
e(k allvars) number of potential variables
e(k nonzero sel) number of nonzero coefficients for selected model
e(k nonzero cv) number of nonzero coefficients at CV mean function minimum
e(k nonzero serule) number of nonzero coefficients for one-standard-error rule
e(k nonzero min) minimum number of nonzero coefficients among estimated λ’s
e(k nonzero max) maximum number of nonzero coefficients among estimated λ’s
e(k nonzero bic) number of nonzero coefficients at BIC function minimum
e(lambda sel) value of selected λ∗

e(lambda gmin) value of λ at grid minimum

https://www.stata.com/manuals/lassolassoexamples.pdf#lassolassoexamples
https://www.stata.com/manuals/dvl.pdf#dvl
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e(lambda gmax) value of λ at grid maximum
e(lambda last) value of last λ computed
e(lambda cv) value of λ at CV mean function minimum
e(lambda serule) value of λ for one-standard-error rule
e(lambda bic) value of λ at BIC function minimum
e(ID sel) ID of selected λ∗

e(ID cv) ID of λ at CV mean function minimum
e(ID serule) ID of λ for one-standard-error rule
e(ID bic) ID of λ at BIC function minimum
e(cvm min) minimum CV mean function value
e(cvm serule) CV mean function value at one-standard-error rule
e(devratio min) minimum deviance ratio
e(devratio max) maximum deviance ratio
e(L1 min) minimum value of `1-norm of penalized unstandardized coefficients
e(L1 max) maximum value of `1-norm of penalized unstandardized coefficients
e(L2 min) minimum value of `2-norm of penalized unstandardized coefficients
e(L2 max) maximum value of `2-norm of penalized unstandardized coefficients
e(ll sel) log-likelihood value of selected model
e(n lambda) number of λ’s
e(n fold) number of CV folds
e(stop) stopping rule tolerance

Macros
e(cmd) lasso
e(cmdline) command as typed
e(depvar) name of dependent variable
e(allvars) names of all potential variables
e(allvars sel) names of all selected variables
e(alwaysvars) names of always-included variables
e(othervars sel) names of other selected variables
e(post sel vars) all variables needed for postlasso
e(clustvar) name of cluster variable
e(lasso selection) selection method
e(sel criterion) criterion used to select λ∗

e(plugin type) type of plugin λ
e(model) linear, logit, probit, poisson, or cox
e(title) title in estimation output
e(rngstate) random-number state used
e(properties) b
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins

Matrices
e(b) penalized unstandardized coefficient vector
e(b standardized) penalized standardized coefficient vector
e(b postselection) postselection coefficient vector

Functions
e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices
r(table) matrix containing the coefficients with their standard errors, test statistics, p-values,

and confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when
any r-class command is run after the estimation command.
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Methods and formulas
This section provides the methods and formulas for lasso and elasticnet.

Methods and formulas are presented under the following headings:

Lasso and elastic-net objective functions
Coordinate descent
Grid of values for λ
How to choose the penalty parameter

How CV is performed
Adaptive lasso
Plugin estimators
BIC

Lasso and elastic-net objective functions

lasso and elasticnet estimate the parameters by finding the minimum of a penalized objective
function.

The penalized objective function of the lasso for the linear, logit, probit, or poisson model
is

QL =

N∑
i=1

w̃if(yi, β0 + xiβ
′) + λ

p∑
j=1

κj |βj | (1)

where N is the number of observations, w̃i is the normalized observation-level weight, f(·) is the
likelihood contribution for the regress, logit, probit, or poisson model, β0 is the intercept, xi
is the 1×p vector of covariates, β is the 1×p vector of coefficients, λ is the lasso penalty parameter,
which must be greater than or equal to 0, and κj are coefficient-level weights (which by default are
all 1).

The normalized weights w̃i sum to 1. That is,

w̃i =
wi∑N
i=1 wi

where wi is the original observation-level weight. If weights are not specified with lasso, wi = 1
and w̃i = 1/N .

