Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2020

Electronic Supplementary Information (ESI) for

Carbon nitride nanotubes-based materials for energy and environmental applications: A review of recent progress

Yuxiang Zhu,^a Yi Feng,^a Shuangling Chen,^b Meili Ding^a and Jianfeng Yao^{*a}

^a Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources,

Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, College of

Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.

^b State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of

Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China

E-mail address: jfyao@njfu.edu.cn

Catalyst	Dopant	Mass of photocatalyst,	Light source	Activity	Reference	Stability	AQE (%)	Ref.
	/loaded material	reaction solution and cocatalyst		(µmol h ⁻¹)	material and its activity (µmol h ⁻¹)			
CNNTs	/	10 mg, 120 mL, 10 vol.% TEOA, Pt (3 wt.%)	Xe lamp ^[a] $(\lambda > 420 \text{ nm})$	H ₂ : 75.05	CN nanosheets H ₂ : 12.36	15 h	19.20 (400 nm)	1
CNNTs	/	20 mg, 20 mL, 10 vol.% TEOA, Pt (1 wt.%)	Xe lamp ^[a] $(\lambda > 420 \text{ nm})$	H ₂ : 321.42	Bulk CN H ₂ : 65.60	16 h	/	2
CNNTs	/	100 mg, 100 mL, 10 vol.% TEOA, Pt (3 wt.%)	Xe lamp ^[a] $(\lambda > 400 \text{ nm})$	H ₂ : 28.50	Bulk CN H ₂ : 24.60	/	/	3
CNNTs	/	50 mg, 50 mL, 10 vol.% TEOA, Pt (3 wt.%)	50 W White LED	H ₂ : ~12.60 ^[b]	Bulk CN H ₂ : ~5.40 ^[b]	20 h	1.30 (525 nm)	4
CNNTs	/	50 mg, 100 mL, 10 vol.% TEOA, Pt (3 wt.%)	Xe lamp ^[a] ($\lambda > 400 \text{ nm}$)	H ₂ : 207.90	Bulk CN H ₂ : 12.30	16 h	/	5
Porous CNNTs	/	50 mg, 100 mL, 10 vol.% TEOA, Pt (5 wt.%)	Xe lamp ^[a] ($\lambda > 400 \text{ nm}$)	H ₂ : 70.6	Bulk CN H ₂ : 4.70	/	/	6
Porous CNNTs	/	20 mg, 20 mL, 20 vol.% lactic acid, Pt (0.5 wt.%)	Xe lamp ^[a] $(\lambda > 420 \text{ nm})$	H ₂ : 21.47	Bulk CN H ₂ : 4.58	20 h	2.81 (420 nm)	7
Porous CNNTs	/	50 mg, 333 mL, 10 vol.% methanol, Pt (1 wt.%)	Xe lamp ^[a] $(\lambda > 420 \text{ nm})$	H ₂ : 8.87	Bulk CN H ₂ : 1.40	/	/	8
Porous CNNTs	/	10 mg, 100 mL, 10 vol.% TEOA, Pt (3 wt.%)	Xe lamp ^[a] $(\lambda > 420 \text{ nm})$	H ₂ : 15.40	CN sheets H ₂ : 5.50	20 h	1.10 (420 nm)	9
Mesoporous CNNTs	/	50 mg, 100 mL, 10 vol.% TEOA, Pt (3 wt.%)	Xe lamp ^[a] $(\lambda > 420 \text{ nm})$	H ₂ : 439.45	Bulk CN H ₂ : 81.70	15 h	6.30 (420 nm)	10
Nitrogen-rich CNNTs	/	10 mg, 100 mL of TEOA (10 vol.%), Pt (1 wt.%)	Xe lamp ^[a] $(\lambda > 400 \text{ nm})$	H ₂ : 180.62	Bulk CN H ₂ : 9.27	16 h	12.55 (420 nm)	11
CN tubes	/	50 mg, 100 mL, 10 vol.% lactic acid, Pt (1 wt.%)	Xe lamp ^[a] $(\lambda > 420 \text{ nm})$	H ₂ : 67.70	Bulk CN H ₂ : 11.28	24 h	14.30 (420 nm)	12
Prismatic CNNTs	/	40 mg, 90 mL, 10 vol.% TEOA, Pt (3 wt.%)	Xe lamp ^[a] ($\lambda > 420 \text{ nm}$)	H ₂ : 138.72	Bulk CN H ₂ : 18.88	20 h	10.86 (420 nm)	13
Thin-walled CNNTs	/	100 mg, 100 mL, 10 vol.% TEOA, Pt (1 wt.%)	Xe lamp ^[a] $(\lambda > 420 \text{ nm})$	H ₂ : 399	Bulk CN H ₂ : 10.50	48 h	8.70 (420 nm)	14
PTYS	/	50 mg, 100 mL, 20 vol.% lactic acid, Pt (1 wt %)	Xe lamp ^[a] $(\lambda > 420 \text{ nm})$	H ₂ : 37	Bulk CN H ₂ : 6.15	16 h	11.80 (420 nm)	15
CN microtubes	/	50 mg 100 mL, 20 vol.% TEOA, Pt (3 wt.%)	Xe lamp ^[a] ($\lambda > 420 \text{ nm}$)	H ₂ : 47.90	Bulk CN H ₂ : 2.56	25 h	0.60 (420 nm)	16
CN microtubes	/	50 mg, 20 mL, 20 vol.% lactic	Xe lamp ^[a] ($\lambda > 420 \text{ nm}$)	H ₂ : 50	Bulk CN H ₂ : 16.13	15 h	/	17

