
Chapter 13

Generalized Linear Models and
Generalized Additive Models

13.1 Generalized Linear Models and Iterative Least Squares
Logistic regression is a particular instance of a broader kind of model, called a gener-
alized linear model (GLM). You are familiar, of course, from your regression class
with the idea of transforming the response variable, what we’ve been calling Y , and
then predicting the transformed variable from X . This was not what we did in logis-
tic regression. Rather, we transformed the conditional expected value, and made that
a linear function of X . This seems odd, because it is odd, but it turns out to be useful.

Let’s be specific. Our usual focus in regression modeling has been the condi-
tional expectation function, r (x) = E[Y |X = x]. In plain linear regression, we try
to approximate r (x) by β0 + x ·β. In logistic regression, r (x) = E[Y |X = x] =
Pr (Y = 1|X = x), and it is a transformation of r (x) which is linear. The usual nota-
tion says

η(x) = β0+ xcβ̇ (13.1)

η(x) = log
r (x)

1− r (x)
(13.2)

= g (r (x)) (13.3)

defining the logistic link function by g (m) = log m/(1−m). The function η(x) is
called the linear predictor.

Now, the naive strategy for estimating this model would be to all the transforma-
tion g to the response. But Y is always zero or one, so g (Y) = ±∞, and regression
will not be helpful here. The standard strategy is instead to use (what else?) Taylor
expansion. Specifically, we try expanding g (Y) around r (x), and stop at first order:

g (Y) ≈ g (r (x))+ (Y − r (x))g �(r (x)) (13.4)
= η(x)+ (Y − r (x))g �(r (x))≡ z (13.5)

239

240 CHAPTER 13. GLMS AND GAMS

We define this to be our effective response after transformation. Notice that if there
were no noise, so that y was always equal to its conditional mean r (x), then regressing
z on x would give us back the coefficients β0,β. What this suggests is that we can
estimate those parameters by regressing z on x.

The term Y − r (x) always has expectation zero, so it acts like the noise, with the
factor of g � telling us about how the noise is scaled by the transformation. This lets
us work out the variance of z:

Var[Z |X = x] = Var[η(x)|X = x]+Var
�
(Y − r (x))g �(r (x))|X = x

�
(13.6)

= 0+ (g �(r (x)))2Var[Y |X = x] (13.7)

For logistic regression, with Y binary, Var[Y |X = x] = r (x)(1 − r (x)). On the
other hand, with the logistic link function, g �(r (x)) = 1

r (x)(1−r (x)) . Thus, for logistic
regression, Var[Z |X = x] = [r (x)(1− r (x))]−1.

Because the variance of Z changes with X , this is a heteroskedastic regression
problem. As we saw in chapter 6, the appropriate way of dealing with such a problem
is to use weighted least squares, with weights inversely proportional to the variances.
This means that the weight at x should be proportional to r (x)(1− r (x)). Notice
two things about this. First, the weights depend on the current guess about the pa-
rameters. Second, we give little weight to cases where r (x) ≈ 0 or where r (x) ≈ 1,
and the most weight when r (x) = 0.5. This focuses our attention on places where we
have a lot of potential information — the distinction between a probability of 0.499
and 0.501 is just a lot easier to discern than that between 0.000 and 0.002!

We can now put all this together into an estimation strategy for logistic regres-
sion.

1. Get the data (x1, y1), . . . (xn , yn), and some initial guesses β0,β.

2. until β0,β converge

(a) Calculate η(xi) =β0+ xi ·β and the corresponding r (xi)

(b) Find the effective transformed responses zi = η(xi)+
yi−r (xi)

r (xi)(1−r (xi))

(c) Calculate the weights wi = r (xi)(1− r (xi))

(d) Do a weighted linear regression of zi on xi with weights wi , and setβ0,β
to the intercept and slopes of this regression

Our initial guess about the parameters tells us about the heteroskedasticity, which
we use to improve our guess about the parameters, which we use to improve our guess
about the variance, and so on, until the parameters stabilize. This is called iterative
reweighted least squares (or “iterative weighted least squares”, “iteratively weighted
least squares”, “iteratived reweighted least squares”, etc.), abbreviated IRLS, IRWLS,
IWLS, etc. As mentioned in the last chapter, this turns out to be almost equivalent to
Newton’s method, at least for this problem.

