Supporting information

Carbon-based catalysts for Fischer Tropsch synthesis

Yanping Chen*^a, Jiatong Wei^{a,c}, Melis S. Duyar ^d, Vitaly V. Ordomsky*^b, Andrei Y. Khodakov^b and Jian Liu*^{a,d}

^aState Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China.

Email: <u>chenyp@dicp.ac.cn</u>

vitaly.ordomsky@univ-lille.fr

jian.liu@surrey.ac.uk

^bUniv. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide, F-59000 Lille, France

^cInstitute of Chemistry for Functionalized Materials, School of Chemistry and Chemical Engineering, Liaoning Normal University, 850 Huanghe Road, Dalian 116029, China.

^dDICP-Surrey Joint Centre for Future Materials, Department of Chemical and Process Engineering, and Advanced Technology Institute, University of Surrey, Guildford, Surrey GU2 7XH, UK.

Table S1 Catalytic data of representative activated carbon supported cobalt catalysts for Fischer Tropschsynthesis.

	Reaction conditions			со	C sel./%					MTY/10 ⁻		
Catalysts	Т/	H ₂ /	P/	GHSV/L	conv.		_		_		⁵mol _{co}	Ref
	°C	со	MPa	g _{cat} -1h-1	/%	CO ₂	CH_4	C ₂ -C ₄	CH₅+	ROH	g _{Co} ⁻¹ s ⁻¹	
15Co/AC					65.2	2.1	22.6	19.2	36.0	20.1	0.36	1
15Co-0.2Al ₂ O ₃ /AC					68.5	2.0	21.0	11.9	37.4	27.7	0.38	1
15Co-0.9Al ₂ O ₃ /AC	220	3	2	0.2	79.0	2.4	14.8	8.7	52.4	21.7	0.44	1
15Co-1.9Al ₂ O ₃ /AC					84.9	2.9	13.2	6.2	58.9	18.8	0.47	1
15Co-3.8Al ₂ O ₃ /AC					82.8	4.1	16.8	7.5	56.6	15.0	0.46	1
15Co/AC					13.5	8.6	31.7	37.5	-	22.2	0.56	2
15Co-0.1La/AC					16.8	6.5	27.2	32.8	-	33.5	0.69	2
15Co-0.5La/AC	222	1.5	2	0.2	21.4	5.1	23.8	32.2	-	38.9	0.88	2
15Co-1.0La/AC					16.9	6.1	24.2	31.8	-	37.9	0.70	2
15Co-2.0La/AC					8.0	7.4	31.4	24.1	-	37.1	0.33	2
15Co/AC					31.7	0.8	53.9(C ₁ -C ₄) ^a	25.1	20.2	0.44	3
15Co-0.1Li/AC	220	2	2	0.5	18.7	1.4	44.8(C ₁ -C ₄)	26.1	27.7	0.26	3
15Co-1.0Li/AC	220	5	2	0.5	14.2	1.9	38.8(C1-C4)	26.8	32.5	0.20	3
15Co-2.0Li/AC					11.9	2.2	29.3(C ₁ -C ₄)	34.2	34.3	0.16	3
15Co/AC					24.2	0.4	43.0(C ₁ -C ₄)	39.1	17.5	2.67	4
15Co-0.5Fe/AC					27.4	0.7	44.0(C ₁ -C ₄)	35.0	20.2	3.02	4
15Co-1Fe/AC	220	3	2	4.0	24.8	1.0	55.0(C1-C4)	23.1	20.9	2.73	4
15Co-3Fe/AC					14.8	1.7	58.3(C ₁ -C ₄)	17.8	22.3	1.63	4
15Co-5Fe/AC					16.4	1.6	57.8(C ₁ -C ₄)	20.0	20.6	1.81	4
15Co/AC					64.3	1.5	37.7(C1-C4)	45.3	15.4	1.59	5
15Co-0.05Ca/AC	220	2	2	0 0	56.2	1.4	32.7(C ₁ -C ₄)	42.5	23.5	1.39	5
15Co-0.1Ca/AC	220	5	2	0.9	49.0	0.7	29.9(C ₁ -C ₄)	38.8	30.6	1.22	5
15Co-0.5Ca/AC					24.7	1.3	48.0(C ₁ -C ₄)	21.4	29.3	0.61	5
15Co-1Zr-0.5La/AC-H					55.0	3.7	75.6	(Hydrocar	bons)	21.7	0.76	6
15Co-1Zr-0.5La/AC-S					21.5	6.4	71.1	(Hydrocar	bons)	22.5	0.30	6
15Co-0.5La/AC	225	3	2	0.5	58.0	2.0	77.6	(Hydrocar	bons)	20.4	0.80	6
15Co/AC					74.0	4.4	82.4	(Hydrocar	bons)	13.2	1.02	6
15Co-1Zr-0.5La/Al					84.0	12.3	83.4	(Hydrocar	bons)	4.5	1.16	6
15Co/AC					28.9	0.6	23.1	23.5	32.0	20.8	1.59	7
15Co-1Cr/AC					35.0	0.5	21.3	22.7	36.6	18.9	1.93	7
15Co-2Cr/AC	220	3	2	2.0	47.0	0.6	20.8	21.7	41.4	15.5	2.59	7
15Co-3Cr/AC					45.6	0.5	18.1	20.3	42.5	18.6	2.51	7
15Co-5Cr/AC					30.1	0.8	20.4	24.5	35.8	18.5	1.66	7
10Co-0.5Mn-0.1La/AC					14.8	0.9	11.7	35.0	31.0	21.4	1.22	8
10Co-0.5Mn-0.5La/AC					20.8	2.0	10.2	33.6	29.4	24.5	1.72	8
10Co-1Mn-0.1La/AC	220	3	2	2.0	21.0	1.1	9.4	32.6	34.1	22.9	1.74	8
10Co-1Mn-0.5La/AC					23.0	2.5	9.0	31.3	32.1	25.1	1.90	8
10Co-1Mn-1La/AC					14.7	3.1	12.0	34.4	25.3	25.2	1.22	8