When the model is linear,

f(β0 + xiβ) =
1

2
(yi − β0 − xiβ

′)2

When the model is logit,

f(β0 + xiβ) = −yi(β0 + xiβ
′) + ln

{
1 + exp(β0 + xiβ

′)
}

When the model is probit,

f(β0 + xiβ) = −yi ln
{

Φ(β0 + xiβ
′)
}
− (1− yi) ln

{
1− Φ(β0 + xiβ

′)
}

When the model is poisson,

f(β0 + xiβ) = −yi(β0 + xiβ
′) + exp(β0 + xiβ

′)
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The penalized objective function of the lasso for the cox model is

QL = −
Nf∑
j=1

∑
i∈Dj

w̃i

xiβ′ − ln

∑
`∈Rj

w̃` exp(x`β
′)


+ λ

p∑
j=1

κj |βj |

where j indexes the ordered failure times t(j), j = 1, . . . , Nf ; Dj is the set of observations that
fail at t(j); and Rj is the set of observations k that are at risk at time t(j) (that is, all k such that
t0k < t(j) ≤ tk, and t0k is the entry time for the kth observation). The first term in QL is the
weighted negative partial log-likelihood function of the Cox proportional hazards model. There is no
constant term β0 because the constant term is absorbed in the baseline hazard function.

Ties are handled using the Breslow approximation (Breslow 1974). The other methods of handling
ties that are options for stcox—the Efron method, the exact marginal-likelihood method, and the
exact partial-likelihood method—are not available with lasso cox.

The penalized objective function of elastic net for the linear, logit, probit, and poisson
models is

Qen =

N∑
i=1

w̃if(yi, β0 + xiβ
′) + λ

p∑
j=1

κj

{
1− α

2
β2
j + α |βj |

}
(2)

where α is the elastic-net penalty parameter and α can take on values only in [0, 1].

The penalized objective function of elastic net for the cox model is

Qen = −
Nf∑
j=1

∑
i∈Dj

w̃i

xiβ′ − ln

∑
`∈Rj

w̃` exp(x`β
′)


+ λ

p∑
j=1

κj

{
1− α

2
β2
j + α |βj |

}

Some values for α and λ cause elastic net to reduce to the objective function of another estimator
of interest. There are three special cases to note:

1. Lasso is a special case of elastic net. When α = 1, the objective function in (2) reduces to the
lasso objective function in (1).

2. Ridge regression is a special case of the elastic net. When α = 0 and λ > 0, (2) reduces to
the objective function for the ridge-regression estimator.

3. When λ = 0 in (2), there is no penalty term, and Qen reduces to the objective function for the
unpenalized maximum-likelihood estimator.

When 0 < α < 1 and λ > 0, (2) is the objective function for an elastic-net estimator that does
not reduce to a special case.

We discuss methods that apply to the lasso estimator and to the elastic-net estimator in this section
because the same algorithm is used to estimate the coefficients. We discuss the optimization procedure
in terms of the elastic-net objective function Qen because it reduces to the lasso estimator when
α = 1.

We discuss the methods for ridge regression in Methods and formulas in [LASSO] elasticnet because
a different algorithm is used to estimate the coefficients.

By default, the coefficient-level weights are 1 in (1) and (2). They may be specified using the
option penaltywt(). If the cluster() option is specified, the log likelihood is computed as the
sum of log likelihood at the cluster levels. This option is not allowed for the cox model.

https://www.stata.com/manuals/ststcox.pdf#ststcox
https://www.stata.com/manuals/lassoelasticnet.pdf#lassoelasticnetMethodsandformulas
https://www.stata.com/manuals/lassoelasticnet.pdf#lassoelasticnet
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The penalized objective function of the lasso with cluster is

QL =

Nclust∑
i=1

{
Ti∑
t=1

˜̂witf(yit, β0 + xitβ
′)

}
+ λ

p∑
j=1

κj |βj |

where Nclust is the total number of clusters and Ti is the number of observations in cluster i. For
the tth observation in cluster i, ˜̂wit is its normalized observational level weight, yit is the dependent
variable, and xit are the covariates.

The normalized weights ˜̂wit are defined as

˜̂wit =
ŵit∑Nclust

i=1

∑Ti

t=1 ŵit

where ŵit are the cluster-level normalized weights. For fweights, ŵit = wit/
∑Ti

t=1 wit. For
iweights, ŵit = wit/Ti.

The penalized objective function of elastic net with cluster is

Qen =

Nclust∑
i=1

{
Ti∑
t=1

˜̂witf(yit, β0 + xitβ
′)

}
+ λ

p∑
j=1

κj

{
1− α

2
β2
j + α |βj |

}

Coordinate descent
lasso and elasticnet use the coordinate descent algorithm to minimize Qen for given values

of λ and α.

