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Abstract
Object-oriented programming, functional programming, and
metaprogramming each offer a unique axis of abstraction
that enables modular code. Macros, a common technique
for metaprogramming, capture ASTs as quotes to let users
manipulate them in the host language. However, macros are
often at odds with other programming techniques since they
can only process code written at the call-site and cannot
analyze code behind abstraction boundaries such as vari-
ables and methods. Furthermore, the quotes generated for
macro expansion exist only at compile-time and cannot be
passed around in user code. Multi-stage programming treats
quotes as runtime values to address this problem, but intro-
duces the cost of running the compiler when splicing quotes.
This forces developers to choose between low runtime over-
head and modularity. What if we could have the best of both
worlds? We introduce fluid quotes, a new technique that
uses dependent types to let users pass quotes through ab-
straction boundaries in runtime code while splicing them
ahead-of-time. This technique enables new metaprogram-
ming capabilities by eliminating the traditional requirement
of co-locating parameter expressions with call-sites. Fluid
quotes capture not only source code but also associated run-
time context to ensure correctness. In addition, they can be
composed into larger expressions without any macro code.
We demonstrate the capabilities of fluid quotes through two
specific applications: optimizing data processing pipelines
and making language integrated queries more flexible.

CCS Concepts: • Software and its engineering → Lan-
guage features.

Keywords: metaprogramming, dependent types, inlining,
functional programming
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1 Introduction
Macros are a powerful tool that enable developers to use
metaprogramming without interacting with compiler inter-
nals. With macros, developers can define custom expansions
that transform the ASTs used at the call-site into a new ex-
pression. Quotes in languages such as LISP and Scala make
it easy to define macros by allowing users to capture code
and splice it into larger expressions. Traditionally, quotes
exist only at compile-time and cannot be passed around as
values in user code without bundling the compiler for staged
code execution [Taha and Sheard 1997]. This limits macro
expansions since they can only analyze the code immediately
available at the call-site.

Metaprogramming allows developers to perform optimiza-
tions similar to traditional inlining by splicing the quoted
arguments into a larger expression that replaces the macro
call. However, functional programming throws in a twist
to this traditional formula. With higher-order functions, we
need to inline not only the function body but also the calls
to functions arguments. While modern languages such as
Kotlin can inline such arguments [JetBrains 2018], they limit
inlining to function arguments defined directly at the call-
site.
The same limitation also appears when using metapro-

gramming to translate user code into other domains, such
as synthesizing SQL queries from user code. Since macros
can only analyze the ASTs directly available at call-site, they
must treat function references as opaque values and cannot
analyze their bodies. Furthermore, macros used to imple-
ment a chained API can only see other chained calls if they
are lexically adjacent, which limits the ability to perform
transformations across calls split by abstraction boundaries
such as separately defined functions.
Multi-stage programming systems such as Lightweight

Modular Staging (LMS) [Rompf and Odersky 2010] allow
mixing quotes into user code. This makes it easy to write
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metaprogramming transformations on complex code graphs.
However, to make this possible, LMS performs splicing at
runtime by bundling the host language compiler. This intro-
duces significant overhead and cannot be implemented in
ahead-of-time compiled languages. Other systems such as
Braid [Sampson et al. 2017] can perform expansions ahead-
of-time but require users to separate macros from runtime
code just like traditional systems [Flatt 2002].

We presentfluid quotes, a new technique that overcomes
these traditional metaprogramming limitations by storing
quoted expressions in type members. Users can carry fluid
quotes across abstraction boundaries and compose them
through type-level data structures. We can splice a fluid
quote at any place where its types can be resolved. With
fluid quotes, developers no longer have to forgo the elegance
of abstractions to gain the power of metaprogramming.
Fluid quotes can be implemented in any language that

supports dependent types and the ability to extend the type-
checker with custom expansions either through macros or
custom compiler APIs. In this paper, we implement fluid
quotes using Scala programming language and make it avail-
able as an open-source project. We evaluate fluid quotes by
applying it to performance optimization, through a stream
fusion implementation, and code transformation, through
an extension of language-integrated queries.

1.1 Motivating Example
Consider a toy differentiable programming example as
shown in Figure 1 where we want to calculate the deriv-
ative of a function. Let us assume that we have access to a
differentiate macro that synthesizes the derivative of a
given function. We decide to modularize some of the prepro-
cessing logic into a separate function.

1 def differentiate(
2 fn: Double => Double
3 ): Double => Double = macro ...
4

5 def getPreprocessor = {
6 println("Init!")
7 (x: Double) => x * x
8 }
9

10 val preprocess = getPreprocessor // Init!
11 // does not compile
12 val derivative = differentiate(
13 (in: Double) => 2 * preprocess(in))
14 println(derivative(2)) // 8

Figure 1. Using macros for differentiable programming

Unfortunately, the modularized code above will not com-
pile. The differentiatemacro receives only the AST of line

15, which contains an opaque reference to the preprocess
function. Without static access to the definition of this func-
tion, the macro cannot synthesize its derivative at compile-
time. LMS can help by allowing us to synthesize derivatives
at runtime, but introduces significant overhead since the syn-
thesized code would have to be compiled at runtime. Another
solution is to manually copy the definition of preprocess
to replace the call on line 15, but this introduces duplica-
tion that breaks the modularity of our code. Yet another
solution could be to return not only the original function in
getPreprocessor but also its derivative. This would allow
us to differentiate the function on line 15 by using the ad-
ditional return value as the derivative of preprocess(in),
but would result in poor performance due to function call
overhead. We would like the compiler to track the body of
preprocess without changing the program structure.