10Co-0.5Mn-1La/AC					8.3	2.5	18.3	34.4	18.0	26.8	0.69	8
10Co/AC					49.7	-	18.5	18.2	63.3	-	1.12	9
10Co-4Zr/AC					86.4	-	14.2	14.8	71.0	-	1.11	9
10Co-4Zr-0.1La/AC					90.7	-	13.7	14.2	72.1	-	0.68	9
10Co-4Zr-0.2La/AC	250	3	2	0.5	92.3	-	11.5	13.8	74.7	-	1.12	9
10Co-4Zr-0.3La/AC					87.9	-	12.1	14.6	73.3	-	1.11	9
10Co-4Zr-0.5La/AC					85.1	-	14.4	15.2	70.4	-	0.68	9
10Co-4Zr-1.0La/AC					75.9	-	16.7	17.1	66.2	-	1.12	9
15Co/AC					38.9	-	20.4	18.2	61.4	-	0.54	10
15Co-0.5V/AC					45.3	-	12.1	15.9	72	-	0.62	10
15Co-1V/AC	220	3	2	0.5	56.5	-	13.9	17.5	68.6	-	0.78	10
15Co-2V/AC					73.1	-	15.3	18.8	65.9	-	1.01	10
15Co-4V/AC					87.4	-	18.4	18.7	62.9	-	1.20	10
								C ₂ +				
								paraff	Olefin	ROH		
								ins ^b				
15Co/AC					47.5	0.7	22.9	47.1	14.7	14.6	2.62	11
15Co0.5Mn/AC	220	2	2	2.0	40.5	1.8	8.6	29.0	41.4	19.2	2.23	11
15Co1Mn/AC	220	3	Z	2.0	29.1	2.4	8.1	29.6	38.5	21.4	1.60	11
15Co2Mn/AC					14.3	3.1	9.7	25.7	41.7	19.8	0.79	11

GHSV=Gas hourly space velocity(L $g_{cat}^{-1} h^{-1}$); TOS=Time on stream(h); CO conv.=CO conversion(%); C₂-C₄=Hydrocarbons with carbon number of 2-4; CH₅+=Hydrocarbons with carbon number above 5; ROH=Alcohol selectivity; MTY=Cobalt time yield(10⁻⁵mol_{CO} $g_{Co}^{-1} s^{-1}$); ^aC₁-C₄=Hydrocarbons with carbon number of 1-4; ^bC₂+ Paraffins=Paraffins with carbon number above 2.