The coordinate descent algorithm for lasso problems was first applied to lasso as a “shooting
algorithm” in Fu (1998). Daubechies, Defrise, and Mol (2004) also discussed using coordinate descent
for lasso. The combination of Friedman et al. (2007), Friedman, Hastie, and Tibshirani (2010), and
Hastie, Tibshirani, and Wainwright (2015) provide a complete introduction to using the coordinate
descent algorithm for lasso and elastic net, and these references detail the formulas implemented in
lasso and elasticnet.

The numerical problem is made much easier and more stable by standardizing all the covariates to
have mean 0 and standard deviation 1. The standardization also removes β0 from the problem when
the model is regress.

Minimization problems are solved by finding the parameter values that set the first derivative
equations to 0. The first derivative equations are known as score equations in statistics. When the
score equations for all the elements in β are well defined, we frequently use a version of Newton’s
method that produces a series of updated guesses for β that get increasingly close to solving the score
equations. When the updated guess is close enough to solving the score equations, the algorithm
converges and we have our estimates.

Unfortunately, Qen is not always differentiable. When λ > 0 and the kth element in β is 0, Qen

is not differentiable. Convex analysis provides a way of getting a generalized score equation for the
kth element of β that handles the case in which βk is 0. It is not feasible to write down equations
for all p generalized score equations at the same time. It is too complicated.
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In general terms, coordinate descent is a solve-and-replace algorithm that repeatedly solves each
generalized score equation for a new coefficient value until a minimum of Qen is found. For
those familiar with the Gauss–Seidel algorithm, coordinate descent is basically Gauss–Seidel on the
generalized score equations. Quandt (1984) discusses the Gauss–Seidel algorithm.

To be more specific, we provide an outline of the implemented coordinate descent algorithm.

Step 1: Specify initial values.

a. Set each coefficient to an initial value β̂k = vk. We refer to β̂ as the current coefficient vector.

b. Initialize each coefficient in the previous coefficient vector β̃ to be a missing value.

c. Initialize the difference, ∆, between the current and the previous coefficient vectors to be a
missing value.

Step 2: As long as ∆ is larger than tolerance(#), do the following.

a. Set each coefficient in the current coefficient vector to the value that sets its generalized score
equation to 0. In other words, set

β̂k = gk(y,x, β̂1, . . . β̂k−1, β̂k+1, . . . β̂p)

where gk(y,x, β̂1, . . . β̂k−1, β̂k+1, . . . β̂p) is the expression for β̂k that sets the generalized
score equation with respect to β̂k to 0.

b. Let ∆ be the largest of the relative differences between β̂ and β̃.

c. Set β̃ = β̂.

The algorithm converges when step 2 finishes and β̂ contains the values that minimize Qen for
given values of λ and α.

When the model is regress, Hastie, Tibshirani, and Wainwright (2015, eq. 4.4) provide a formula
for gk(y,x, β̂1, . . . β̂k−1, β̂k+1, . . . β̂p). This coordinate descent algorithm is discussed in Hastie,
Tibshirani, and Wainwright (2015, chap. 4 and 5).

When the model is logit, probit, poisson, or cox the objective function can be minimized
by extensions to the method of iteratively reweighted least squares discussed by Nelder and Wed-
derburn (1972). See Hastie, Tibshirani, and Wainwright (2015, chap. 3) and Friedman, Hastie, and
Tibshirani (2010) for details.

Grid of values for λ

For any given value of 0 < α ≤ 1, letting λ decrease from ∞ to 0 creates a vector of coefficient
paths. When λ is large enough, all the coefficients are 0. Holding α fixed and decreasing λ from a
large value to 0 induces coefficient paths in which each coefficient emerges from 0. In a particular
lasso example, we see the following:
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Coefficient paths

In this example, there are fewer covariates than observations, so at λ = 0, each coefficient path
has the value of its unpenalized estimate.

The convention that has emerged following Hastie, Tibshirani, and Wainwright (2015) is to consider
a few candidate values for α and a grid of 100 or so candidate values for λ. The default number of
grid points is 100, and it can be changed by specifying option grid(#). The candidate values for α
are specified by option alpha() in elasticnet.

The largest value in the grid is the smallest value for which all the coefficients are zero, and
we denote it by λgmax. The smallest value in the grid is λgmin, where λgmin = rλgmax and r
is set by the option grid(, ratio(#)). The grid is logarithmic with the ith grid point given by
lnλi = [(i− 1)/(n− 1)] ln r + lnλgmax, where n is the number of grid points.