One compile-time option is to use inlining, but we cannot
safely inline the preprocess variable since doing so would
change the program behavior if the variable initialization
has side-effects. For example, naively inlining preprocess
would result in the logging line println("Init!") being
executed every time the derivative is calculated. Whether
it be classes, methods, or simply variables, the moment a
function value is placed behind such an abstraction bound-
ary we lose access to its definition. We could stretch our
implementation and use internal compiler APIs to look up
definition ASTs, but this quickly becomes extremely brittle.
What we need is a sound mechanism to propagate ASTs

across all these boundaries at compile-time. With fluid
quotes, we use types to carry expressions across abstrac-
tions. Applying fluid quotes to our example, we change the
getPreprocessor function to return a fluid quote, whose
type captures the AST of the function.
def getPreprocessor = {

println("Initializing!")
quote((in: Double) => in * in)

}

Then, we splice the function body with spliceCall. The
spliceCall macro provided by the fluid quotes API inserts
the body of the captured function at the call-site.
val preprocess = getPreprocessor
val derivative = differentiate((in: Double) =>
2 * preprocess.spliceCall(in))

After spliceCall inlines the captured function, we have
a regular block that can be analyzed by differentiate:
val derivative = differentiate((in: Double) =>
2 * { val x = in; x * x }

)
println(derivative(2)) // 8

With fluid quotes, we are able to apply compile-time trans-
formations without changing the structure of our code or
introducing unnecessary duplication.
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1.2 Contributions
In this paper, we make the following contributions:

• We introduce a new type-level encoding to pass quoted
code through types and splice them at compile time.
We describe how both expressions and function calls
can be spliced through a natural API. (Section 2)

• We discuss how fluid quotes handle local definitions by
generating closures through additional types and code
transformations. We explore how this transformation
preserves runtime semantics while minimizing the
performance cost. (Section 3)

• We introduce a composition system that uses depen-
dent types to combine fluid quotes at the type level
without requiring additional macro code. We demon-
strate how this allows writing short templates that can
expand into performant code. (Section 4)

• We discuss how limitations of the type system affect
fluid quotes. We explore extensions to fluid quotes as
well as applications of closures and the composition
API to overcome some of these restrictions. (Section 5)

• We evaluate applications of fluid quotes that enable
performance gains and implement new metaprogram-
ming capabilities. We also demonstrate how these ap-
plications extend beyond state-of-the-art capabilities
in real-world languages. (Section 6)

2 Fluid Quotes
Fluid quotes, represented by the FluidQuote type, capture
the AST of an expression to be spliced elsewhere in the
code base. In this section, we consider simple examples that
demonstrate the core architecture of fluid quotes. Ensuring
correctness and ease-of-use involves complex challenges
such as involving closures and type-level data structures,
which we discuss in later sections.

Every FluidQuote tracks the AST of the captured expres-
sion. We need a mechanism that can propagate this data
across abstraction boundaries at compile-time. Types, which
already have propogation logic built into the compiler, are a
perfect fit for this. We use a type member, Expr, to store the
AST. Storing this data as an instance variable would not serve
our purpose since they would only be resolvable at runtime.
This is the core limitation of runtime staging systems, which
we overcome with fluid quotes.

Any FluidQuote object can be spliced by the user wher-
ever they want, with a few typing-related restrictions that
we discuss in Section 5. The splice macro, available in
FluidQuote, resolves the Expr type, parses the AST, and
emits it. All together, the core definition of FluidQuote is
quite concise.
trait FluidQuote[T] {
type Expr
def splice: T = macro ...

}

implicit def quote[T](expr: T): FluidQuote[T]
= macro ...

FluidQuote uses twomacros (quote and splice) for quot-
ing and splicing. Our system requires that the host language
execute macros during typechecking so that we can gener-
ate and resolve types. We use Scala macros [Burmako 2013,
2019] in our implementation to satisfy these requirements,
but fluid quotes can be implemented in other languages by
extending the typechecker.
To see these transformations in action, let’s consider a

simple guiding example:
val expr = quote(1 + 2)
expr.splice

In the following subsections, we will break this example
down to see the internals of fluid quotes.

2.1 Quoting Expressions
The quote macro captures an expression of type T in an
instance of FluidQuote[T]. In our guiding example, we
store a FluidQuote[Int] that captures the desugared AST
1.+(2). The quote macro receives the AST of the passed
expression and generates an instance of FluidQuote with
the Expr type set to a string literals type representing the
AST. As with traditional quoting, wrapping a block in quote
changes its operational semantics since quote captures the
block as an AST and does not evaluate it. After the quote
expansion, the first line of our example looks as follows:
val expr = new FluidQuote[Int] {
type Expr = "1.+(2)"

}

Note that quote is defined as an implicit conversion
to automatically wrap any expression of type T into a
FluidQuote[T]when the expected expression type is a fluid
quote. This allows developers to replace function and by-
name parameters [Odersky et al. 2008] with fluid quotes
without any change to the end-user experience.

2.2 Splicing Expressions and Function Calls
The splice macro resolves the Expr dependent type of the
FluidQuote instance and emits the captured AST. In our ex-
ample, the splicemacro expands to the original expression:
expr.splice // expands at compile time to
{ 1.+(2) }

Consider a more complex example where we capture a
function with a fluid quote:
val doubleIt = quote((in: Int) => in * 2)
doubleIt.splice(5) // expands to
((in: Int) => in * 2)(5)

If we use splice, we introduce an unnecessary tempo-
rary function value. To avoid this, we offer special support
for directly splicing function calls through FluidFunctionN
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types that represent function values of different arities. In
addition to inheriting FluidQuote features, fluid functions
can directly splice a function call spliceCall macro. For
example, we can use this in the earlier example:
val doubleIt = quote((in: Int) => in * 2)
doubleIt.spliceCall(5)
// expands at compile time to
val doubleIt = new FluidFunction1[Int, Int] {
type Expr = "in.*(2)"
type Params = "in"

)
{

val in = 5 // expose arguments
in.*(2) // splice body

}

To implement function call inlining, we introduce an ad-
ditional type member Params that tracks the original pa-
rameter names. The spliceCall macro first exposes each
argument as variables with the same name as the correspond-
ing parameter. This takes advantage of definition shadowing,
since even though there may be existing variables in scope
with those names, the expanded macro block will only see
the parameter variables. Now, all that is left is to splice the
body of the function as if it were a regular FluidQuote.