13.1. GENERALIZED LINEAR MODELS AND ITERATIVE LEAST SQUARES241

13.1.1 GLMs in General
The set-up for an arbitrary GLM is a generalization of that for logistic regression. We
need

• A linear predictor, η(x) =β0+ xcβ̇

• A link function g , so that η(x) = g (r (x)). For logistic regression, we had
g (r) = log r/(1− r).

• A dispersion scale function V , so that Var[Y |X = x] = σ2V (r (x)). For lo-
gistic regression, we had V (r) = r (1− r), and σ2 = 1.

With these, we know the conditional mean and conditional variance of the response
for each value of the input variables x.

As for estimation, basically everything in the IRWLS set up carries over un-
changed. In fact, we can go through this algorithm:

1. Get the data (x1, y1), . . . (xn , yn), fix link function g (r) and dispersion scale func-
tion V (r), and make some initial guesses β0,β.

2. Until β0,β converge

(a) Calculate η(xi) =β0+ xi ·β and the corresponding r (xi)

(b) Find the effective transformed responses zi = η(xi)+
yi−r (xi)

g

�
(r (xi))

(c) Calculate the weights wi = [(g �(r (xi))2V (r (xi))]
−1

(d) Do a weighted linear regression of zi on xi with weights wi , and setβ0,β
to the intercept and slopes of this regression

Notice that even if we don’t know the over-all variance scale σ2, that’s OK, because
the weights just have to be proportional to the inverse variance.

13.1.2 Example: Vanilla Linear Models as GLMs
To re-assure ourselves that we are not doing anything crazy, let’s see what happens
when g (r) = r (the “identity link”), and Var[Y |X = x] = σ2, so that V (r) = 1.
Then g � = 1, all weights wi = 1, and the effective transformed response zi = yi . So
we just end up regressing yi on xi with no weighting at all — we do ordinary least
squares. Since neither the weights nor the transformed response will change, IRWLS
will converge exactly after one step. So if we get rid of all this nonlinearity and
heteroskedasticity and go all the way back to our very first days of doing regression,
we get the OLS answers we know and love.

13.1.3 Example: Binomial Regression
In many situations, our response variable yi will be an integer count running between
0 and some pre-determined upper limit ni . (Think: number of patients in a hospital
ward with some condition, number of children in a classroom passing a test, number

242 CHAPTER 13. GLMS AND GAMS

of widgets produced by a factory which are defective, number of people in a village
with some genetic mutation.) One way to model this would be as a binomial random
variable, with ni trials, and a success probability pi which was a logistic function
of predictors x. The logistic regression we have done so far is the special case where
ni = 1 always. I will leave it as an EXERCISE (1) for you to work out the link function
and the weights for general binomial regression, where the ni are treated as known.

One implication of this model is that each of the ni “trials” aggregated together
in yi is independent of all the others, at least once we condition on the predictors
x. (So, e.g., whether any student passes the test is independent of whether any of
their classmates pass, once we have conditioned on, say, teacher quality and average
previous knowledge.) This may or may not be a reasonable assumption. When the
successes or failures are dependent, even after conditioning on the predictors, the
binomial model will be mis-specified. We can either try to get more information,
and hope that conditioning on a richer set of predictors makes the dependence go
away, or we can just try to account for the dependence by modifying the variance
(“overdispersion” or “underdispersion”); we’ll return to both topics later.

