AgBr Quantum Dots Decorated Mesoporous Bi₂WO₆ Architectures with

Enhanced Photocatalytic Activities for Methylene Blue

Danjun Wang, ^{a, b} Li Guo, ^b Yanzhong Zhen, ^{a, b} Linlin Yue, ^b Ganglin Xue, ^{a*} and Feng Fu^{b*}

^a Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, Department of Chemistry (Ministry of Education), Northwest University, Xi'an, 710069, China. xglin@163.com +86-29-88302604
^bCollege of Chemistry & Chemical Engineering, Yan'an University, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an 716000, China. E-mail: FengFu@126.com +86-911-2332224

*To whom correspondence should be addressed:

Phone: +86-29-88302604 (D. Xue); +86-911-2332224 (D.Fu)

E-mail: xglin@163.com (D. Xue); FengFu@126.com (D.Fu)

Number of Pages: 7

Number of Figures:7

Number of Tables: 1

Journal: The Journal of Materials Chemistry A

Supplementary Information

TABLE OF CONTENTS

Table S1 A summary of literatures using photocatalyst for degradation of Methylene blue.

Fig. S1 Schematic diagram of the photoreactor.

Fig. S2 Nitrogen adsorption/adsorption isotherms and Barrett-Joyner-Halenda (BJH) pore size distribution plot (inset picture) of as-prepared nest-like 3D Bi₂WO₆ architecture.

Fig. S3 Comparison of the photocatalytic activity of 2.0at% AgBr/Bi₂WO₆ heterojunction, pure-Bi₂WO₆ and TiO_{2-x}N_x.

Fig. S4 Comparison of TEM image of 2.0at%AgBr/Bi₂WO₆ heterojunction with different AgBr content: (a) 0.5at%; (b) 1.0at%; (c) 2.0at%; (d) 5.0%at and (e) 10.0at%.

Fig. S5 Controlled experiments under N₂-saturated atmosphere and using different radicals and holes scavengers over AgBr/Bi₂WO₆ sample under visible-light irradiation: isopropyl alcohol(IPA) as scavenger for hydroxyl radicals(\cdot OH); KI (concentration is 1×10^{-4} mol·L⁻¹) as scavenger for holes; benzoquinone(BQ) as scavenger for superoxide radicals(O₂•-).

Fig. S6 Comparison of XRD pattern of pure- $Bi_2WO_6(a)$ and 2.0at%AgBr/ Bi_2WO_6 heterojunction before (b) and after used (c).

Fig. S7 Comparison of TEM image of 2.0at%AgBr/Bi₂WO₆ heterojunction before (a) and after used (b).

Catalyst	Light source	Degradation efficiency	Ref.
ZnO-reduced graphene oxide(RGO)- carbon nanotube(CNT) composite	high pressure Hg lamp(500 W)	degradation efficiency of 96% under UV light irradiation for 260 min	[1]
Ag/BiOI	UV lamp(352nm)	degradation rate 96% for 8 hours	[2]
h-MoO ₃	visible light (350 W)	degradation rate 100% for 120 min degradation rate of \sim 75% for 180 min	[3]
nitrogen-doped TiO ₂ and nitrogen- doped reduced graphene oxide composite(N-TiO ₂ /N-RGO)	xenon lamp(500 W), with the light below 400 nm being removed by a filter.	degradation rate of 80% for 160 min	[4]
AgBr/BiPO ₄	UV mercury lamps (250W)	degradation rate of 96.5.1% under UV light irradiation for 120 min	[5]
$NaIn_{0.9}Fe_{0.1}O_2$	300 W Xe arc lamp	degradation rate of 80% for 90 min	[6]
S-doped TiO ₂	xenon lamps (>420 nm)	maximum degradation efficiency of 88.6% under irradiation for 8 hours	[7]
TiO ₂ -Coated Cenospheres	solar light irradiation	degradation rate of 90% for 60 min	[8]
Starlike BiVO ₄	500-W Xe lamp with a 420- nm cutoff filter	degradation rate of 90% for 25 min	[9]
Nitrogen-Doped TiO ₂	Visible light	degradation rate of 93.1% under Visible light irradiation for 20 hours	[10]

Table S1 A summary of literatures using photocatalyst for degradation of Methylene blue.

Reference

[1] T. Lv, L. K. Pan, X. J. Liu and Z. Sun, Catal. Sci. Technol., 2012, 2, 2297.

[2] Y. Park, Y. Na, D. Pradhan, B. K. Min and Y. Sohn, CrysrEngComm., 2014, 16, 3155.

[3] A. Chithambararaj, N. S. Sanjini, A. Chandra Bose and S. Velmathi, Catal. Sci. Technol., 2013,

3, 1405.

[4]X. Yin, H. L. Zhang, P. Xu, J. Han, J. Y. Li, and M. He, RSC Advances, 2013, 3, 18474.

[5] H. Xu, Y. G. Li, J. X. Xia, J. Xiong, S. Yin, C. J. Huang and H. L. Wan, *Dalton Trans.*, 2012, 41, 3387.

[6] J. W. Lekse, B. J. Haycock, J. Lewis, D. R. Kauffman and C. Maranta. J. Matar. Chem. A 2014, DOI: 10.1039/C4TA00906A

[7]H. X. Li, X. Y. Zhang, Y. N. Huo and J. Zhu. Environ. Sci. Technol., 2007, 41, 4410.

[8]P. K. Surolia, R. J. Tayade and R. V. Jasra. Ind. Eng. Chem. Res., 2010, 49, 8908.

[9]S.M. Sun, W. Z. Wang, L. Zhou and H.L Xu, Ind. Eng. Chem. Res., 2009, 48, 1735.

[10] J.W. Wang, W. Zhu, Y. Q. Zhang and S. X. Liu, J. Phys. Chem. C 2007, 111, 1010.

Fig. S1 Schematic diagram of the photoreactor.

Fig. S2 Nitrogen adsorption/adsorption isotherms and Barrett-Joyner-Halenda (BJH) pore size distribution plot (inset picture) of as-prepared nest-like 3D Bi₂WO₆ architecture.

Fig.S3 Comparison of the photocatalytic activity of 2.0at% AgBr/Bi₂WO₆ heterojunction, pure-Bi₂WO₆ and TiO_{2-x}N_x.

Fig. 4 Comparison of TEM image of 2.0at%AgBr/Bi₂WO₆ heterojunction with different AgBr content: (a) 0.5at%; (b)1.0at%; (c)2.0at%; (d)5.0%at and (e)10.0at%.

Fig. S5 Controlled experiments under N₂-saturated atmosphere and using different radicals and holes scavengers over AgBr/Bi₂WO₆ sample under visible-light irradiation: isopropyl alcohol(IPA) as scavenger for hydroxyl radicals(\cdot OH); KI (concentration is 1×10^{-4} mol·L⁻¹) as scavenger for holes; benzoquinone(BQ) as scavenger for superoxide radicals(O₂•·).

Fig. S6 Comparison of XRD pattern of pure- $Bi_2WO_6(a)$ and 2.0at%AgBr/ Bi_2WO_6 heterojunction before (b) and after used (c).

Fig. S7 Comparison of TEM image of $2.0at\%AgBr/Bi_2WO_6$ heterojunction before (a) and after

used (b).