Table S1 Representative summary of photocatalytic H_2 production over CNNTs-based photocatalysts

		acid, Pt (0.5 wt.%)						
Hierarchical CNNTs	/	20 mg, 50 mL, 20 vol.% TEOA,	Xe lamp ^[a] ($\lambda > 420 \text{ nm}$)	H ₂ : 105.80 ^[b]	Bulk CN H ₂ : 2.94 ^[b]	25 h	32.40 (420 nm)	18
		Pt (3 wt.%)						
3D assemblies	/	10 mg,	Xe lamp ^[a]	H ₂ : 71	Bulk CN	16 h	7.40	19
of CNNTs		100 mL, 20 vol.% methanol, Pt (1 wt %)	(AM1.5G)		H ₂ : 6.30		(420 nm)	
CNNTs with N	/	30 mg	Xe lamp ^[a]	H ₂ : 238,50	Bulk CN	15 h	8.32	20
and O defects	,	100 mL, 20 vol.% TEOA, Pt (3 wt.%)	$(\lambda > 420 \text{ nm})$	112. 200100	H ₂ : 17.10	10 11	(420 nm)	20
CNNTs with N	/	10 mg,	Xe lamp ^[a]	H ₂ : 118.50	Bulk CN	20 h	6.80	21
defects		100 mL, 10 vol.% TEOA,	$(\lambda > 400 \text{ nm})$		H ₂ : 12		(420 nm)	
P doped	/	50 mg,	Xe lamp ^[a]	H ₂ : 101	Bulk CN	10 h	4.32	22
CNNTs		100 mL, 10 vol.% TEOA, Pt (3 wt.%)	$(\lambda > 420 \text{ nm})$		H ₂ : 4.50		(420 nm)	
C doped	/	30 mg,	Xe lamp ^[a]	H ₂ : 32.30	Bulk CN	16 h	4.38	23
CNNTs		100 mL, 10 vol.% TEOA, Pt (3 wt.%)	$(\lambda > 420 \text{ nm})$		H ₂ : 7.50		(420 nm)	
P doped CNNTs	/	100 mg,	Xe lamp ^[a]	H ₂ : 57	Bulk CN	12 h	/	24
with C defects		100 mL, 20 vol.% methanol, Pt (1 wt.%)	$(\lambda > 420 \text{ nm})$		H ₂ : 6			
Porous CNNTs	/	50 mg,	Xe lamp ^[a]	H ₂ : 261.80	Bulk CN	20 h	/	25
with structural defects		100 mL, 10 vol.% TEOA, Pt (3 wt.%)	$(\lambda > 420 \text{ nm})$	2	H ₂ : 24.60			
P doped CNNTs	/	10 vol.% TEOA, Pt (3	Xe lamp ^[a]	H ₂ : 4.59	Bulk CN	/	/	26
		wt.%)	$(\lambda > 420 \text{ nm})$		H ₂ : 0.24			
P doped-	Р	100 mg,	Xe lamp ^[a]	H ₂ : 67	Bulk CN	20 h	5.68	27
CNNTs	(1.21 wt.%)	100 mL, 20 vol.% methanol, Pt (1 wt.%)	$(\lambda > 420 \text{ nm})$		H ₂ : 9		(420 nm)	
P/S co-doped	/	10 mg,	Xe lamp ^[a]	H ₂ : 163.27	CN nanosheets	60 h	18.93	28
CNNTs		100 mL, 10 vol.% TEOA, Pt,	$(\lambda > 400 \text{ nm})$		H ₂ : 0.21		(420 nm)	
Alkali metals	/	100 mg,	Xe lamp ^[a]	H ₂ : 502	/	5 h	21.20	29
implanted CNNTs		100 mL, 10 vol.% TEOA, Pt (3 wt.%)	$(\lambda > 420 \text{ nm})$				(420 nm)	
Co doped	/	30 mg,	Xe lamp ^[a]	H ₂ : 22.25	Bulk CN	9 h	/	30
CNNTs		50 mL, 25 vol.% TEOA, Pt (2 wt.%)	(350-780 nm)		H ₂ : 17.74			
Na doped	Na	20 mg,	Xe lamp ^[a]	H ₂ : 143	Bulk CN	30 h	1.80	31
CNNTs	(0.10 wt.%)	100 mL, 10 vol.% TEOA, Pt (3 wt.%)	$(\lambda > 420 \text{ nm})$		H ₂ : 13	,	(420 nm)	
Cu doped	Cu	50 mg,		H ₂ : 151	Bulk CN	/	/	32
CNNTs	(0.05 wt.%)	100 mL, 10 vol.% TEOA, Pt (3 wt.%)	$(\lambda > 420 \text{ nm})$	11 4 05	H ₂ : 11.85	12.1	,	22
NaCi doped CN	$(2 \operatorname{ext} 0)$	10 mg,	500 W	H ₂ : 4.95	BUIK CN	12 n	/	33
mcrotubes	(3 WL%)	20 mL, 17 vol.% TEOA, Pt (1 wt.%)	(420 to 780 nm)		H ₂ : 1.15			
CNNTs with N	/	10 mg,	Xe lamp ^[a]	H ₂ : 8.19	Bulk CN	16 h	1.90	34
defects		100 mL, 10 vol.% TEOA, Pt (3 wt.%)	$(\lambda > 420 \text{ nm})$		H ₂ : 0.21		(420 nm)	
Pt-CNNTs	Pt	100 mg,	Xe lamp ^[a]	H ₂ : 13.50	Bulk CN	/	/	35
	(2 wt.%)	100 mL, 10 vol.% TEA,	$(\lambda > 420 \text{ nm})$		H ₂ : 2.25			
Pt@Au/CNNTs	Pt@Au	20 mg,	Xe lamp ^[a]	H ₂ : 207	CNNTs	20 h	9.10	36
	Au: 2.4 wt.%	100 mL, 10 vol.% TEOA, Pt (3 wt.%)	$(\lambda > 420 \text{ nm})$		No H ₂ generated		(420 nm)	
Ag-Cu/CNNTs	Ag ₁ -Cu ₁ (15 wt.%)	40 mg, 40 mL, 10 vol.% TEA,	Xe lamp ^[a] ($\lambda > 420 \text{ nm}$)	H ₂ : 4.15	Bulk CN H ₂ : 1.83	12 h	/	37
Pt-Ni/CNNTs	Pt_1-Ni_1	50 mg,	Xe lamp ^[a]	H ₂ : 104.70	CNNTs	25 h	5.89	38