13.1.4 Poisson Regression
Recall that the Poisson distribution has probability mass function

p(y) = f rac e−µµy y! (13.8)

with E[Y] = Var[Y] = µ. As you remember from basic probability, a Poisson
distribution is what we get from a binomial if the probability of success per trial
shrinks towards zero but the number of trials grows to infinity, so that we keep the
mean number of successes the same:

Binom(n,µ/n)� Pois(µ) (13.9)

This makes the Poisson distribution suitable for modeling counts with no fixed upper
limit, but where the probability that any one of the many individual trials is a success
is fairly low. If µ is allowed to be depend on the predictor variables, we get Poisson
regression. Since the variance is equal to the mean, Poisson regression is always going
to be heteroskedastic.

Since µ has to be non-negative, a natural link function is g (µ) = logµ. This
produces g �(µ) = 1/µ, and so weights w = µ. When the expected count is large,
so is the variance, which normally would reduce the weight put on an observation
in regression, but in this case large expected counts also provide more information
about the coefficients, so they end up getting increasing weight.

13.1.5 Uncertainty
Standard errors for coefficients can be worked out as in the case of weighted least
squares for linear regression. Confidence intervals for the coefficients will be approx-
imately Gaussian in large samples, for the usual likelihood-theory reasons, when the

13.2. GENERALIZED ADDITIVE MODELS 243

model is properly specified. One can, of course, also use either a parametric boot-
strap, or resampling of cases/data-points to assess uncertainty.

Resampling of residuals can be trickier, because it is not so clear what counts as
a residual. When the response variable is continuous, we can get “standardized” or

“Pearson” residuals, ε̂i =
yi−�µ(xi)�
�V (µ(xi))

, resample them to get ε̃i , and then add ε̃i

�
�V (µ(xi))

to the fitted values. This does not really work when the response is discrete-valued,
however.

13.2 Generalized Additive Models
In the development of generalized linear models, we use the link function g to relate
the conditional mean µ(x) to the linear predictor η(x). But really nothing in what
we were doing required η to be linear in x. In particular, it all works perfectly well
if η is an additive function of x. We form the effective responses zi as before, and
the weights wi , but now instead of doing a linear regression on xi we do an additive
regression, using backfitting (or whatever). This gives us a generalized additive model
(GAM).

Essentially everything we know about the relationship between linear models
and additive models carries over. GAMs converge somewhat more slowly as n grows
than do GLMs, but the former have less bias, and strictly include GLMs as special
cases. The transformed (mean) response is related to the predictor variables not just
through coefficients, but through whole partial response functions. If we want to
test whether a GLM is well-specified, we can do so by comparing it to a GAM, and
so forth.

In fact, one could even make η(x) an arbitrary smooth function of x, to be es-
timated through (say) kernel smoothing of zi on xi . This is rarely done, however,
partly because of curse-of-dimensionality issues, but also because, if one is going to
go that far, one might as well just use kernels to estimate conditional distributions, as
we will see in Chapter 15.

244 CHAPTER 13. GLMS AND GAMS

13.3 Weather Forecasting in Snoqualmie Falls
To make the use of logistic regression and GLMs concrete, we are going to build a
simple weather forecaster. Our data consist of daily records, from the beginning of
1948 to the end of 1983, of precipitation at Snoqualmie Falls, Washington (Figure
13.1)1. Each row of the data file is a different year; each column records, for that day
of the year, the day’s precipitation (rain or snow), in units of 1

100 inch. Because of
leap-days, there are 366 columns, with the last column having an NA value for three
out of four years.

snoqualmie <- read.csv("snoqualmie.csv",header=FALSE)
Turn into one big vector without year breaks
snoqualmie <- unlist(snoqualmie)
Remove NAs from non-leap-years
snoqualmie <- na.omit(snoqualmie)

What we want to do is predict tomorrow’s weather from today’s. This would
be of interest if we lived in Snoqualmie Falls, or if we operated either one of the
local hydroelectric power plants, or the tourist attraction of the Falls themselves.
Examining the distribution of the data (Figures 13.2 and 13.3) shows that there is a
big spike in the distribution at zero precipitation, and that days of no precipitation
can follow days of any amount of precipitation but seem to be less common after
heavy precipitation.