How to choose the penalty parameter

To use a lasso, we need to decide which value of λ is best. We denote the selected λ as λ∗.

Some methods for choosing λ∗ are designed or advertised as facilitating the ability of the lasso
as a covariate selection technique. Some authors seem to advocate using the covariates selected by
lasso as if this estimate always picked out the true covariates. Unfortunately, the lasso estimate of
which covariates to include is too noisy to be treated as without error in subsequent steps, unless
all the not-zero coefficients are sufficiently large. This “beta-min” condition is widely viewed as too
strong for applied work. See Leeb and Pötscher (2008), Belloni and Chernozhukov (2011), Belloni,
Chernozhukov, and Hansen (2014a), and Chernozhukov et al. (2018) for discussions that have led to
the rejection of beta-min assumptions. See Remarks and examples in [LASSO] Lasso inference intro
for an introduction to commands that produce reliable inference without a beta-min condition.

The four methods for selecting λ∗ for lasso are CV, adaptive lasso, plugin estimators, and BIC.

CV finds the λ∗ that will produce coefficient estimates that predict best out of sample. When λ∗ is
selected by CV and the nonzero coefficients are used for covariate selection, the process tends to select
some covariates that do not belong in the model—in addition to ones that belong. See Bühlmann and
van de Geer (2011, sec. 2.5.1) for a discussion and further references. This is due to its larger bound
on the number of covariates it will find. See Chetverikov, Liao, and Chernozhukov (2019) and their
sparsity-bound results.

Adaptive lasso was derived by Zou (2006) and refined by Bühlmann and van de Geer (2011)
to provide more reliable covariate selection. As mentioned above, it will not provide mistake-free

https://www.stata.com/manuals/lassolassoinferenceintro.pdf#lassoLassoinferenceintroRemarksandexamples
https://www.stata.com/manuals/lassolassoinferenceintro.pdf#lassoLassoinferenceintro
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covariate selection without the widely rejected “beta-min” condition. See section 7.8.6 of Bühlmann
and van de Geer (2011) for a discussion of the versions of the beta-min and section 7.10 for a frank
conclusion on the difficulty of the problem. While it is not mistake free, covariate selection based on
the adaptive lasso will produce a more parsimonious model than covariate selection based on a λ∗

selected by CV.

The plugin estimators were designed to pick λ∗ to produce accurate results for the subsequently
estimated lasso coefficients. See Bickel, Ritov, and Tsybakov (2009), Belloni and Chernozhukov (2011),
Belloni, Chernozhukov, and Hansen (2014a, 2014b). These estimators for λ∗ are primarily used as
part of estimation methods that are robust to the covariate selection mistakes a lasso makes with any
choice of λ∗. Plugin estimators for λ∗ select a more parsimonious model than does CV. Simulations
indicate that plugin-based lassos select fewer covariates than adaptive lasso when there are small
coefficients in the true model, but there are no formal results.

BIC selects the λ∗ that will produce coefficient estimates that minimize the BIC. Our simulations
show that BIC avoids the overselection problem seen in CV and is often faster. BIC tends to select
models similar to those of the plugin method but can be applied to a more general class of models.

CV is implemented for lasso, elasticnet, and sqrtlasso. Adaptive lasso is implemented for
lasso. Plugin estimators are implemented for lasso and for sqrtlasso. BIC is implemented for
lasso, elasticnet, and sqrtlasso.

How CV is performed

CV finds the model that minimizes an out-of-sample prediction error, also known as the CV function.
We denote the CV function for the model with parameters θ by CV(θ). Formally, CV finds

θ̂ = arg minθ∈Θ{CV(θ)}

For lasso or sqrtlasso, Θ is the set of λ grid values. For elasticnet, Θ is the set of all
pairs (λ, α), where λ is in the λ grid and α is one of the specified candidate values.

The value of CV(θ) for each θ ∈ Θ is stored in the estimation results after CV is performed. This
allows postestimation commands like cvplot to plot or display values of the CV function for ranges
of θ values.

Here is how CV(θ) is computed.

1. Randomly partition the data into K folds.

2. Do the following for each fold k ∈ {1, . . . ,K}.
a. Estimate the parameters of the model for specified θ using the observations not in fold k.

b. Use the estimates computed in step 2a to fill in the out-of-sample deviance for the observations
in fold k.