	(1 wt.%)	100 mL of TEOA (10 vol.%)	$(\lambda > 420 \text{ nm})$		H ₂ : 2.20		(420 nm)	
I/N-CNNTs	/	10 mg,	Xe lamp ^[a]	H ₂ : 9.75	CNNTs	16 h	4.14	39
		100 mL, 10 vol.% TEOA,	$(\lambda \ge 420 \text{ nm})$		H ₂ : 2.68		(420 nm)	
		Pt (3 wt.%)						
Isotype CNNTs	/	40 mg,	Xe lamp ^[a]	H ₂ : 63	Bulk CN	/	/	40
		90 mL, 11 vol.% TEOA,	$(\lambda > 420 \text{ nm})$		H ₂ : 9			
		Pt (3 wt.%)						
K ⁺ , cyano	/	100 mg,	Xe lamp ^[a]	H ₂ : 66.10	Bulk CN	16 h	2.88	41
groups/CNNTs		100 mL, 10 vol.% TEOA,	$(\lambda > 420 \text{ nm})$		H ₂ : 5.51		(420 nm)	
		Pt (3 wt.%)						
Transitional	Fe ³⁺	20 mg,	Xe lamp ^[a]	H ₂ : 150.76	CN nanosheets	12 h	1.10	42
metal	(15.64 mg/kg)	100 mL, 20 vol.% TEOA,	$(\lambda > 420 \text{ nm})$		H ₂ : 11.15		(420 nm)	
ions/CNNTs		Pt (3 wt.%)						
Uio-66-	Uio-66-NH ₂	50 mg,	Xe lamp ^[a]	H ₂ : 152.20	CNNTs	25 h	/	43
NH ₂ /CNNTs	(16.7 wt.%)	100 mL, 10 vol.% TEOA,	$(\lambda > 420 \text{ nm})$		H ₂ : 89.53			
		Pt (1 wt.%)						
CdS/CNNTs	CdS	100 mg,	Xe lamp ^[a]	H ₂ : 71.60	Bulk CN	25 h	/	44
	(10 mol.%)	100 mL, 10 vol.% TEOA,	$(\lambda \ge 420 \text{ nm})$		H ₂ : 4.39			
		Pt (3 wt.%)						
MoS ₂ /CNNTs	MoS_2	200 mg,	Xe lamp ^[a]	H ₂ : 224.80	Bulk CN	12 h	2.34	45
	(15 wt.%)	100 mL, 20 vol.% TEOA,	All spectrum		H ₂ : 12.80		(420 nm)	
CeO ₂ /S-CNNTs	CeO ₂	50 mg,	300 W	H ₂ : 146.19	S-CNNTs	14 h	/	46
	(10 wt.%)	100 mL, 20 vol.% TEOA,	Xe lamp ^[a]		H ₂ : 73.31			
		Pt (1 wt.%)	$(\lambda > 400 \text{ nm})$					
CoO/CNNTs	CoO	40 mg,	Xe lamp ^[a]	H ₂ : 10.51	Co ₃ O ₄ /CNNTs	12 h	4.93	47
	(7 wt.%)	40 mL, 10 vol.% TEOA,	$(\lambda > 420 \text{ nm})$		H ₂ : 9.67		(420 nm)	
Fe ₂ O ₃ /N rich	Fe ₂ O ₃	10 mg,	Xe lamp ^[a]	H ₂ : 3.70	N rich CNNTs	16 h	7.10	48
CNNTs	(3.33 wt.%)	100 mL of water,	(1.5G filter)		H ₂ : 1.20		(365 nm)	
		Pt (1 wt.%)						
C/N-	C/N-TiO ₂	100 mg,	Xe lamp ^[a]	H ₂ :	C-	/	/	49
TiO ₂ @CNNTs		100 mL, 20 vol.% TEOA,	(λ>420 nm)	~48.33 ^[b]	TiO ₂ @CNNTs			
		Pt (3 wt.%)			H ₂ : ~28.33 ^[b]			
CdS/P-CNNTs	CdS	10 mg,	Xe lamp ^[a]	H ₂ : 15.79	CdS/CNNTs	15 h	/	50
	(1 wt.%)	$100\ mL, 0.35\ M\ Na_2S$ and	$(\lambda > 420 \text{ nm})$		H ₂ : 5.14			
		0.35 M Na ₂ SO ₃						
NYFG/CNNTs	NYFG	40 mg,	980 nm diode	H ₂ : 4.15	NYF/CNNTs	12 h	0.08	51
	(15 wt.%)	40 mL, 10 vol.% TEA,	laser		H ₂ : 2.94		(980 nm)	
CQD/CNNTs	Carbon QDs	50 mg,	Xe lamp ^[a]	H ₂ : 176.92	Bulk CN	20 h	10.94%	52
		100 mL, 20 vol.%	$(\lambda > 420 \text{ nm})$		H ₂ : 71.93		(420 nm)	
		methanol,						
		Pt (~3 wt.%)						
C-Dots/CNNTs	C-Dots	50 mg,	Xe lamp ^[a]	H ₂ : 1238	CNNTs	18 h	21.20	53
		330 mL, 10 vol.% methyl	$(\lambda \ge 420 \text{ nm})$		H ₂ : 10.95		(420 nm)	
		alcohol, Pt (1 wt.%)						
Graphene	QDs	100 mg,	Xe lamp ^[a]	H ₂ : 112.10	Bulk CN	20 h	/	54
QDs/CNNTs	(0.15 wt.%)	100 mL, 20 vol.% of	$(\lambda > 420 \text{ nm})$		H ₂ : 11.80			
		methanol,						
		Pt (1 wt.%)						
C-PAN/CNNTs	C-PAN	100 mg,	Xe lamp ^[a]	H ₂ : 177.50	Bulk CN	15 h	5.60	55
	(5 wt.%)	150 mL, 10 vol.% TEOA,	$(\lambda > 400 \text{ nm})$		H ₂ : ~10.63 ^[b]		(420 nm)	
		Pt (3 wt.%)						