These facts suggest that “no precipitation” is a special sort of event which would
be worth predicting in its own right (as opposed to just being when the precipitation
happens to be zero), so we will attempt to do so with logistic regression. Specifically,
the input variable Xi will be the amount of precipitation on the i th day, and the
response Yi will be the indicator variable for whether there was any precipitation on
day i + 1 — that is, Yi = 1 if Xi+1 > 0, an Yi = 0 if Xi+1 = 0. We expect from Figure
13.3, as well as common experience, that the coefficient on X should be positive.2

Before fitting the logistic regression, it’s convenient to re-shape the data:

vector.to.pairs <- function(v) {
v <- as.numeric(v)
n <- length(v)
return(cbind(v[-1],v[-n]))

}
snoq.pairs <- vector.to.pairs(snoqualmie)
colnames(snoq.pairs) <- c("tomorrow","today")
snoq <- as.data.frame(snoq.pairs)

This creates a two-column array, where the first column is the precipitation on day
i+1, and the second column is the precipitation on day i (hence the column names).
Finally, I turn the whole thing into a data frame.

1I learned of this data set from Peter Guttorp’s Stochastic Modeling of Scientific Data; the data file is
available from http://www.stat.washington.edu/peter/stoch.mod.data.html.

2This does not attempt to model how much precipitation there will be tomorrow, if there is any. We
could make that a separate model, if we can get this part right.

13.3. WEATHER FORECASTING IN SNOQUALMIE FALLS 245

Figure 13.1: Snoqualmie Falls, Washington, on a sunny day. Photo
by Jeannine Hall Gailey, from http://myblog.webbish6.com/2011/07/
17-years-and-hoping-for-another-17.html. [[TODO: Get permis-
sion for photo use!]]

246 CHAPTER 13. GLMS AND GAMS

Histogram of snoqualmie

Precipitation (1/100 inch)

D
en
si
ty

0 100 200 300 400

0.
00

0.
02

0.
04

0.
06

plot(hist(snoqualmie,n=50,probability=TRUE),xlab="Precipitation (1/100 inch)")
rug(snoqualmie,col="grey")

Figure 13.2: Histogram of the amount of daily precipitation at Snoqualmie Falls

13.3. WEATHER FORECASTING IN SNOQUALMIE FALLS 247

0 100 200 300 400

0
10
0

20
0

30
0

40
0

Precipitation today (1/100 inch)

P
re

ci
pi

ta
tio

n
to

m
or

ro
w

 (1
/1

00
 in

ch
)

plot(snoqualmie[-length(snoqualmie)],snoqualmie[-1],
xlab="Precipitation today (1/100 inch)",
ylab="Precipitation tomorrow (1/100 inch)",cex=0.1)

rug(snoqualmie[-length(snoqualmie)],side=1,col="grey")
rug(snoqualmie[-1],side=2,col="grey")

Figure 13.3: Scatterplot showing relationship between amount of precipitation on
successive days. Notice that days of no precipitation can follow days of any amount
of precipitation, but seem to be more common when there is little or no precipitation
to start with.

248 CHAPTER 13. GLMS AND GAMS

Now fitting is straightforward:

snoq.logistic <- glm((tomorrow > 0) ~ today, data=snoq, family=binomial)

To see what came from the fitting, run summary:

> summary(snoq.logistic)

Call:
glm(formula = (tomorrow > 0) ~ today, family = binomial, data = snoq)

Deviance Residuals:
Min 1Q Median 3Q Max

-2.3713 -1.1805 0.9536 1.1693 1.1744

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.0071899 0.0198430 0.362 0.717
today 0.0059232 0.0005858 10.111 <2e-16 ***