 Table S2 Catalytic data of representative carbon nanotubes, carbon nanofibers, and carbon spheres

 supported and MOF-derived cobalt catalysts for Fischer Tropsch synthesis.

		Reaction	condition	S	СО	CO ₂		CH sel. /%	i i	MTY/	
Catalysts	т/ ℃	H₂/ CO	P/ MPa	GHSV/L g _{cat} -1h-1	conv. /%	sel. /%	CH ₄	C ₂ -C ₄	CH₅+	10 ⁻⁵ mol _{CO} g _{Co} ⁻¹ s ⁻¹	Ref
10Co/CNT					22.0	-	16.0	9.0	75.0	3.27	12
10Co/CNT-cold acid	220	2	2	3.6	35.0	-	21.0	6.0	73.0	5.21	12
10Co/CNT-hot acid					50.0	-	25.0	7.0	68.0	7.44	12
15Co/CNT-CSTR	220	2	2.5	-	45.0	-	10.0	10.0	80.0	1.49	13

25Co/CNT-CSTR					68.0	-	10.0	8.0	82.0	1.35	13
35Co/CNT-CSTR					77.0	-	9.0	6.0	85.0	1.09	13
15Co/CNT					25.9	-	30.6	7.4	62.0	2.74	14
15Co-in-CNT					26.1	-	25.9	7.5	66.6	2.76	14
15Co-out-CNT	225	0.0	2	2.0	23.2	-	31.1	8.8	60.1	2.46	14
15Co-out-CNT-300	225	0.8	2	3.8	9.0	-	12.4	3.0	84.6	0.95	14
15Co/CNF					23.0	-	35.1	8.7	56.2	2.43	14
15Co/CMC					4.4	-	2.0	1.2	96.8	0.47	14
13.2Co/CNT-IM					25.9	-	30.6	7.4	62.1	3.11	15
4.3Co/CNT-DP	225	0.0	2	2.0	9.9	-	23.5	4.4	72.1	3.65	15
5.2Co/CS-IM	225	0.8	Z	3.8	2.6	-	0.6	0.3	99.1	0.79	15
1.5Co/CS-IM					3.7	-	4.0	1.2	94.8	3.92	15
9Co/CNT-H ₂ O					29.0	-	4.0	5.0	91.0	2.66	16
9Co/CNT-EtOH					42.0	-	5.0	5.0	90.0	3.86	16
9Co/CNT-PrOH	220	-	2	2.0	37.0	-	6.0	6.0	88.0	3.40	16
9Co/CNT-GPO-H₂O	220	2	2	2.0	16.0	-	11.0	7.0	82.0	1.47	16
9Co/CNT-GPO-EtOH					21.0	-	11.0	7.0	82.0	1.93	16
9Co/CNT-GPO-PrOH					20.0	-	10.0	7.0	83.0	1.84	16
15Co/CNT-Al ₂ O ₃					18.8	-	48.4	20.3	29.1	_	17
15Co/CNT-MgO	220		2		12.2	-	34.3	25.8	41.3	-	17
15Co/Al ₂ O ₃	220	0.1	2	-	12.6	-	60.3	19.4	17.9	-	17
15Co/MgO					16.1	-	22.7	35.2	38.0	-	17
15Co/FM					54.0	-	22.0	10.0	68.0	1.10	18
15Co/CNT	220	2	2	0.1	38.0	-	14.0	4.0	82.0	0.67	18
15Co/CNF					20.0	-	0.0	6.0	94.0	0.20	18
10Co/MWCNT					27.2	-	6.0	6.6	87.4	5.60	19
10Co/MWCNT-HNO ₃ -					24.4		- 0	0.0	04.4	7.40	19
10	220	2	2	5.0	34.4	-	5.8	9.8	84.4	7.10	
10CoMWCNT-HNO ₃ -					22.6		40.2	14.0	75.0	6.00	19
50					33.0	-	10.2	14.8	75.0	6.90	
12Co/CNF					_	_	44.0	34.0	22.0	2.90	20
12Co0.15Mn/CNF					-	-	32.0	38.0	30.0	3.80	20
12Co0.6Mn/CNF	220	0.1	2	9.4	-	-	22.0	38.0	40.0	2.70	20
12Co1.2Mn/CNF					-	-	19.0	37.0	44.0	1.50	20
12Co2.4Mn/CNF					-	-	18.0	34.0	48.0	0.30	20
9.5Co/CNF					60.0	-	18.0	8.0	74.0	4.10	21
9.5Co0.028Mn/CNF					60.0	-	14.0	8.0	78.0	5.10	21
9.5Co0.13Mn/CNF	220	2	2	-	60.0	-	15.0	8.0	77.0	6.80	21
9.5Co0.3Mn/CNF					60.0	-	20.0	14.0	66.0	5.80	21
9.5Co1.1Mn/CNF					60.0	-	21.0	27.0	52.0	2.70	21
11Co/CNF-L					2.0	-	40.0	37.0	23.0	0.64	22
15Co/CNF-H	220	2	0.1	-	2.0	-	20.0	27.0	53.0	1.24	22
14.8Co@C-400	2=0	2	2	2.5	20.1	17.1	21.2	45.1	33.7	2.02	23
14.8Co@C-600	270	2	2	3.6	78.6	15.3	13.6	29.6	56.8	7.90	23