[a] Xe lamp has a power of 300 W. [b] estimated from the published H₂ performance curve in the literatures. TEOA: triethanolamine. TEA: triethylamine.

Catalyst	Dopant /loaded	Mass of photocatalyst and pollutant conditions	Light source	Activity (rate constant, <i>k</i>)	Reference photocatalyst and its activity (rate constant k)	Ref.
		50	250 33 32 1	0.00007 : -1	(Tate constant, k)	5.6
AgCI/CNN1s	AgCI	50 mg,	SSU w Ae lamp	0.02827 min ⁻	Bulk CN,	50
Eo ³⁺ modified	(20 wt.%)	20 mL, 0.2 mM KnB,	visible light	In 25 min deemeded 1000/	CN repeateets	42
Fe ⁻ modified	Fe^{-1}	50 mg,	300 w Xe lamp	In 55 min, degraded 100%	Ln 60 min_degraded 60%	42
CININTS CNINT-	(13.04 mg/kg)	50 mL, 10 mg/L KHB	$(\lambda \ge 420 \text{ mm})$	0.00(28	In 60 mm, degraded 60%	C
CININIS	/	50 mg,	(2 > 400 nm)	0.00638 min ²	7	0
CNNT	/	20 mg	$(\lambda > 400 \text{ mm})$	MO: in 70 min degraded	CN renesheats	1
CININIS	/	20 mg,	300 w Ae ramp		MO ₁ in 70 min do and d	1
		20 mL, 20 mg/L MO or TC	$(\lambda > 400 \text{ nm})$	100% TCuin 190 min. docended	MO: in /0 min, degraded	
					TC: in 180 min_degraded	
				92.70%	61.8%	
CNNTs	/	10 mg,	50 W	In 30 min, degraded	CN nanosheets	57
		10 mL, 20 mg/L RhB	LED white light	~98% ^[a]	In 30 min, degraded ~82% ^[a]	
			$(\lambda > 410 \text{ nm})$			
CNNTs	/	5 mg,	500 W Xe lamp	0.06 min ⁻¹	Bulk CN	58
		100 mL, 4 mg/L RhB	$(\lambda \ge 420 \text{ nm})$		0.005 min ⁻¹	
CNNTs	/	100 mg,	Xe lamp	0.074 min ⁻¹	Bulk CN	3
		100 mL, 10 mg/L RhB	$(\lambda > 400 \text{ nm})$		0.021 min ⁻¹	
CNNTs	/	5 mg,	12 W	In 105 min, degraded	Bulk CN	59
		5 mL, 10 μg/Ml RhB	LED at 420 nm	100%	In 105 min, degraded < 20%	
CNNTs	/	50 mg,	300 W Xe lamp	0.01 min ⁻¹	Bulk CN	60
		100 mL, 10 mg/L RhB	$(\lambda > 420 \text{ nm})$		0.007 min ⁻¹	
CNNTs	/	100 mg,	500 W Xe lamp	MB: 0.02116 min ⁻¹	Bulk CN	61
		40 mL, 10 mg/L MB or	Visible light	MO: 0.0067 min ⁻¹	MB: ~0.015 min ^{-1[a]}	
		MO	-		MO: ~0.005 min ^{-1[a]}	
CNNTs	/	50 mg,	300 W Xe lamp	In 120 min, degraded 84%	Bulk CN	62
		100 mL, 10 mg/L MO	$(\lambda > 400 \text{ nm})$	-	In 120 min, degraded 19%	
Prismatic	/	10 mg,	500 W Xe lamp	0.05032 min ⁻¹	Bulk CN	13
CNNTs		50 mL, 10 mg/L RhB	$(\lambda > 420 \text{ nm})$		0.00342 min ⁻¹	
Isotype CNNTs	/	30 mg,	500 W Xe lamp	0.0127 min ⁻¹	Bare CNNTs	40
		30 mL, 10 mg/L MO	$(\lambda > 420 \text{ nm})$		0.0079 min ⁻¹	
Ag/CNNTs	Ag	200 mg,	300 W Xe lamp	0.55909 min ⁻¹	Bare CNNTs	63
-	(1 wt.%)	100 mL, 20 mg/L MO,	$(\lambda > 420 \text{ nm})$		0.22399 min ⁻¹	
C/X-	/	100 mg,	300 W Xe lamp	In 120 min	Bulk CN	49
TiO ₂ @CNNTs		100 mL, 10 mg/L MO,	$(\lambda > 420 \text{ nm})$	MO: C/F-TiO2@CNNTs	In 120 min	
(X= N, F, Cl)		or 20 mg/L PCP		degraded ~72% ^[a] ,	MO: degraded $\sim 10\%^{[a]}$,	