(I have cut off some uninformative bits of the output.) The coefficient on X , the
amount of precipitation today, is indeed positive, and (if we can trust R’s calcula-
tions) highly significant. There is also an intercept term, which is slight positive,
but not very significant. We can see what the intercept term means by considering
what happens when X = 0, i.e., on days of no precipitation. The linear predictor is
then 0.0072+ 0 ∗ (0.0059) = 0.0072, and the predicted probability of precipitation is
e0.0072/(1+ e0.0072) = 0.502. That is, even when there is no precipitation today, we
predict that it is slightly more probable than not that there will be some precipitation
tomorrow.3

We can get a more global view of what the model is doing by plotting the data
and the predictions (Figure 13.4). This shows a steady increase in the probability of
precipitation tomorrow as the precipitation today increases, though with the leveling
off characteristic of logistic regression. The (approximate) 95% confidence limits for
the predicted probability are (on close inspection) asymmetric, and actually slightly
narrower at the far right than at intermediate values of X (Figure 13.3).

How well does this work? We can get a first sense of this by comparing it to
a simple nonparametric smoothing of the data. Remembering that when Y is bi-
nary, PrY = 1|X = x = E[Y |X = x], we can use a smoothing spline to estimate
E[Y |X = x] (Figure 13.6). This would not be so great as a model — it ignores the
fact that the response is a binary event and we’re trying to estimate a probability,
the fact that the variance of Y therefore depends on its mean, etc. — but it’s at least
indicative.

The result is in not-terribly-bad agreement with the logistic regression up to about
1.2 or 1.3 inches of precipitation, after which it runs significantly below the logistic

3For western Washington State, this is plausible — but see below.

13.3. WEATHER FORECASTING IN SNOQUALMIE FALLS 249

0 100 200 300 400

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Precipitation today (1/100 inch)

P
os

iti
ve

 p
re

ci
pi

ta
tio

n
to

m
or

ro
w

?

plot((tomorrow>0)~today,data=snoq,xlab="Precipitation today (1/100 inch)",
ylab="Positive precipitation tomorrow?")

rug(snoq$today,side=1,col="grey")

data.plot <- data.frame(today=(0:500))
logistic.predictions <- predict(snoq.logistic,newdata=data.plot,se.fit=TRUE)
lines(0:500,ilogit(logistic.predictions$fit))
lines(0:500,ilogit(logistic.predictions$fit+1.96*logistic.predictions$se.fit),

lty=2)
lines(0:500,ilogit(logistic.predictions$fit-1.96*logistic.predictions$se.fit),

lty=2)

Figure 13.4: Data (dots), plus predicted probabilities (solid line) and approximate
95% confidence intervals from the logistic regression model (dashed lines). Note that
calculating standard errors for predictions on the logit scale, and then transforming,
is better practice than getting standard errors directly on the probability scale.

250 CHAPTER 13. GLMS AND GAMS

0 100 200 300 400 500

0.
01

0.
02

0.
03

0.
04

Difference in probability between prediction
 and confidence limit for prediction

Precipitation today (1/100 inch)

!
pr
ob
ab
ili
ty

plot(0:500,ilogit(logistic.predictions$fit)
-ilogit(logistic.predictions$fit-1.96*logistic.predictions$se.fit),

type="l",col="blue",xlab="Precipitation today (1/100 inch)",
main="Difference in probability between prediction\n

and confidence limit for prediction",
ylab = expression(paste(Delta,"probability")))

lines(0:500,ilogit(logistic.predictions$fit+1.96*logistic.predictions$se.fit)
-ilogit(logistic.predictions$fit))

Figure 13.5: Distance from the fitted probability to the upper (black) and lower (blue)
confidence limits. Notice that the two are not equal, and somewhat smaller at very
large values of X than at intermediate ones. (Why?)

13.3. WEATHER FORECASTING IN SNOQUALMIE FALLS 251

0 100 200 300 400

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Precipitation today (1/100 inch)

P
os

iti
ve

 p
re

ci
pi

ta
tio

n
to

m
or

ro
w

?

snoq.spline <- smooth.spline(x=snoq$today,y=(snoq$tomorrow>0))
lines(snoq.spline,col="red")

Figure 13.6: As Figure 13.4, plus a smoothing spline (red).