3. For each model θ, compute the mean of the out-of-sample deviance.

4. The value of θ ∈ Θ with the smallest mean out-of-sample deviance minimizes the CV function.

For the cox model, we use the approach in van Houwelingen et al. (2006) to compute the deviance
in step 2b. Especially,

D̂ev
k

λ = Dev{θ̂−k(λ)} − Dev−k{θ̂−k(λ)}
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where θ̂−k(λ) are the estimates obtained in step 2a, Dev{θ̂−k(λ)} is the deviance using the full
sample and θ̂−k(λ), and Dev−k{θ̂−k(λ)} is the deviance using the observations not in the kth fold
and θ̂−k(λ).

For the details of deviance, see Methods and formulas in [LASSO] lassogof.

Adaptive lasso

Adaptive lasso is a sequence of CV lassos, each at least as parsimonious as the previous one.
Mechanically, adaptive lasso is implemented in the following way.

Step A:

Get the initial coefficient estimates and denote them β̂. By default, these estimates come
from a cross-validated lasso. Optionally, they come from an unpenalized model or from a
ridge estimator with λ selected by CV. Zou (2006, 1423) recommends ridge when collinearity
is a problem.

Step B:

a. Exclude covariates for which β̂j = 0.

b. Construct coefficient level weights for included covariates, κj = 1/|β̂j |δ , where δ is the
power to which the weight is raised. By default, δ = 1. To specify another value for δ, use
option selection(adaptive, power(#)).

Each adaptive step selects either the covariates selected by the previous step or a proper subset of
them.

The option selection(adaptive, step(#)) counts all lassos performed. So the default # = 2
means one adaptive step is done.

Plugin estimators

Heuristically, we get good lasso coefficient estimates when λ∗ is large enough to dominate the
noise that is inherent in estimating the coefficients when the penalty-loadings κj are at their optimal
levels. Plugin estimators use the structure of the model and advanced theoretical results to find the
smallest λ that dominates the noise, given estimates of the penalty loadings.

For simplicity and compatibility with the rest of the documentation, we did not divide λ by N in
(1). Multiply our formulas for λ by N to compare them with those in the cited literature.

As discussed by Bickel, Ritov, and Tsybakov (2009), Belloni and Chernozhukov (2011), Belloni
et al. (2012), and Belloni, Chernozhukov, and Wei (2016), the estimation noise is a function of the
largest of the absolute values of the score equations of the unpenalized estimator. In particular, when
the penalty loadings κj are at optimal values, λ∗ is chosen so that

P

(
λ∗ ≥ cmax1≤j≤p

∣∣∣∣∣ 1

Nκj

N∑
i=1

hj(yi,xiβ
′
0)

∣∣∣∣∣
)
→N 1

where c is a constant, and

1

N

N∑
i=1

hj(yi,xiβ
′
0)

https://www.stata.com/manuals/lassolassogof.pdf#lassolassogofMethodsandformulas
https://www.stata.com/manuals/lassolassogof.pdf#lassolassogof
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is the jth score from the unpenalized estimator at the true coefficients β0. The optimal values of the
penalty loadings normalize the scores of the unpenalized estimator to have unit variance.

Belloni and Chernozhukov (2011), Belloni et al. (2012), and Belloni, Chernozhukov, and Wei (2016)
derive values for λ∗ and estimators for κj for a variety of models. This firm theoretical structure
keeps the lasso with a plugin estimator from including too many irrelevant covariates and provides
it with a fast rate of convergence.

In all the implemented methods described below, we use the following notation:

c = 1.1 per the recommendation of Belloni and Chernozhukov (2011);

N is the sample size;

γ = 0.1/ ln[ max{p,N}] is the probability of not removing a variable when it has a coefficient
of zero;

p is the number of candidate covariates in the model.

Two plugin estimators are implemented for lasso linear:

• selection(plugin, homoskedastic)

The errors must be homoskedastic, but no specific distribution is assumed.

The formula for λ∗ is

λhomoskedastic =
cσ̂√
N

Φ−1

(
1− γ

2p

)

σ̂ is an estimator of the variance of the error term. This estimator is implemented in
algorithm 1. In the linear homoskedastic case, there is no need to estimate the penalty
loadings κj ; they are implied by σ̂.

• selection(plugin, heteroskedastic)

The errors may be heteroskedastic and no specific distribution is assumed.