With these core features, developers can use fluid quotes
to pass around expressions and splice them at compile-time.
However, there are still additional challenges in maintaining
correctness and simplifying the user experience. We discuss
these in the following sections.

3 Capturing Environments with Closures
Fluid quotes often refer to local context through variables,
classes, and methods that are not directly accessible at the
splice sites. We handle such situations by generating closures
that the spliced code uses to access the local symbols. Our
closures are a combination of traditional closures, which
track the relevant symbols, and syntactic closures [Bawden
and Rees 1988], which ensure macro hygiene by preventing
surrounding code from shadowing quoted references.
Consider the following example where the quoted code

uses local references:

1 def add1(num: Int) = quote(num + 1)
2 val quotedAdd1To123 = add1(123)
3

4 {
5 val num = 456 // attempts to shadow num
6 quotedAdd1To123.splice // should be 124
7 }

Figure 2. An example where closures are needed.

We must offer the capabilities of traditional closures to
track the local 123 value referenced by the fluid quote, as
well as syntactic closures to ensure that the num definition
on line 5 is not leaked into the spliced code. We support this
by storing a closure object in the fluid quote which contains
forwarders to the original local symbols. With our closure
transformation system, the code above is transformed into:

1 def add1(num: Int) = new FluidQuote[Int] {
2 type Expr = "numFwd.+(1)"
3

4 type ClosureRefs = "numFwd"
5 class Closure {
6 val numFwd = num
7 }
8

9 val closure = new Closure
10 }
11

12 val quotedAdd1To123 = add1(123)
13 {
14 val num = 456
15 val closure = quotedAdd1To123.closure
16 closure.numFwd.+(1)
17 }

Figure 3. The final code after closure transformations have
taken place.

Here, the local reference num is captured with numFwd in
the Closure class and retrieved as closure.numFwd at the
splice site. In the following subsections, we will examine
how we generate closures and use them in the quoted code.

3.1 Closure Generation Process
Our closure generation process starts by identifying any ref-
erence that is not publicly accessible or defined within the
quoted expression. These must be captured with a closure.
This step is similar to how Spores [Miller et al. 2014] identi-
fies free variables. However unlike Spores, which requires
users to explicitly declare closure elements to minimize seri-
alization cost, fluid quotes do so automatically. Since fluid
quotes are not intended to be transmitted over the network,
serialization cost is not a concern.

For each identified external references, we add a forwarder
to the generated closure class. We split these references
into several groups: Method for method calls, Constructor
for object instantiation, and Immutable for immutable vari-
ables. We use a separate type Mutable for mutable variables
since the value may change after the closure is generated.
While Mutable is used for mutable variable reads, we use
the Mutator type for assignments.



FluidQuotes: Metaprogramming across Abstraction Boundaries with Dependent Types GPCE ’20, November 16–17, 2020, Virtual, USA

𝑐𝑇𝑦𝑝𝑒 = Constructor 𝑡𝑦𝑝𝑒𝑆𝑖𝑔 = class $_($p0: $T0, ...)

𝐹 (expr , typeSig, cType, name) = "def $name($p0: $T0, ...) = new $expr($p0, ...)"

𝑐𝑇𝑦𝑝𝑒 = Method 𝑡𝑦𝑝𝑒𝑆𝑖𝑔 = def $_($p0: $T0, ...): _

𝐹 (expr , typeSig, cType, name) = "def $name($p0: $T0, ...) = $expr($p0, ...)"

𝑐𝑇𝑦𝑝𝑒 = Immutable

𝐹 (expr , typeSig, cType, name) = "val $name = $expr"

𝑐𝑇𝑦𝑝𝑒 = Mutable

𝐹 (expr , typeSig, cType, name) = "def $name = $expr"

𝑐𝑇𝑦𝑝𝑒 = Mutator 𝑡𝑦𝑝𝑒𝑆𝑖𝑔 = var _: $T

𝐹 (expr , typeSig, cType, name) = "def $name(newValue: $T) = { $expr = newValue }"

Figure 4. Closure forwarder generation rules.

Each of these types come with a rule to generate a for-
warder in the closure class. The following artificial example
exercises each of these rules:
val quotedLocal = {

def localMethod(a: Int) = a + 1
class LocalClass(b: Int)
val localImmutable = 123
var localMutable = 456

quote {
localMutable = 1
math.max(
localMethod(1) +
new LocalClass(1).hashCode,

localImmutable + localMutable
)

}
// expands to
new FluidQuote[Int] {
...
class Closure {

def localMethodFwd(a: Int) =
localMethod(a)

def LocalClassFwd(b: Int) =
new LocalClass(b)

val localImmutableFwd = localImmutable
def localMutableFwd = localMutable
def localMutableMutator(newValue: Int) =

{ localMutable = newValue }
}

}
}

Formally, we define a forwarder generator which gener-
ates each of the members of the closure class one-by-one. We
define this as the function 𝐹 (expr , typeSig, cType, name)
where expr is code to reference the local symbol (e.g.
"localImmutable"), typeSig is the type signature of the

referred symbol (e.g. val localImmutable: Int), cType is
the reference type (e.g. Immutable), and name is the name
to use for the forwarder (e.g. "localImmutableFwd"). We
describe this generator through rules in Figure 4.