252 CHAPTER 13. GLMS AND GAMS

regression, rejoins it around 3.5 inches of precipitation, and then (as it were) falls off
a cliff.

We can do better by fitting a generalized additive model. In this case, with only
one predictor variable, this means using non-parametric smoothing to estimate the
log odds — we’re still using the logistic transformation, but only requiring that the log
odds change smoothly with X , not that they be linear in X . The result (Figure 13.7)
is actually quite similar to the spline, but a bit better behaved, and has confidence
intervals. At the largest values of X , the latter span nearly the whole range from 0 to
1, which is not unreasonable considering the sheer lack of data there.

Visually, the logistic regression curve is usually but not always within the confi-
dence limits of the non-parametric predictor. What can we say about the difference
between the two models more quantiatively?

Numerically, the deviance is 18079.69 for the logistic regression, and 18036.77 for
the GAM. We can go through the testing procedure outlined in the notes for lecture
14. We need a simulator (which presumes that the logistic regression model is true),
and we need to calculate the difference in deviance on simulated data many times.

Simulate from the fitted logistic regression model for Snoqualmie
Presumes: fitted values of the model are probabilities.
snoq.sim <- function(model=snoq.logistic) {
fitted.probs <- fitted(model)
n <- length(fitted.probs)
new.binary <- rbinom(n,size=1,prob=fitted.probs)
return(new.binary)

}

A quick check of the simulator against the observed values:

> summary(ifelse(snoq[,1]>0,1,0))
Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0000 0.0000 1.0000 0.5262 1.0000 1.0000
> summary(snoq.sim())

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0000 0.0000 1.0000 0.5264 1.0000 1.0000

This suggests that the simulator is not acting crazily.
Now for the difference in deviances:

Simulate from fitted logistic regression, re-fit logistic regression and
GAM, calculate difference in deviances
diff.dev <- function(model=snoq.logistic,x=snoq[,2]) {
y.new <- snoq.sim(model)
GLM.dev <- glm(y.new ~ x,family=binomial)$deviance
GAM.dev <- gam(y.new ~ s(x),family=binomial)$deviance
return(GLM.dev-GAM.dev)

}

13.3. WEATHER FORECASTING IN SNOQUALMIE FALLS 253

0 100 200 300 400

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Precipitation today (1/100 inch)

P
os

iti
ve

 p
re

ci
pi

ta
tio

n
to

m
or

ro
w

?

library(mgcv)
snoq.gam <- gam((tomorrow>0)~s(today),data=snoq,family=binomial)
gam.predictions <- predict.gam(snoq.gam,newdata=data.plot,se.fit=TRUE)
lines(0:500,ilogit(gam.predictions$fit),col="blue")
lines(0:500,ilogit(gam.predictions$fit+1.96*gam.predictions$se.fit),

col="blue",lty=2)
lines(0:500,ilogit(gam.predictions$fit-1.96*gam.predictions$se.fit),

col="blue",lty=2)

Figure 13.7: As Figure 13.6, but with the addition of a generalized additive model
(blue line) and its confidence limits (dashed blue lines). Note: the predict function
in the gam package does not allow one to calculate standard errors for new data. You
may need to un-load the gam library first, with detach(package:gam).

254 CHAPTER 13. GLMS AND GAMS

A single run of this takes about 1.5 seconds on my computer.
Finally, we calculate the distribution of difference in deviances under the null

(that the logistic regression is properly specified), and the corresponding p-value:

diff.dev.obs <- snoq.logistic$deviance - snoq.gam$deviance
null.dist.of.diff.dev <- replicate(1000,diff.dev())
p.value <- (1+sum(null.dist.of.diff.dev > diff.dev.obs))/(1+length(null.dist.of.diff.dev))

Using a thousand replicates takes about 1500 seconds, or roughly 25 minutes, which
is substantial, but not impossible; it gave a p-value of < 10−3, and the following
sampling distribution:

> summary(null.dist.of.diff.dev)
Min. 1st Qu. Median Mean 3rd Qu. Max.