The formula for λ is

λheteroskedastic =
c√
N

Φ−1

(
1− γ

2p

)

In the linear-heteroskedastic case, penalty loadings are estimated by

κj =

√√√√ 1

N

N∑
i=1

(xij ε̂i)2

Algorithm 2 is used to estimate the εi.
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One plugin estimator is implemented for lasso logit:

λlogit =
c

2
√
N

Φ−1

[
1− 1.1

2 max{N, p lnN}

]
This value is from the notes to table 2 in Belloni, Chernozhukov, and Wei (2016), divided by
N as noted above. Belloni, Chernozhukov, and Wei (2016) use the structure of the binary
model to bound the κj , so they are not estimated. This bound is why c is divided by 2.

One plugin estimator is implemented for lasso poisson and lasso probit:

λ =
c√
N

Φ−1

(
1− γ

2p

)
κj are estimated in algorithm 3.

All three algorithms used the normalized covariates that each xj has mean 0 and variance 1.

Algorithm 1: Estimate σ̂

This iterative algorithm estimates σ; it is adopted from Belloni and Chernozhukov (2011, 20–21).
The algorithm depends on a starting value for σ̂ denoted by σ̂0, a convergence tolerance v = 1e–8,
and a maximum number of iterations M = 15.

We set σ̂0 to be the square root of the mean of the squared residuals from a regression of y on
the five covariates in x that have the five highest univariate correlations with y.

Set the iteration counter k = 1 and the absolute value of the difference between the current and
the previous estimate of σ to be a missing value.

1. Let λ̂k = (cσ̂k−1/
√
N) Φ−1(1− γ/2p).

2. Compute the lasso estimates β̂k using λ̂k.

3. Let σ̂k =
√

(1/N)
∑N
i=1(yi − xiβ̂k)2.

4. If |σ̂k− σ̂k−1| < v or k > M , set σ̂ = σ̂k and stop; otherwise, set k = k+ 1 and go to step 1.

Algorithm 2: Estimate linear-heteroskedastic penalty loadings

This iterative algorithm estimates the penalty loadings κj for the linear-heteroskedastic model;
it is adopted from Belloni, Chernozhukov, and Hansen (2014b, 640). The algorithm depends on a
convergence tolerance v = 1e–8 and a maximum number of iterations M = 15.

1. Get initial values:

a. Let ε̂0 be the residuals from the regression of y on the five covariates in x that have the
highest univariate correlations with y.

b. Let κ̂0,j =
√

1/N
∑N
i=1(xi,j ε̂k)2 be the initial penalty loading for each covariate j.

c. Let λ̂ = c/
√
N Φ−1(1− γ/2p).

d. Set the iteration counter to k = 1.

2. Compute the lasso estimates β̂k using λ̂ and the penalty loadings κ̂k−1,j . Let ŝ be the number
of nonzero coefficients in this lasso.
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3. Let ε̂k be the residuals from the postlasso regression of y on the ŝ covariates that have nonzero
lasso coefficients.

4. For each of the j covariates in the original model, compute the penalty loading

κ̂k,j =

√√√√ 1

N − ŝ

N∑
i=1

(xij ε̂k)2

5. If max1≤j≤p|κ̂k,j − κ̂k−1,j | < v or k > M , set κ̂j = κ̂k,j for each j and stop; otherwise, set
k = k + 1 and go to step 2.

Algorithm 3: Estimate penalty loadings for Poisson and probit
This is the algorithm used for Poisson and probit models.

In the Poisson case, references to the unpenalized quasi–maximum likelihood (QML) estimator
are to the unpenalized Poisson QML estimator. In the probit case, references to the unpenalized QML
estimator are to the unpenalized probit QML estimator.

In the Poisson case, hj(yi, x̃iβ̃) is the contribution of observation i to the unpenalized Poisson-score
equation using covariates x̃i and coefficients β̃. In the probit case, hj(yi, x̃iβ̃) is the contribution of
observation i to the unpenalized probit-score equation using covariates x̃i and coefficients β̃.

On exit, λ contains the penalty value, and the penalty loadings are in (κ̃1, . . . , κ̃p).

1. Set λ = c/
√
N Φ−1 [1− γ/(2p)].

2. Find the five covariates with highest correlations with y. Denote the vector of them by x̃0, and
let x̃0i be the ith observation on this vector of variables.