We are now ready to use closures in the quoted code.

3.2 Quoted Code Transformation
We transform the quoted expression to use the closure as
needed. Continuing our example, the fluid quote tracks the
transformed AST in the Expr type member:
val quotedLocal = {

... // same as before
quote { ... } // expands to
new FluidQuote[Int] {
type Expr = """{
localMutableMutator(1)
_root_.scala.math.max(

localMethodFwd(1) +
LocalClassFwd(1).hashCode,

localImmutableFwd +
localMutableFwd

)
}"""
...

}
}

We avoid forwarders when possible since they come with
a runtime cost. When we detect a reference to a global public
value, we replace it with a path from the root package. In
our example, we detect that math.max is public so replace
it with _root_.scala.math.max and do not generate a for-
warder. This is similar to Squid [Parreaux et al. 2017], which
performs the transformation to maintain macro hygiene.
To further reduce the closure size, when handling selection
chains, we only create a closure for the shortest prefix that
is not publicly accessible. For example, when processing
new LocalClass(1).hashCode we detect that hashCode
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is public so we only need to generate a forwarder for the
LocalClass constructor instead of the entire expression.
Finally, we store the transformed tree as a string literal

type, an instance of the closure, and a list of closure ref-
erences into the fluid quote. We introduce two new type
members: Closure to track the type of the closure object
and ClosureRefs to track the closure reference list. In ad-
dition, we store an instance of the closure in the closure
variable.

val quotedLocal = {
...
quote { ... } // expands to
new FluidQuote[Int] {
...
class Closure { ... }
type ClosureRefs =
"localMethodFwd,LocalClassFwd,..."

val closure = new Closure
}

}

The closure reference list is necessary to re-transform
the references at splice sites to refer to the associated
FluidQuote instance. To finish our example, we can splice
the quoted code and see how the expanded code uses the
closure:

quotedLocal.splice
// expands to
{

val closure = quotedLocal.closure
closure.localMutableMutator(1)
_root_.scala.math.max(
closure.localMethodFwd(1) +
closure.LocalClassFwd(1).hashCode,

closure.localImmutableFwd +
closure.localMutableFwd

)
}

With closures, developers can splice fluid quotes contain-
ing any code wherever they want while ensuring correctness.

4 Composing Fluid Quotes
Fluid quotes can be combined by splicing them into a larger
quoted expression. This composition system makes it possi-
ble to create code templates without writing macros. This is
quite similar to MacroML [Ganz et al. 2001], which imple-
ments type-safe generative macros by tracking the types of
expressions captured by quotes. However, unlike MacroML
which executes macros as separate blocks of code, we use
type-level operations to combine quoted expressions.

Consider a simple code template that adds two fluid quotes
together. We can define this with the composition API:

def quotedAddValues(
a: FluidQuote[Int], b: FluidQuote[Int]

) = {
quote(a.splice + b.splice)

}

With this template definition, we can call the function
normally, but get back a fully resolved FluidQuote type that
can be spliced.
def firstQuote = quote(1)
def secondQuote = quote(2)

val addedValues = quotedAddValues(
firstQuote, secondQuote

)

println(addedValues.splice)
// expands at compile time to
println(1.+(2))

When compiling the body of the quotedAddValues func-
tion, the dependent types of a and b are unknown and there-
fore cannot be spliced using the techniques described so far.
To handle this, we store references to the unknown types as
a type-level linked list that can be resolved later and refer
to the unknown fluid quotes in the serialized expression.
In addition, we store the runtime fluid quote values of the
sub-expressions so that their closures are accessible when
splicing the composed expression.
def quotedAddValues(

a: FluidQuote[Int], b: FluidQuote[Int]
) = {

quote(a.splice + b.splice)
// expands to
new FluidQuote[Int] {
type Expr = "$expr0.+($expr1)"

type ReferencedExprs = ...
val referencedExprs = new Cons {
type Head = a.type
val head = a // expr0

type Tail = ...
val tail = new Cons {

type Head = b.type
val head = b // expr1

type Tail = Nil
val tail = Nil

}
}

}
}

This approach to templating only supports generative
macros which do not inspect the passed ASTs. This is limited
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compared to general macros, but makes it significantly easier
to write short templates. For example, if a developer wanted
to write a template that runs a loop with a maximum number
of iterations, they could do so easily with the composition
feature.
def cappedLoop(condition: FluidQuote[Boolean],

maxIterations: FluidQuote[Int])
(thunk: FluidQuote[Unit]) = {

quote {
var itersLeft = maxIterations.splice
while (itersLeft > 0 && condition.splice) {

thunk.splice
itersLeft -= 1

}
}

}

Calling this template and splicing the returned expression
results in expanded code—all without writing any macro
code. Furthermore, all the elements of the template are in-
lined directly into the final expression sowe have no function
call overhead.
cappedLoop(

readLine("Try again?") == "y", 5
)(println("Trying again!")).splice
// expands at compile time to
var itersLeft = 5
while (

itersLeft > 0 &&
readLine("Try again?" == "y")

) {
println("Trying again!")
itersLeft -= 1

}

This templating style offers a lightweight solution to im-
plementing library-specific optimizationswhile still ensuring
flexibility of abstractions. Compared to regular inlining, us-
ing fluid quotes makes it possible to handle situations where
template parameters may not be defined directly at the call
site but passed in from elsewhere.

5 Splicing Restrictions
Fluid quotes come with a few restrictions since they de-
pend on type propagation implemented by the host language.
Specifically, they cannot be spliced when their dependent
types are unknown and can face ambiguities when deal-
ing with dynamically selected expressions. We offer partial
remedies that help developers deal with such situations.