0.000097 0.002890 0.016770 2.267000 2.897000 29.750000

(A preliminary trial run of only 100 replicates, taking a few minutes, gave

> summary(null.dist.of.diff.dev)
Min. 1st Qu. Median Mean 3rd Qu. Max.

0.000291 0.002681 0.013700 2.008000 2.121000 27.820000

which implies a p-value of < 0.01. This would be good enough for many practical
purposes.)

Having detected that there is a problem with the GLM, we can ask where it lies.
We could just use the GAM, but it’s more interesting to try to diagnose what’s going
on.

In this respect Figure 13.7 is actually a little misleading, because it leads the eye
to emphasize the disagreement between the models at large X , when actually there
are very few data points there, and so even large differences in predicted probabili-
ties there contribute little to the over-all likelihood difference. What is actually more
important is what happens at X = 0, which contains a very large number of observa-
tions (about 47% of all observations), and which we have reason to think is a special
value anyway.

Let’s try introducing a dummy variable for X = 0 into the logistic regression,
and see what happens. It will be convenient to augment the data frame with an extra
column, recording 1 whenever X = 0 and 0 otherwise.

snoq2 <- data.frame(snoq,dry=ifelse(snoq$today==0,1,0))
snoq2.logistic <- glm((tomorrow > 0) ~ today + dry,data=snoq2,family=binomial)
snoq2.gam <- gam((tomorrow > 0) ~ s(today) + dry,data=snoq2,family=binomial)

Notice that I allow the GAM to treat zero as a special value as well, by giving it access
to that dummy variable. In principle, with enough data it can decide whether or not
that is useful on its own, but since we have guessed that it is, we might as well include
it. Figure 13.8 shows the data and the two new models. These are extremely close to
each other. The new GLM has a deviance of 18015.65, lower than even the GAM
before, and the new GAM has a deviance of 18015.21. The p-value is essentially 1

13.3. WEATHER FORECASTING IN SNOQUALMIE FALLS 255

0 100 200 300 400

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Precipitation today (1/100 inch)

P
os

iti
ve

 p
re

ci
pi

ta
tio

n
to

m
or

ro
w

?

plot((tomorrow>0)~today,data=snoq,xlab="Precipitation today (1/100 inch)",
ylab="Positive precipitation tomorrow?")

rug(snoq$today,side=1,col="grey")

data.plot=data.frame(data.plot,dry=ifelse(data.plot$today==0,1,0))
logistic.predictions2 <- predict(snoq2.logistic,newdata=data.plot,se.fit=TRUE)
lines(0:500,ilogit(logistic.predictions2$fit))
lines(0:500,ilogit(logistic.predictions2$fit+1.96*logistic.predictions2$se.fit),

lty=2)
lines(0:500,ilogit(logistic.predictions2$fit-1.96*logistic.predictions2$se.fit),

lty=2)
gam.predictions2 <- predict.gam(snoq2.gam,newdata=data.plot,se.fit=TRUE)
lines(0:500,ilogit(gam.predictions2$fit),col="blue")
lines(0:500,ilogit(gam.predictions2$fit+1.96*gam.predictions2$se.fit),

col="blue",lty=2)
lines(0:500,ilogit(gam.predictions2$fit-1.96*gam.predictions2$se.fit),

col="blue",lty=2)

Figure 13.8: As Figure 13.7, but allowing the two models to use a dummy variable
indicating when today is completely dry (X = 0).

256 CHAPTER 13. GLMS AND GAMS

— and yet we know that the test, with this test, does have power to detect departures
from the parametric model. This is very promising.

Let’s turn now to looking at calibration. The actual fraction of no-precipitation
days which are followed by precipitation is

> mean(snoq$tomorrow[snoq$today==0]>0)
[1] 0.4702199

What does the new logistic model predict?