14.8Co@C-800					60.3	18.9	15.3	31.8	52.9	6.07	23
10Co/HCS					26.0	_	13.4	7.9	78.7	2.70	24
10Co/N-HCS-600	220	1	2	5.4	30.0	-	18.5	18.3	63.2	3.10	24
10Co/N-HCS-900					34.0	-	15.7	8.5	75.8	3.50	24
79Co1K/C					4.0	-	37.0	44.0	12.0	1.12	25
70Co5K/C	300	4	1	36.0	1.0	-	27.0	22.0	16.0	0.32	25
70Co10K/C					1.0	-	27.0	44.0	4.0	0.32	25
50Co@C-0CTAB					35.6	1.8	26.0	10.9	63.1	2.00	26
51Co@C-2CTAB					34.2	1.2	23.3	11.9	64.8	1.86	26
50Co@C-4CTAB	230	2	2	6.8	36.2	1.9	26.7	11.2	62.1	2.04	26
51Co@C-8CTAB					40.1	1.8	26.2	11.3	62.5	2.21	26
49Co@C-16CTAB					30.7	1.8	24.3	10.6	65.1	1.76	26
5Co@MIL-53(Al)-					50.0	45	17.2	12.2	74.4	2 2 7	27
MW1					50.0	4.5	12.5	15.5	74.4	2.37	27
5Co@MIL-53(Al)-	240	2	2	0.67	50.0	63	22.0	20.7	573	2 71	27
MW2					50.0	0.5	22.0	20.7	57.5	2.71	
5Co@MIL-53(Al)-SV					24.0	5.5	13.3	19.0	67.7	1.19	27
33Co/C-450					17.0	-	56.0	10.0	34.0	1.19	28
44Co/C-500					60.0	-	27.0	13.0	60.0	3.13	28
50Co/C-550					50.0	-	27.0	14.0	59.0	2.32	28
50Co/C-600	235	1	2	5.6	49.0	-	32.0	15.0	53.0	2.25	28
57Co/C-700					30.0	-	38.0	19.0	43.0	1.21	28
63Co/C-800					17.0	-	31.0	20.0	49.0	0.62	28
63Co/C-900					5.0	-	33.0	20.0	47.0	0.18	28
25Co@C-400					12.6	6.9	27.4	20.3	52.3	4.45	29
32Co@C-450					18.6	6.5	21.9	17.7	60.4	32.10	29
32Co@C-500	260	3	2	-	14.4	4.8	13.0	11.6	75.4	25.40	29
30Co@C-550					16.8	4.7	11.7	10.7	77.6	18.60	29
28Co@C-600					13.2	4.9	10.3	7.7	82.0	8.97	29
5%Co@MIL-53(Al)					23.8	5.5	13.3	13.5	73.2	11.80	30
10%Co@MIL-53(Al)	240	2	2	07	47.1	4.7	14.8	11.9	73.3	11.70	30
15%Co@MIL-53(Al)	240	2	2	0.7	60.2	2.0	14.2	10.7	75.1	10.00	30
15%Co@Al ₂ O ₃					62.7	2.3	15.7	12.6	71.7	10.40	30
Co@C					-	1.0	51.0	32.0	17.0	-	31
Co-2Si@C	300	3	2	48.0	-	2.0	53.0	32.0	15.0	-	31
Co-4Si@C					-	3.0	70.0	20.0	10.0	-	31
52Co@C-550	230	2	2	3.0	10.0	5.0	20.0	10.0	65.0	1.91	32
30Co@NC-550	230	5	2	5.0	30.0	8.0	24.0	36.0	32.0	9.92	32
Co@C-Ar	220	2	n	2.0	6.0	-	20.0	15.0	65.0	-	33
Co@C-C ₂ H ₂	220	5	۷	3.0	10.0	-	15.0	5.0	80.0	_	33
49Co@SiO ₂ -773					13.7	-	6.5	6.3	87.2	4.00	34
51Co@SiO ₂ -873	210	2	1	24.0	15.8	-	5.3	4.2	90.5	4.40	34
50Co@SiO ₂ -973					10.9	-	5.8	4.7	89.5	3.30	34