A fluid quote cannot be spliced in an environment where
it is defined as a parameter, since its type members will be
abstract types in that context. This mirrors a fundamental
limitation of a general inlining system, since it is impossible
to know the AST of a parameter when compiling a method

body. When splice is called on a fluid quote whose expres-
sion type cannot be resolved, the macro raises an error.
def myExprSplicer(expr: FluidQuote[Int]): Int =

expr.splice
// ^ error: the AST of `expr` is unknown here

As a workaround for such situations, we include a runtime
fallback that lets users execute the expression represented
by a fluid quote without inlining it. This is implemented as
an additional method of FluidQuote that returns the result
of executing the expression.
quote(1 + 2)
// expands to
new FluidQuote[Int] {
// ...
def runtimeFallback: Int = 1.+(2)

}

In a more complex situation, the typechecker may face
an ambiguity when branches return different FluidQuote
types. In this case, the returned types will correspond to the
least upper bound of the types across all the branches. This
effectively erases the Expr type member since taking the
least upper bound of two string literal types erases the type.

For example, in the code below, the static type of branch
will be a FluidQuote but with all its type members erased
since it is impossible to know at compile time which branch
will be taken.
def branch(a: FluidQuote[Int],

b: FluidQuote[Int]) =
if (readLine("Use a?") == "yes") a else b

This can be partially remedied by replacing the branch
with a custom branch that separately stores the types of all
the fluid quotes and captures at runtime the branch taken.
When this branched fluid quote is spliced, we splice all of
the fluid quotes but check the branch condition at runtime
to execute the corresponding expression. We can implement
this idea with the closure and templating support discussed
in the previous sections:
def quoteBranch[T](cond: Boolean)

(exprIf: FluidQuote[T],
exprElse: FluidQuote[T]) =

quote(
if (cond) exprIf.splice
else exprElse.splice

)

def branch(a: FluidQuote[Int],
b: FluidQuote[Int]) =

quoteBranch(readLine("Use a?") == "yes")(a, b)

By moving the branch into the quoted expression while
still evaluating the condition outside to preserve the seman-
tics of the program, users are able to dynamically pick be-
tween different fluid quotes.
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6 Applications and Evaluation
With fluid quotes, library developers can easily implement
performance optimizations and code transformations that
require non-local program knowledge without limiting the
abstractions in user code. We discuss two specific applica-
tions of fluid quotes: optimizing collection processing and
improving the flexibility of language integrated queries.

6.1 Performant Collection Processing
In recent times, functional programming has grown into a
popular technique to express transformations on data col-
lections. By breaking down complex transformations into
functional primitives [Burge 1975] such as map to transform
individual elements, filter to select subsets of elements,
and scan to accumulate aggregate results, users can write
modular code. In addition, this approach is more scalable
since each primitive can have an optimized implementation
for the target platform such as specialized hardware or dis-
tributed systems. For example, functional transformations
form the core of Apache Spark RDDs [Zaharia et al. 2012] to
process data at scale.
However, using functions to transform data also comes

with significant overhead. Since every transformation step
is defined by a separate function, executing a pipeline on a
single element involves a series of function calls that each
add their own overhead. While advanced JIT compilers can
eliminate some of this overhead [Prokopec et al. 2017], they
struggle to apply optimizations such as vectorization since
the data processing is not expressed as a traditional loop. The
situation is even worse for ahead-of-time compilers since the
transformation functions are distributed across the codebase
and cannot be brought together for inlining.
Consider a simple vector transformation composed of

many individual pieces:
val myVector = Vector(1, 2, ...)
myVector.view

.map(_ + 1).map(_ + 2)

.scanLeft(0)(_ + _).toVector

Note that we use view to prevent the creation of interme-
diate collections since we only care about the final result and
without it performance would be even worse. If we manually
fuse together the transformation steps, we are able to achieve
an approximately 2.7x speedup when running on OpenJDK
13 with a 2.9 GHz Intel i7-7820HQ and 16 GB RAM.
myVector.map {

var acc = 0
(in: Int) => {
val step1 = in + 1
val step2 = step1 + 2
acc = acc + step2
acc

}
}

We present pipelines, a library based on fluid quotes
that enables users to define transformations with functional
APIs that compile down to a single optimized transforma-
tion without any function call overhead. To keep pipelines
collection-agnostic, they only generate a function that emits
the next output value when called with a new input value. As
a result, pipelines are parameterized on both the input type
as well as the output type. Pipelines only support stream
operations such as scan instead of operations that produce
a single output such as fold, in order to simultaneously sup-
port streaming data and concrete collections. With pipelines,
users can get the same speedup as in the previous example
without having to do the fusion manually.

Consider a program where we accumulate the sum of the
squares of a collection of integers. Pipelines allow us to define
independent steps and generate a fused transformation with
no function call overhead.

def squareNums(nums: PipelineModel[Int, Int]) =
nums.map(n => n * n)

def accumSum(nums: PipelineModel[Int, Int]) =
nums.scanLeft(0)((acc, cur) => acc + cur)

val pipeline = accumSum(squareNums(
PipelineModel.root[Int]))

val transformation = pipeline.instance
println((1 to 5).map(transformation))
// Seq(1, 5, 14, 30, 55)

Through fluid quotes, the instance macro emits a fused
transformation that is nearly identical to hand-written code.

val transformation = {
var acc0 = 0
(in: Int) => {
val step1 = in
val step2 = step1 * step1
acc0 = acc0 + step2
acc0

}
}

By combining all the transformation steps into a single
function, pipelines generate an optimized transformation
that eliminates the overhead of calling each step individually.
We describe this process in the following subsections.