		-		PCP: C/Cl-TiO ₂ @CNNTs	PCP: degraded ~12% ^[a]	
				degraded ~86% ^[a]	-	
H ₃ PW ₁₂ O ₄₀ /CN	$H_{3}PW_{12}O_{40}$	200 mg,	300 W Xe lamp	MO: in 4 h, degraded	Bulk CN	64
NTs	(30 wt.%)	100 mL, 10 mg/L MO or	$(\lambda > 420 \text{ nm})$	~100% ^[a] ,	MO: in 4 h, degraded	
		DEP		DEP: in 24 h, degraded	~38% ^[a] ,	
				~84% ^[a]	DEP: in 24 h, degraded	
					~20%[a]	
CNNTs	/	50 mg,	300 W Xe lamp	In 3 h,	/	65
		50 mL MO or ERB or	$(\lambda > 400 \text{ nm})$	MO, ERB, ERB:		
		AR18		degraded ~85% ^[a] , ~90% ^[a] ,		
				~100% ^[a]		
Nitrogen-rich	/	20 mg,	300 W Xe lamp	BPA: in 120 min, degraded	Bulk CN	11
CNNTs		100 mL, 10 mg/L BPA	$(\lambda > 400 \text{ nm})$	~70%	BPA: in 120 min,	
		simultaneous with H ₂	,	MB: in 210 min,	degraded ~33%,	
		production system		degraded ~49% ^[a]	MB: in 210 min,	
		25 mg,		-	degraded ~17% ^[a]	
		50 mL, 10 mg/L MB			-	
Porous CNNTs	/	10 mg,	300 W Xe lamp	0.1471 min ⁻¹	CN nanosheets	9
		30 mL, 30 mg/L TC	$(\lambda > 420 \text{ nm})$		0.1471 min ⁻¹	

Table S2 Representative summary of photocatalytic pollutant degradation over CNNTs-based photocatalysts

CNNTs with	/	25 mg,	300 W Xe lamp	0.0077 min ⁻¹	Bulk CN	21
defects		50 mL, 10 mg/L MB	$(\lambda > 400 \text{ nm})$		0.0009 min^{-1}	
Pt/CNNTs	Pt	100 mg,	300 W Xe lamp	In 7 h, degraded ~98% ^[a]	Bulk CN	35
	(2 wt.%)	100 mL, 20 mg/L PCP	$(\lambda > 420 \text{ nm})$		In 7 h, degraded ~35% ^[a]	
B modified	/	50 mg,	300 W Xe lamp	In 90 min, RhB, MB:	Bulk CN	66
CNNTs		100 mL, 10 mg/L RhB or	$(\lambda > 420 \text{ nm})$	degraded 99.30%, 98.90%	In 90 min, RhB, MB:	
		MB			degraded 48.20%, 51.80%	
S-	S-CQDs	1 g/L,	300 W Xe lamp	0.0293 min ⁻¹	Bulk CN	67
CQDs/CNNTs	0.2 mg	20 mg/L TC	(visible light)		0.0059 min ⁻¹	
Z-Scheme	/	25 mg,	300 W Xe lamp	0.001667 min ⁻¹	Bulk CN	68
CNNTs		50 mL, 10 mg/L DON	$(\lambda \ge 420 \text{ nm})$		0.0004167 min ⁻¹	
Carbon	/	25 mg,	Xe lamp	0.0568 min ⁻¹	Bare CNNTs	69
QDs/CNNTs		50 mL, 1 mg/L CBZ	$(\lambda > 400 \text{ nm})$		0.0136 min ⁻¹	
BP/CNNTs	/	30 mg,	Xe lamp	OTC-HCl: 0.0276 min-1	Bare CNNTs	70
		50 mL, 10 mg/L OTC-HCl,	$(\lambda > 420 \text{ nm})$	Cr(VI): 0.0276 min ⁻¹	OTC-HCl: 0.0117 min ⁻¹	
		50 mg,			Cr(VI): 0.0276 min ⁻¹	
		50 mL, 10 mg/L Cr(VI)				
CNNTs	/	100 mg,	30 W LED	Removal rate: 59.40%	CN nanosheets	71
		600 ppb NO	(Visible light)		Removal rate: 40.17%	
B doped	H_3BO_3	100 mg,	300 W Xe lamp	Removal rate: 30.40%	Bulk CN	72
CNNTs	2 mmol	400 ppb NO	$(\lambda > 420 \text{ nm})$		Removal rate: 20.80%	
CNNTs with C	/	200 mg,	LED lamp	Removal rate: 47.70%	/	73
vacancies		50 ppm NO	$(\lambda \ge 448 \text{ nm})$			
CNNTs with N	/	100 mg,	300 W Xe lamp	Removal rate: 81.97%	Bulk CN	20
and O defects		400 ppm NO	$(\lambda \ge 420 \text{ nm})$		Removal rate: 16.02%	

