SUPPORTING INFORMATION

Nanocrystalline carbonate-apatites: role of Ca/P ratio on

the upload and release of anticancer platinum

bisphosphonates.

Materials	Δ w% (Tr-200 °C)	∆w% (200-600 °C)	∆w% (600-1000 °C)	Residue 1000 °C	%	at
HA	5.4 %	3.3 %	1.3 %	90.0 %		
CDHA	4.4 %	2.9 %	2.2 %	90.5 %		

Table S1. Thermal stabilities of HA and CDHA

Figure S1. Adsorption isotherm of complex A on HA (A) and on CDHA (B). Separate points (■) are experimental data; curves are as follows: red, Langmuir; black, Langmuir–Freundlich; blue, Freundlich.

Figure S2. UV-Vis spectra of complexes A or B (A), of [PtCl₂(en)] (B) and of the species released from apatite nanocrystals loaded with complex A or B (C).