6.1.1 Pipeline Structure IR. In order to perform stream
fusion optimizations, we must first know the structure of
the entire transformation graph. Pipeline structures use a
simple intermediate representation that tracks transforma-
tion dependencies through parent references and user code
through fluid quotes. We define this IR in Figure 5.
Pipelines store this transformation graph in a type mem-

ber Structure similar to how fluid quotes store ASTs. Since
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Pipeline Structure Types

RootNode Represents a root stream, which is the source of input values.
MapNode[𝑃 , 𝑜𝑝] Maps each element 𝑒 ∈ 𝑃 to 𝑜𝑝 (𝑒).
ZipNode[𝑃1, 𝑃2] Merges each pair of elements 𝑒1 ∈ 𝑃1 and 𝑒2 ∈ 𝑃2 into a tuple (𝑒1, 𝑒2).
ScanLeftNode[𝑃 , 𝑖𝑛𝑖𝑡 , 𝑜𝑝] Transforms the stream 𝑃 by accumulating to a state variable (initialized to 𝑖𝑛𝑖𝑡 ), updating the

state to 𝑜𝑝 (𝑝𝑟𝑒𝑣𝑆𝑡𝑎𝑡𝑒, 𝑒) when receiving 𝑒 ∈ 𝑃 , and outputting the new value of 𝑠𝑡𝑎𝑡𝑒 .

Figure 5. Structure Types for Pipelines.

some fluid quotes may require a closure to handle local refer-
ences, we also store a matching runtime object structure in
the PipelineModel which contains the fluid quote values.
Other than the instance macro, which will analyze the

transformation graph and emit the final fused transforma-
tion, none of the other methods in our implementation in-
volve macros. This is possible because fluid quotes use type
members so we do not need anything beyond the core lan-
guage. This makes it easy for library authors to adopt fluid
quotes to implement library-specific optimizations without
introducing the significant engineering overhead of learning
compiler-level APIs to implement macros.

6.1.2 Fused Transformation Generation. Once a
pipeline has been created, we can resolve its full structure
and generate an optimized transformation with all the
individual steps fused together. This all happens in the
instance macro.
The macro starts by recursively converting the structure

type into objects which let us easily manipulate the com-
putation graph. These objects store both the fluid quotes
and parent references originally encoded through types. For
example, if we have the following pipeline model:
val pipeline = PipelineModel.root[Int]

.map(_ + 123).map(_ + 1)

The type member pipeline.Structure would be
MapNode[

MapNode[RootNode, quote(_ + 123).type],
quote(_ + 1).type

]

Now, generating a fused transformation simplifies to a
traversal over the structure tree. The instancemacro splices
the fluid quotes for each node and generates code to pass data
between nodes. The fused transformation for the example
pipeline looks like the following:
(input: Int) => {
val step1 = input + 123
step1 + 1

}

When processing a MapNode, the macro splices a call to the
node’s fluid quote and add a new statement storing the result.
For ScanLeftNodes, it adds a new state variable outside the
function and update it inside the function by splicing a call to

the accumulator function. Handling ZipNode is the simplest,
since there are no fluid quotes involved and all the macro
has to do is generate a new variable that stores a tuple of the
two parent outputs.

6.1.3 Runtime Node Merging. To maintain correctness
with stateful transformations, we must ensure that every
stream node is calculated once in each execution of the
pipeline. At compile time, we cannot tell if two nodes in
the structure tree represent the same stream, since we have
noway of identifying referential equality until the objects are
instantiated. To handle this, we introduce a runtime check
that de-duplicates computations.
Pipelines identify candidates for duplicated calculations

by searching for nodes with identical contents and parents
according to their types. Even when nodes have identical
types, we must still perform a runtime check because two
instances of the same pipeline may be created separately,
which would result in identical types for pipelines that are
not referentially equal. These nodes must be executed inde-
pendently since they may have side effects.
Whenever the instance macro detects that an identical

existing node has already been processed, it emits a branch
around the output of the current node to check for referential
equality and skip the computation. For example, consider
the following code:

val shared = PipelineModel.root[Unit].map { _ =>
println("hello!"); 1

}
val zipped = shared.zip(shared)
zipped.instance

When processing the second parent of the ZipNode,
pipelines detects a potential duplication and generate a check
to only calculates the MapNode if its runtime value is not ref-
erentially equal to the first parent:

(in: Unit) => {
val step1 = { println("hello!"); 1 }
val step2 = if (zipped.structure.p1 eq

zipped.structure.p2) step1
else { println("hello!"); 1 }

(step1, step2)
}
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Since we only emit runtime checks if duplication is pos-
sible, we are able to generate a fused transformation that
matches the expected behavior while minimizing the amount
of extra code to perform de-duplication.

6.1.4 Benchmarks. We compare our pipelines implemen-
tation against Scala views, which implement a similar lazy
evaluation scheme. Our benchmarks consist of transforming
a vector of elements into either a scalar or a new vector.
For views, we first convert the vector into a view and then
perform the transformation. For pipelines, we build a trans-
formation and pass each input element through it.

We benchmark our implementation of pipelines with var-
ious tasks expressed in a functional programming style. Our
workloads that produce scalars do not involve construct-
ing new collections, so the majority of computation time is
spent in transforming elements. On the other hand, work-
loads producing new vectors closely match real-world uses
of functional programming. We run all our workloads on a
collection of 50 floating point elements 𝑥1...𝑥𝑛 :

• sumOfSquares (scalar): calculates
∑𝑛

𝑖=1 𝑥
2
𝑖

• sumSlidingProduct (scalar): calculates
∑𝑛

𝑖=1

∏𝑖
𝑗=1 𝑥 𝑗

• tenMapAdds (vector): transforms 𝑥𝑖 → 𝑥𝑖 +1+ ...+10
• addToSquare (vector): transforms 𝑥𝑖 → 𝑥𝑖 + 𝑥2

𝑖

• multiplyStringifyAddParse (vector): multiplies 𝑥𝑖
by 1000 and casts to an integer, converts to a string,
appends "10" to the string, and parses into an integer

We run benchmarks with JMH, which eliminates noise
due to JIT compilation, on OpenJDK 13 with a 2.9 GHz Intel
i7-7820HQ and 16 Gb RAM. The following plot summarizes
the results of these benchmarks.
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Figure 6. Results of pipeline benchmarks (lower is better).

