Electronic Supplementary Information

Graphene-based gas sensor: metal decoration effect and application to a flexible device

Byungjin Cho^a*, Jongwon Yoon^b, Myung Gwan Hahm^a, Dong Ho Kim^a, Ah Ra Kim^a, Yung Ho Kahng^c, Sang Won Park^a, Young-Joo Lee^a, Sung-Gyu Park^a, Jung-Dae Kwon^a, Chang Su Kim^a, Myungkwan Song^a, Yongsoo Jeong^a, Kee-Seok Nam^a, Heung Cho Ko^b

^aAdvanced Functional Thin Films Department, Surface Technology Division, Korea Institute of Materials Science (KIMS), Changwon, Gyeongnam 641-831, Republic of Korea, *E-mail: <u>bjcho@kims.re.kr</u>

^bSchool of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712, Republic of Korea

^cDepartment of Physics Education, Chonnam National University, Gwangju 500-757, Republic of Korea

Contents

- A. Fabrication process of graphene based gas sensor devices
- **B.** 4-probe Hall measurement
- C. AFM image and line profile of graphene film
- D. Operating temperature dependency of sensing characteristics
- E. Comparison of sensing performance for non-patterned and patterned graphene
- F. Bending performance of graphene based devices

A. Fabrication process of graphene based gas sensor devices

Fig. S1 Sequential process of graphene based gas sensor devices. (a) Cleaning process of substrate (hard SiO₂/Si or flexible PI substrate). (b) Transfer process of graphene film grown on Ni film to the prepared substrates. (c) Deposition of Au/Ti (100/7 nm) electrodes using a shadow mask with IDE array structure. (d) Decoration process of metal NPs (Pd or Al NPs) on graphene film using a thermal evaporator.

B. 4-probe Hall measurement

Table S1 Comparison of several electrical parameters extracted from Hall measurement of

 Graphene, Pd:Graphene, and Al:Graphene.

Device	Туре	μ	n	ρ	R _s	R _H
		(cm^2/Vs)	$(1/cm^3)$	(Ω/cm)	(Ω/\Box)	(cm^3/C)
Graphene	р	400	2.94×10^{19}	5.31×10^{-4}	531	0.213
Pd:Graphene	р	374	3.22×10^{19}	5.17×10^{-4}	517	0.194
Al:Graphene	р	536	1.37×10^{19}	8.49×10^{-4}	849	0.455

*Type of carrier, mobility, carrier concentration, resistivity, sheet resistance, and hall coefficient are denoted as Type, μ , n, ρ , R_s, and R_H, respectively.

C. AFM image and line profile of graphene film

Fig. S2 (a) AFM morphological image and (b) line profile of graphene film.

D. Operating temperature dependency of sensing characteristics

Fig. S3 (a) Transient sensing characteristics of Graphene device under NO_2 1.2 ppm at the operating temperature ranging from 27 to 200 °C. (b) Sensitivity and recovery characteristics of Graphene device as function of the operating temperature.

E. Comparison of sensing performance for non-patterned and patterned graphene

Fig. S4 Gas sensing performance of Graphene, Pd:Graphene, and Al:Graphene devices compared under 5 ppm gas concentration of NO_2 or NH_3 for (a) non-patterned and (b) patterned graphene. The insets of Fig. S4(a) and (b) are top view images of non-patterned and patterned graphene device, respectively.

F. Bending performance of graphene based devices

Fig. S5 (a) Resistance change as function of bending radius. (b) Resistance change as function of bending cycles.