[a] estimated from the figures in the literatures.

References

[1] X. Zhao, Y. Zhang, X. Zhao, X. Wang, Y. Zhao, H. Tan, H. Zhu, W. Ho, H. Sun and Y. Li,

ACS Appl. Mater. Interfaces, 2019, 11, 27934-27943.

[2] X. Dai, Z. Han, G.I.N. Waterhouse, H. Fan and S. Ai, *Appl. Catal. A: Gen.*, 2018, **566**, 200-206.

[3] Z. Zeng, K. Li, L. Yan, Y. Dai, H. Guo, M. Huo and Y. Guo, *RSC Adv.*, 2014, 4, 59513-59518.

[4] G. Zhang, A. Savateev, Y. Zhao, L. Li and M. Antonietti, J. Mater. Chem. A, 2017, 5,

12723-12728.

[5] S. Zhao, J. Fang, Y. Wang, Y. Zhang and Y. Zhou, ACS Sustainable Chem. Eng., 2019, 7, 10095-10104.

[6] S. Zhao, Y. Zhang, J. Fang, H. Zhang, Y. Wang, Y. Zhou, W. Chen and C. Zhang, ACS Sustainable Chem. Eng., 2018, 6, 8291-8299.

[7] X. Wang, C. Zhou, R. Shi, Q. Liu, G.I.N. Waterhouse, L. Wu, C.-H. Tung and T. Zhang,

Nano Res., 2019, 12, 2385-2389.

[8] B.-X. Zhou, S.-S. Ding, B.-J. Zhang, L. Xu, R.-S. Chen, L. Luo, W.-Q. Huang, Z. Xie, A.
 Pan and G.-F. Huang, *Appl. Catal. B: Environ.*, 2019, 254, 321-328.

[9] H. Tang, R. Wang, C. Zhao, Z. Chen, X. Yang, D. Bukhvalov, Z. Lin and Q. Liu, *Chem. Eng. J.*, 2019, **374**, 1064-1075.

[10] J. Bai, Q. Han, Z. Cheng and L. Qu, Chem. Asian J., 2018, 13, 3160-3164.

[11] F. Xu, Z. Mo, J. Yan, J. Fu, Y. Song, W. El-Alami, X. Wu, H. Li and H. Xu, J. Colloid Interface Sci., 2020, **560**, 555-564.

[12] C. Liu, H. Huang, L. Ye, S. Yu, N. Tian, X. Du, T. Zhang and Y. Zhang, *Nano Energy*, 2017, 41, 738-748.

[13] T. Huang, W. Zhang, S. Pan, L. Shi, J. Zhu, X. Wang and Y. Fu, J. Mater. Sci., 2020, 55, 6037-6050.

- [14] Y. Chen, X. He, D. Guo, Y. Cai, J. Chen, Y. Zheng, B. Gao and B. Lin, *J. Energy Chem.*, 2020, 49, 214-223.
- [15] N. Tian, K. Xiao, Y. Zhang, X. Lu, L. Ye, P. Gao, T. Ma and H. Huang, *Appl. Catal. B: Environ.*, 2019, **253**, 196-205.
- [16] H. Che, G. Che, P. Zhou, N. Song, C. Li, C. Li, C. Liu, X. Liu and H. Dong, *J. Colloid Interface Sci.*, 2019, **547**, 224-233.
- [17] C. Zhou, R. Shi, L. Shang, L.-Z. Wu, C.-H. Tung and T. Zhang, *Nano Res.*, 2018, **11**, 3462-3468.
- [18] Z. Sun, W. Wang, Q. Chen, Y. Pu, H. He, W. Zhuang, J. He and L. Huang, J. Mater. Chem. A, 2020, 8, 3160-3167
- [19] C. Zhao, Q. Li, Y. Xie, L. Zhang, X. Xiao, D. Wang, Y. Jiao, C.A. Hurd Price, B. Jiang and J. Liu, *J. Mater. Chem. A*, 2020, **8**, 305-312.
- [20] S. Wan, M. Ou, Y. Wang, Y. Zeng, Y. Xiong, F. Song, J. Ding, W. Cai, S. Zhang and Q.