With pipelines, users can define complex stream transfor-
mations with modular code while still generating efficient
imperative code without the overhead of individual function
calls. In all our benchmarks, pipelines are able to generate
significant speedups by eliminating intermediate function
calls, which results in friendlier bytecode that the JIT can

more thoroughly optimize. Even in the "multiplyStringifyAd-
dParse" workload where there are a small number of complex
steps, the transformations enabled by fluid quotes almost
double the performance. With pipelines involving many sim-
ple steps, such as the "tenMapAdds" workload, we see that
pipelines can result in order-of-magnitude performance im-
provements.

Many languages offer optimizations trying to solve similar
problems to pipelines. We discuss how pipelines offer a more
complete optimization scheme in the following subsections.

6.1.5 Comparison to Haskell Stream Fusion. Haskell,
where stream based transformations like map and filter
form the primary interface for collection processing, includes
stream fusion optimizations to avoid function call overhead
[Coutts et al. 2007]. These optimizations identify successive
stream transformations and merge them into a single opera-
tion.

While this technique works well to optimize short pieces
of collection transformations, it does not scale to larger
applications where transformation segments may be split
across multiple functions. Because Haskell’s stream opti-
mizer works by matching on ASTs, it cannot identify rela-
tionships between transformations spread in separate func-
tions and so each transformation chunk is compiled into a
separate stream that cannot be fused further.
By utilizing type members to store the transformation

graph, fluid quotes enable us to statically resolve the entire
stream structure. Instead of fusing within a local context,
pipelines instead gathers the entire stream structure and
optimizes with a birds-eye view of the transformation graph,
which significantly increases the flexibility of the system.

6.1.6 Comparison to Rust Iterators. Rust iterators
[Mozilla 2020] allows transforming collections using func-
tional programming primitives such as map and filter
while generating "zero-cost" code that is as efficient as hand-
written loops. Rust achieves this with its trait system, which
enables libraries to associate behavior with runtime data
while avoiding the cost of dynamic dispatch.

Rust iterators build up a tree of traits at compile time since
each transformation inlines the parent iterator. The final
trait contains a flat transformation without function calls
to previous steps. However, because these transformations
work by wrapping a new trait implementation at the call site
of each transformation, Rust iterators cannot handle graphs
where an iterator is used along multiple paths. For example,
consider the following code:

let v1 = vec![1, 2, 3];
let base_iter = v1.iter().map(|i| i + 1);

let iter_1 = base_iter.map(|i| i + 1);
let iter_2 = base_iter.map(|i| i * 2);
let final_iter = iter_1.zip(iter_2)
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.map(|(x, y)| x + y);

dbg!(final_iter.collect::<Vec<i32>>());

Since iterators work by inlining all the transformations
up to the latest step, the function |i| i + 1 will be double
inlined since it shows up in both branches of the zip. This
introduces unnecessary computation and would lead to un-
expected behavior if the function had side effects. In order
to support such graphs, we need an overall view to identify
which nodes can refer to the same runtime pipeline. With
fluid quotes, we use types to resolve a complete graph that
can be used to detect such shared paths.

6.2 Flexible Language-Integrated Queries
Fluid quotes also make code transformation techniques more
powerful. We evaluate this capability by extending Quill
[Brasil 2020], a library for language integrated queries [Torg-
ersen 2006] that generates SQL queries from a quoted domain-
specific language [Najd et al. 2016].

With Quill, users interact with database tables in a manner
similar to regular collections, but the operations and func-
tions passed into them are tracked at compile time to gener-
ate an equivalent SQL query. For example, we can define a
type that describes the columns of a table in our database and
query rows from that table. The result is type-safe, familiar
code that is able to express complex queries.
case class Circle(color: String, radius: Float)
ctx.run(ctx.query[Circle]

.filter(_.color == "red")

.map(_.radius).avg)
// generated query:
// "SELECT AVG(c.radius) FROM Circle c
// WHERE c.color = 'red'"

However, Quill faces a significant limitation when it comes
to user abstractions. Because Quill, like other existing strate-
gies for metaprogramming, cannot reach into code defined
behind an abstraction boundary, it often has to fall back to
generating queries at runtime. This happens when Quill can-
not resolve the full set of operations that the user defined
for the query. If we modify the example to abstract out the
predicate, Quill emits a compile-time warning saying that
the query must be generated at runtime.
def averageCircleRadius(
predicate: ctx.Quoted[Circle => Boolean]

) = ctx.query[Circle].filter(predicate(_))
.map(_.radius).avg

ctx.run(averageCircleRadius(
ctx.quote((c: Circle) => c.color == “red”)

))
// warning: "Dynamic query"

We improve this situation by using fluid quotes to track
the functions passed into query operations and use type

members to track the overall structure of the query at com-
pile time. Then, when the user needs to perform the query,
we can generate code that Quill can directly handle at com-
pile time instead of needing to wait for runtime generation
that adds overhead to the system.
We define our extension as the FluidQuery class, which

offers similar APIs as Quill but stores the query functions
as fluid quotes instead of immediately analyzing them at
the call-site. This allows users to define abstractions in their
code while taking advantage of the compile-time query gen-
eration capabilities. We can rewrite the example above using
FluidQuery and see that the query is generated at compile-
time instead of runtime:
def averageCircleRadius(

predicate: FluidFunction1[Circle, Boolean]
) = FluidQuery.query[Circle].filter(predicate)