3. Estimate the coefficients β̃0 on x̃0 by unpenalized QML.

4. For each j ∈ {1, . . . , p}, set

κ̃0,j =

√√√√ 1

N

N∑
i=1

hj(yi, x̃0iβ̃0)2

5. Set k = 1 and do the following loop. (It will be executed at most 15 times.)

a. Using λ and loadings {κ̃k−1,1, . . . , κ̃k−1,p}, solve the lasso to get estimates ˜̃βk.

b. Let x̃k be the covariates with nonzero coefficients in ˜̃βk.

c. Estimate the coefficients β̃k on x̃k by unpenalized QML.

d. For each j ∈ {1, . . . , p}, set

κ̃k,j =

√√√√ 1

N

N∑
i=1

hj(yi, x̃kiβ̃k)2

e. Set k = k + 1.

f. If k > 15 or the variables in x̃k are the same as those in x̃k−1, set each κ̃j = κ̃k,j and
exit; otherwise, go to step 5a.
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BIC

lasso and elasticnet compute the BIC function for each vector of coefficients corresponding
to each λ. The BIC function is defined as

BIC = −2 lnL(y, β0 + xβ′) + k lnN

where lnL(y, β0 + xβ′) is the log-likelihood function, k is the number of nonzero coefficients, and
N is the number of observations.

When the model is linear,

lnL(y, β0 + xβ′) = −1

2

[
ln 2π + ln

{
N∑
i=1

w∗i (yi − β0 − xiβ
′)2

}
+ 1

]

When the model is logit,

lnL(y, β0 + xβ′) =

N∑
i=1

w∗i
[
yi
(
β0 + xiβ

′)− ln
{

1 + exp(β0 + xiβ
′)
}]

When the model is probit,

lnL(y, β0 + xβ′) =

N∑
i=1

w∗i
[
yi ln

{
Φ(β0 + xiβ

′)
}

+ (1− yi) ln
{

1− Φ(β0 + xiβ
′)
}]

When the model is poisson,

lnL(y, β0 + xβ′) =

N∑
i=1

w∗i
{
− exp(β0 + xiβ

′) + (β0 + xiβ
′)yi − ln(yi!)

}
When the model is cox,

lnL(y,xβ′) = −
Nf∑
j=1

∑
i∈Dj

w∗i

xiβ′ − ln

∑
`∈Rj

w∗` exp(x`β
′)




The weights w∗i are normalized to sum to N . That is,

w∗i =
Nwi∑N
i=1 wi

where wi is the original observation-level weight.

When the selection(bic, postselection) option is specified, the postselection coefficients
are used to compute the BIC. By default, penalized coefficients are used.



lasso — Lasso for prediction and model selection 35

References
Belloni, A., D. Chen, V. Chernozhukov, and C. B. Hansen. 2012. Sparse models and methods for optimal instruments

with an application to eminent domain. Econometrica 80: 2369–2429. https://doi.org/10.3982/ECTA9626.

Belloni, A., and V. Chernozhukov. 2011. High dimensional sparse econometric models: An Introduction. In Inverse
Problems of High-Dimensional Estimation, ed. P. Alguier, E. Gautier, and G. Stoltz, 121–156. Berlin: Springer.

Belloni, A., V. Chernozhukov, and C. B. Hansen. 2014a. High-dimensional methods and inference on structural and
treatment effects. Journal of Economic Perspectives 28: 29–50. https://doi.org/10.1257/jep.28.2.29.

. 2014b. Inference on treatment effects after selection among high-dimensional controls. Review of Economic
Studies 81: 608–650. https://doi.org/10.1093/restud/rdt044.

Belloni, A., V. Chernozhukov, and Y. Wei. 2016. Post-selection inference for generalized linear models with many
controls. Journal of Business and Economic Statistics 34: 606–619. https://doi.org/10.1080/07350015.2016.1166116.

Bickel, P. J., Y. Ritov, and A. B. Tsybakov. 2009. Simultaneous analysis of Lasso and Dantzig selector. Annals of
Statistics 37: 1705–1732. https://doi.org/10.1214/08-AOS620.

Breslow, N. E. 1974. Covariance analysis of censored survival data. Biometrics 30: 89–99.
https://doi.org/10.2307/2529620.
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Also see
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[LASSO] sqrtlasso — Square-root lasso for prediction and model selection

[R] logit — Logistic regression, reporting coefficients

[R] poisson — Poisson regression

[R] probit — Probit regression

[R] regress — Linear regression

[ST] stset — Declare data to be survival-time data
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