Zhong, Appl. Catal. B: Environ., 2019, 258, 118011.

[21] Z. Mo, H. Xu, Z. Chen, X. She, Y. Song, J. Wu, P. Yan, L. Xu, Y. Lei, S. Yuan and H.Li, *Appl. Catal. B: Environ.*, 2018, 225, 154-161.

- [22] M. Wu, J. Zhang, B.-b. He, H.-W. Wang, R. Wang and Y.-S. Gong, *Appl. Catal. B: Environ.*, 2019, **241**, 159-166.
- [23] Y. Yang, J. Liu, C. Zhou, P. Zhang, S. Guo, S. Li, X. Meng, Y. Lu, H. Xu, H. Ma and L. Chen, *Int. J. Hydrogen Energy*, 2019, 44, 27354-27362.
- [24] S. Guo, Y. Tang, Y. Xie, C. Tian, Q. Feng, W. Zhou and B. Jiang, *Appl. Catal. B: Environ.*, 2017, **218**, 664-671.
- [25] Z. Huang, F. Li, B. Chen and G. Yuan, RSC Adv., 2015, 5, 102700-102706.
- [26] H.B. Che, X.X. Yan, Z.Y. Jia, P. Hu and J.S. Wang, J. Nano Res., 2018, 53, 76-85.
- [27] S. Guo, Z. Deng, M. Li, B. Jiang, C. Tian, Q. Pan and H. Fu, Angew. Chem. Int. Ed., 2016, 55, 1830-1834.
- [28] Z. Liu, X. Zhang, Z. Jiang, H.-S. Chen and P. Yang, Int. J. Hydrogen Energy, 2019, 44, 20042-20055.
- [29] H. Gao, S. Yan, J. Wang, Y.A. Huang, P. Wang, Z. Li and Z. Zou, *Phys. Chem. Chem. Phys.*, 2013, 15, 18077-18084.
- [30] Y. Du, L. Zhao, H. Chen, Z. Huang, X. He, W. Fang, W. Li, X. Zeng and F. Zhang, J. Mater. Sci., 2019, 55, 1973-1983.
- [31] L. Zhang, N. Ding, M. Hashimoto, K. Iwasaki, N. Chikamori, K. Nakata, Y. Xu, J. Shi,H. Wu, Y. Luo, D. Li, A. Fujishima and Q. Meng, *Nano Res.*, 2018, 11, 2295-2309.
- [32] X. Yan, Z. Jia, H. Che, S. Chen, P. Hu, J. Wang and L. Wang, *Appl. Catal. B: Environ.*, 2018, 234, 19-25.
- [33] X. Liu, X. Wu, D. Long, X. Rao and Y. Zhang, J. Photochem. Photobiol. A, 2020, 391, 112337.

- [34] G. Ge, X. Guo, C. Song and Z. Zhao, ACS Appl. Mater. Interfaces, 2018, **10**, 18746-18753.
- [35] K. Li, Z. Zeng, L. Yan, S. Luo, X. Luo, M. Huo and Y. Guo, *Appl. Catal. B: Environ.*, 2015, 165, 428-437.
- [36] L. Zhang, N. Ding, L. Lou, K. Iwasaki, H. Wu, Y. Luo, D. Li, K. Nakata, A. Fujishima and Q. Meng, *Adv. Funct. Mater.*, 2019, **29**, 1806774.
- [37] Y. Zhu, A. Marianov, H. Xu, C. Lang and Y. Jiang, *ACS Appl. Mater. Interfaces*, 2018, 10, 9468-9477.
- [38] W. Peng, S.-S. Zhang, Y.-B. Shao and J.-H. Huang, *Int. J. Hydrogen Energy*, 2018, **43**, 22215-22225.
- [39] G. Ge and Z. Zhao, Catal. Sci. Technol., 2019, 9, 266-270.
- [40] Z. Tong, D. Yang, Y. Sun, Y. Nan and Z. Jiang, Small, 2016, 12, 4093-4101.
- [41] J. Yang, Y. Liang, K. Li, G. Yang, K. Wang, R. Xu and X. Xie, *Appl. Catal. B: Environ.*, 2020, 262, 118281.
- [42] Z. Jiang, X. Zhang, H.S. Chen, X. Hu and P. Yang, ChemCatChem, 2019, 11, 4558-4567.
- [43] S. Zhang, K. Chen, W. Peng and J. Huang, *New J. Chem.*, 2020, 44, 3052-3061.
 [44] B. Chong, L. Chen, D. Han, L. Wang, L. Feng, Q. Li, C. Li and W. Wang, *Chinese J. Catal.*, 2019, 40, 959-968.
- [45] J. Sun, S. Yang, Z. Liang, X. Liu, P. Qiu, H. Cui and J. Tian, *J. Colloid Interface Sci.*, 2020, **567**, 300-307.
- [46] M. Li, C. Chen, L. Xu, Y. Jia, Y. Liu and X. Liu, J. Energy Chem., 2021, 52, 51-59.
- [47] Y. Zhu, T. Wan, X. Wen, D. Chu and Y. Jiang, *Appl. Catal. B: Environ.*, 2019, 244, 814-822.
- [48] C. Zhao, M. Zheng, D. Wang, Q. Li and B. Jiang, *Energy Technol.*, 2020, 8, 2000108.
- [49] K. Li, Z. Zeng, L. Yan, M. Huo, Y. Guo, S. Luo and X. Luo, *Appl. Catal. B: Environ.*, 2016, 187, 269-280.