> predict(snoq2.logistic,newdata=data.frame(today=0,dry=1),type="response")
1

0.4702199

This should not be surprising — we’ve given the model a special parameter dedi-
cated to getting this one probability exactly right! The hope however is that this will
change the predictions made on days with precipitation so that they are better.

We’ll tackle this through calibration. Looking at a histogram of fitted values
(hist(fitted(snoq2.logistic))) shows a gap in the distribution of predicted
probabilities between 0.47 and about 0.55, so we’ll look first at days where the pre-
dicted probability is between 0.55 and 0.56.

> mean(snoq$tomorrow[(fitted(snoq2.logistic) >= 0.55)
& (fitted(snoq2.logistic) < 0.56)] > 0)

[1] 0.5474882

Not bad — but a bit painful to write out. Let’s write a function4.

frequency.vs.probability <- function(p.lower,p.upper=p.lower+0.01,
model=snoq2.logistic,
events=(snoq$tomorrow>0)) {

fitted.probs <- fitted(model)
indices <- (fitted.probs >= p.lower) & (fitted.probs < p.upper)
ave.prob <- mean(fitted.probs[indices])
frequency <- mean(events[indices])
se <- sqrt(ave.prob*(1-ave.prob)/sum(indices))
out <- list(frequency=frequency,ave.prob=ave.prob,se=se)
return(out)

}

I have added a calculation of the average predicted probability, and a crude estimate
of the standard error we should expect if the observations really are binomial with
the predicted probabilities5. Try the function out before doing anything rash:

> frequency.vs.probability(0.55)
$frequency

4Thanks to Terra Mack for comments on an earlier version.
5This could be improved by averaging predicted variances for each point, but using probability ranges

of 0.01 makes it hardly worth the effort.

13.4. EXERCISES 257

[1] 0.5474882

$ave.prob
[1] 0.5548081

$se
[1] 0.00984567

This agrees with our previous calculation.
Now we can do this for a lot of probability brackets:

f.vs.p <- sapply((55:74)/100,frequency.vs.probability)

This comes with some unfortunate R cruft, removable thus

f.vs.p <- data.frame(frequency=unlist(f.vs.p["frequency",]),
ave.prob=unlist(f.vs.p["ave.prob",]),
se=unlist(f.vs.p["se",]))

and we’re ready to plot (Figure 13.9). The observed frequencies are generally quite
near to the predicted probabilites, especially when the number of observations is
large and so the sample frequency should be close to the true probability. While I
wouldn’t want to say this was the last word in weather forecasting6, it’s surprisingly
good for such a simple model.

13.4 Exercises
1. In binomial regression, we have Y |X = x Binom(n, p(x)), where p(x) follows

a logistic model. Work out the link function g (µ), the variance function V (µ),
and the weights w, assuming that n is known and not random.

2. Homework 4, on predicting the death rate in Chicago, is a good candidate
for using Poisson regression. Repeat the exercises in that problem set with
Poisson-response GAMs. How do the estimated functions change? Why is
this any different from just taking the log of the death counts, as we did in the
homework?

6There is an extensive discussion of this data in chapter 2 of Guttorp’s book, including many significant
refinements, such as dependence across multiple days.

258 CHAPTER 13. GLMS AND GAMS

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Predicted probabilities

O
bs

er
ve

d
fre

qu
en

ci
es

plot(f.vs.p$ave.prob,f.vs.p$frequency,xlim=c(0,1),ylim=c(0,1),
xlab="Predicted probabilities",ylab="Observed frequencies")

rug(fitted(snoq2.logistic),col="grey")
abline(0,1,col="grey")
segments(x0=f.vs.p$ave.prob,y0=f.vs.p$ave.prob-1.96*f.vs.p$se,

y1=f.vs.p$ave.prob+1.96*f.vs.p$se)

Figure 13.9: Calibration plot for the modified logistic regression model
snoq2.logistic. Points show the actual frequency of precipitation for each level
of predicted probability. Vertical lines are (approximate) 95% sampling intervals for
the frequency, given the predicted probability and the number of observations.