.map(_.radius).avg

ctx.run(averageCircleRadius(
(c: Circle) => c.color == "red"

).get(ctx))
// generated query:
// "SELECT AVG(c.radius) FROM Circle c
// WHERE c.color = 'red'"

Similar to pipelines, the FluidQuery class stores fluid func-
tions in a type-level data structure that captures all the oper-
ations in a hierarchical manner. For example, the final query
structure type in the above example is:
AvgNode[
MapNode[
FilterNode[
RootNode,
quote((c: Circle) =>

c.color == "red").type
],
quote(_.radius).type

]
]

Once this type is constructed, we can unwrap the structure
into a regular Quill query when the get method is called.
This unwrapping is similar to pipelines but without any of
the de-duplication logic since there is no zip transformation.
In our example, the call to get is expanded into:
ctx.run(ctx.query[Circle]

.filter((c: Circle) => c.color == "red")

.map(_.radius).avg)

One notable limitation of our implementation is the lack
of support for flatMap, a common operator used when com-
bining multiple tables in a single query. This limitation exists
because flatMap would need to take a function returning a
FluidQuery instance, but due to the lack of dependent func-
tion types [Rapoport and Lhoták 2019] in Scala 2, the type
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members of the inner FluidQuery would be erased and we
would not be able to resolve the structure of that component
at compile-time. We hope to address this limitation in future
work through the dependent type capabilities of Scala 3.

7 Related Work
7.1 Lightweight Modular Staging
Fluid quotes and LightweightModular Staging (LMS) [Rompf
and Odersky 2010] address many similar problems, such as
optimizing hierarchical structures to eliminate abstraction
costs and translation of user code into other domains. How-
ever, LMS can only operate at runtime since it tracks ASTs
through runtime values, while fluid quotes can be analyzed
ahead-of-time since the ASTs are tracked through types.
While fluid quotes offer a powerful tool for many situa-

tions, using the type system also introduces a few limitations
that LMS does not face. By performing code generation at
runtime, LMS is able to handle recursive structures, which
fluid quotes cannot due to their use of the type system. This
limitation shows up in one application of LMS: generating
efficient code from parser combinator definitions [Béguet
and Jonnalagedda 2014; Jonnalagedda et al. 2014].

An implementation of this system with fluid quotes would
require capturing the entire model at the type-level, but this
is not possible since recursive dependencies would lead to
infinitely deep types. LMS can handle such situations better
since it can perform runtime memoization of structures and
avoid the infinite recursion challenge.

7.2 Unified Multi-Stage Programming and Macros
One of the main features of Scala 3 is a new quotation-based
macro and multi-stage programming system [Stucki et al.
2018] that offers an interface similar to that of fluid quotes.
However, like traditional systems, these macros can only
expand ahead-of-time when all the quoted code is expressed
at the call-site. Although the system offers a LMS-style al-
ternative for situations where quoted code must be passed
through runtime code, this requires the entire Scala compiler
to be packaged along with the application and introduces
overhead that may not be acceptable for some applications.

For example, the rewrite of the stream fusion library Stry-
monas [Kiselyov et al. 2017] cannot fuse streams ahead-of-
time if they are defined outside macro implementations. This
forces developers to split stream building into separate mod-
ules that complicates the code base significantly. As we saw
in Section 6.1, fluid quotes enables us to implement a stream
fusion system to process the entire transformation graph as
a whole without the limiting where users define the trans-
formation structure. This makes the stream fusion system in
this paper a much more viable alternative to runtime equiv-
alents such as views, since we preserve the object-oriented
user experience and allow users to pass around streams in
runtime code.

7.3 Static Staging with Braid
Braid [Sampson et al. 2017] is a system that enables ahead-
of-time code generation through static stages. By offering a
common language towrite both runtime and code generation
logic, Braid makes it easy to generate code for other domains
and pass runtime values from one language into another.
However, it requires developers to separate themetaprogram-
ming code from runtime code in order to perform expansion
at compile time. While this is acceptable for generating code
snippets that cannot be compiled ahead-of-time such as We-
bGL, this does not workwhen developers need ahead-of-time
expansions for regular runtime code.
Our stream fusion application demonstrates how fluid

quotes can be used to generate code for other domains ahead-
of-time while handling user abstractions. By using types,
fluid quotes are able to eliminate the traditional dependency
on explicitly separating metaprogramming code by using the
typechecker to track ASTs. By executing all the expansions
during the type checking phase, fluid quotes let users blend
together runtime code and quotes while ensuring that they
can be resolved ahead-of-time to be spliced elsewhere.

8 Conclusion
Metaprogramming is a powerful technique that lets libraries
and developers define code transformations for performance
optimization and translation into other domains. Macros
make it easy for developers to quickly get started with
metaprogramming by allowing them to use the same lan-
guage for compile-time and runtime. However, macro code
is executed at compile-time without access to runtime val-
ues, which limits their scope to call-site transformations.
With fluid quotes, we have bridged the ahead-of-time ex-
pansion and runtime code universes through types. Fluid
quotes track quoted ASTs in runtime code and allow users
to splice them at compile-time wherever they want. Fluid
quotes let macros reach beyond the call-site to access code
passed around through abstraction boundaries such as ob-
jects, methods, and variables. In this paper, we discussed how
we can achieve all these capabilities while maintaining cor-
rectness even when environment-specific data is involved.
In addition, we explored how fluid quotes open up compo-
sition strategies where code templates can be defined just
like higher-order functions. Finally, we demonstrated how
fluid quotes enable collection processing optimizations and
compile-time query generation even in the face of abstrac-
tion boundaries that limit traditional macros.
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