[50] Q. Liang, C. Zhang, S. Xu, M. Zhou, Y. Zhou, Z. Li, *J. Colloid Interface Sci.*, 2020, **577**, 1-11.

- [51] Y. Zhu, X. Zheng, Y. Lu, X. Yang, A. Kheradmand and Y. Jiang, *Nanoscale*, 2019, **11**, 20274-20283.
- [52] Y. Wang, X. Liu, J. Liu, B. Han, X. Hu, F. Yang, Z. Xu, Y. Li, S. Jia, Z. Li and Y. Zhao, *Angew. Chem. Int. Ed.*, 2018, **57**, 5765-5771.
- [53] B. Li, Q. Fang, Y. Si, T. Huang, W.-Q. Huang, W. Hu, A. Pan, X. Fan and G.-F. Huang, *Chem. Eng. J.*, 2020, **397**, 125470.
- [54] Y. Gao, F. Hou, S. Hu, B. Wu, Y. Wang, H. Zhang, B. Jiang and H. Fu, *ChemCatChem*, 2018, 10, 1330-1335.
- [55] F. He, G. Chen, J. Miao, Z. Wang, D. Su, S. Liu, W. Cai, L. Zhang, S. Hao and B. Liu, ACS Energy Lett., 2016, 1, 969-975.
- [56] J. Xie, C. Wu, Z. Xu, C. Tian, M. Li and J. Huang, Mater. Lett., 2019, 234, 179-182.
- [57] T. Jordan, N. Fechler, J. Xu, T.J.K. Brenner, M. Antonietti and M. Shalom, *ChemCatChem*, 2015, **7**, 2826-2830.
- [58] Z. Jin, Q. Zhang, S. Yuan and T. Ohno, RSC Adv., 2015, 5, 4026-4029.
- [59] M. Shalom, S. Inal, C. Fettkenhauer, D. Neher and M. Antonietti, J. Am. Chem. Soc., 2013, 135, 7118-7121.
- [60] S. Wang, C. Li, T. Wang, P. Zhang, A. Li and J. Gong, J. Mater. Chem. A, 2014, 2, 2885-2990.
- [61] M. Tahir, C. Cao, F.K. Butt, F. Idrees, N. Mahmood, Z. Ali, I. Aslam, M. Tanveer, M. Rizwan and T. Mahmood, *J. Mater. Chem. A*, 2013, 1, 13949-13955.
- [62] Y. Cao, X. Jing, Y. Chen, W. Kang, S. Wang and W. Wang, *RSC Adv.*, 2019, 9, 3396-3402.
- [63] T. Shu, W. Yang, K. Li, L. Yan, Y. Dai and H. Guo, Energy Environ. Focus, 2015, 4,

107-115.

[64] K. Li, L. Yan, Z. Zeng, S. Luo, X. Luo, X. Liu, H. Guo and Y. Guo, *Appl. Catal. B: Environ.*, 2014, **156-157**, 141-152.

[65] T. Ma, J. Bai, Q. Wang and C. Li, *Dalton Trans.*, 2018, 47, 10240-10248.

[66] F. Hou, Y. Li, Y. Gao, S. Hu, B. Wu, H. Bao and H. Wang, B. Jiang, *Mater. Res. Bull.*, 2019, **110**, 18-23.

- [67] W. Wang, Z. Zeng, G. Zeng, C. Zhang, R. Xiao, C. Zhou, W. Xiong, Y. Yang, L. Lei, Y. Liu, D. Huang, M. Cheng, Y. Yang, Y. Fu, H. Luo and Y. Zhou, *Chem. Eng. J.*, 2019, **378**, 122132.
- [68] X. Bai, H. Li, Z. Zhang, X. Zhang, C. Wang, J. Xu and Y. Zhu, *Catal. Sci. Technol.*, 2019, 9, 1680-1690.
- [69] C. Zhao, Z. Liao, W. Liu, F. Liu, J. Ye, J. Liang and Y. Li, *J. Hazard. Mater.*, 2020, 381, 120957.
- [70] W. Wang, Q. Niu, G. Zeng, C. Zhang, D. Huang, B. Shao, C. Zhou, Y. Yang, Y. Liu, H. Guo, W. Xiong, L. Lei, S. Liu, H. Yi, S. Chen and X. Tang, *Appl. Catal. B: Environ.*, 2020, 273, 119051.
- [71] W. Ho, Z. Zhang, W. Lin, S. Huang, X. Zhang, X. Wang and Y. Huang, ACS Appl. Mater. Interfaces, 2015, 7, 5497-5505.
- [72] Z. Wang, M. Chen, Y. Huang, X. Shi, Y. Zhang, T. Huang, J. Cao, W. Ho and S.C. Lee, *Appl. Catal. B: Environ.*, 2018, **239**, 352-361.

[73] Y. Li, M. Gu, T. Shi, W. Cui, X. Zhang, F. Dong, J. Cheng, J. Fan and K. Lv, *Appl. Catal. B: Environ.*, 2020, 262, 118281.