Supporting Information

Robust Superhydrophobic TiO₂@fabrics for UV Shielding, Selfcleaning and Oil-water Separation

Jianying Huang, ^{*t a,b*} *Shuhui Li*, ^{*t a*} *Mingzheng Ge*, ^{*a*} *Luning Wang*, ^{*c*} *Tieling Xing*, ^{*a*} *Guoqiang*

Chen, ^a Xinfang Liu,^a Salem S. Al-Deyab, ^d Keqin Zhang, *^{a,b} Tao Chen*^e and Yuekun Lai*^{a,b}

^a National Engineering Laboratory for Modern Silk, College of Textile and Clothing

Engineering, Soochow University, Suzhou 215123, China.

^b Research Center of Cooperative Innovation for Functional Organic / Polymer Material Micro/Nanofabrication, Soochow University, Suzhou, Jiangsu 215123, China.

^c School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing100083, China.

^d Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.

^e Jiangsu Provincial Key Laboratory of Advanced Robotics, Soochow University, Suzhou 215021, China.

^{*t*}*These authors contributed equally to this publication.*

Corresponding author email: yklai@suda.edu.cn; chent@suda.edu.cn; kqzhang@suda.edu.cn

Supporting movie and figure captions:

Movie S1. Underwater robust sueperhydrophobicity of F17/TiO₂@fabric surface.

Movie S2. Dynamic impacting of ejected water drops on superhydrophobic F17/TiO2@fabric.

Movie S3. Self-cleaning performance of the superhydrophobic F17/TiO₂@fabric.

Movie S4. Oil/water separation capability of the superhydrophobic F17/TiO2@fabric.

Figure S1. XRD patterns of pristine cotton fabric (a) and TiO₂@cotton fabric (b) prepared by a low temperature hydrothermal process (80 °C for 20 h).

Figure S2. SEM image (a) and corresponding EDS mapping image of Ti element (b), O element (c), C element (d), Au element (e), and EDS spectrum of the as-prepared $TiO_2(a)$ fabric without F17 modification (f).

Figure S3. FESEM images showing the as-prepared flower-liked TiO₂ particles on polyester fabric was deposited in 0.1 mM PTO solution at 80°C for 30 h.

Figure S4. The force-distance curves recorded by a droplet contact and move away the superhydrophobic F13/TiO₂@fabric surface under 80 °C in 0.1 mM PTO solution for different deposition durations.

Figure S5. The force-distance curves recorded by a droplet contact and move away the superhydrophobic F17/TiO₂@fabric surface under 80 °C in 0.1 mM PTO solution for different deposition durations.

Figure S6. The correlation of static contact angle on superhydrophobic F17/TiO₂@fabric for different deposition time with 1200# sand paper abrasion cycles. The inset demonstrated the surface texture of the TiO₂ coated fibers after being scratched for 30 cycles.

Figure S7. SEM images of F17/TiO₂@fabric after 5 washing cycles with standard machine laundry.

Figure S8. Contact angle and sliding angle changes on $F17/TiO_2@$ fabric depending on the washing cycles. Comparison of droplet adhesion changes on F17 modified pristine fabric and $F17/TiO_2@$ fabric with various washing cycles.

Figure S1. XRD patterns of pristine cotton fabric (a) and TiO₂@cotton fabric (b) prepared by a low temperature hydrothermal process (80 °C for 20 h).

Figure S2. SEM image (a) and corresponding EDS mapping image of Ti element (b), O element (c), C element (d), Au element (e), and EDS spectrum of the as-prepared TiO₂@fabric without F17 modification (f).

Figure S3. FESEM images showing the as-prepared flower-liked TiO₂ particles on polyester fabric was deposited in 0.1 mM PTO solution at 80°C for 30 h.

Figure S4. The force-distance curves recorded by a droplet contact and move away the superhydrophobic F13/TiO₂@fabric surface under 80 °C in 0.1 mM PTO solution for different deposition durations.

Figure S5. The force-distance curves recorded by a droplet contact and move away the superhydrophobic F17/TiO₂@fabric surface under 80 °C in 0.1 mM PTO solution for different deposition durations.

Figure S6. The correlation of static contact angle on superhydrophobic F17/TiO₂@fabric for different deposition time with 1200# sand paper abrasion cycles. The inset demonstrated the

surface texture of the TiO_2 coated fibers (0.1 M PTO for 20 h) after being scratched for 30 cycles.

Figure S7. SEM images of F17/TiO₂@fabric after 5 washing cycles with standard machine laundry. The washing durability of F17/TiO₂@fabrics were evaluated by a standard procedure according to GB/T 3921-2008.

Figure S8. Contact angle and sliding angle changes on F17/TiO₂@fabric depending on the washing cycles. Comparison of droplet adhesion changes on F17 modified pristine fabric and F17/TiO₂@fabric with various washing cycles.