CO₂ sel.=CO₂ selectivity (%); CH sel.=Hydrocarbon selectivity without CO₂.

Table S3 Catalytic data of representative activated carbon, carbon nanotubes, carbon nanofibers, carbon
spheres, MOF-derived and other carbon materials support iron catalysts for Fischer Tropsch synthesis.

	Reaction conditions				<u> </u>	CH sel./%						MTY/10-			
Catalysts	T/ ℃	H ₂ / CO	P/ MPa	GHSV/ L g _{cat} ⁻ ¹ h ⁻¹	conv. /%	sel. /%	CH4	C ₂ ⁼ -C ₄ ⁼	C ₂ ⁰ -C ₄ ⁰	C ₅ +	O/P	⁵ mol _{co} g _{Fe} ⁻¹ s ⁻¹	Ref		
10Fe/AC					61.6	42.1	23.8	16.0	22.8	37.4	0.7	11.5	35		
10Fe-10Mn-2K/AC	220	2	1	2.0	96.8	44.5	14.3	27.5	4.8	53.3	5.7	18.0	35		
10Fe-22Mn-4K/AC	520	Z	T	5.0	93.8	47.7	16.7	26.0	7.4	49.9	3.5	17.5	35		
10Fe-29Mn-5K/AC					85.0	48.0	22.7	39.4	8.1	29.7	4.9	15.8	35		
16Fe/AC					32.2	5.1	9.3	12.9(0	C ₂ -C ₄) ^a	77.8	-	10.4	36		
12.5Fe-1K/AC	200	2	2	16.0	62.0	13.7	9.2	18.7(C ₂ -C ₄)	72.1	-	25.6	36		
8.5Fe-0.9K/AC	200	2	2	10.0	87.2	18.8	9.7	20.0(C ₂ -C ₄)	70.3	-	34.9	36		
14Fe-1.8K/AC					86.1	19.0	7.9	14.6(C ₂ -C ₄)	77.5	-	31.7	36		
15.7Fe/AC					29.4	30.1	18.4	51.1(C ₂ -C ₄)	30.6	-	3.7	37		
15.7Fe-0.9K/AC	260	3	0.9	3.0	50.7	45.5	7.8	41.7(C ₂ -C ₄)	50.5	-	6.3	37		
15.7Fe-2K/AC					35.5	44.7	7.2	44.0(C ₂ -C ₄)	48.8	-	4.4	37		
15.7Fe-0.9K/AC					50.7	45.5	7.8	41.7(C ₂ -C ₄)	50.5	-	6.3	38		
15.7Fe-0.8Cu- 0.9K/AC	260	3	_	_	30.7	41.9	8.9	37.3(C ₂ -C ₄)	53.8	-	3.8	38		
15.7Fe-2Cu-0.9K/AC					28.1	44.6	8.1	37.9(C ₂ -C ₄)	54.0	-	3.5	38		
15.7Fe-0.9K/AC					85.7	47.5	8.6	34.9(C ₂ -C ₄)	56.5	-	10.7	38		
10Fe/CNT					24.3	27.3	24.2	8.1	27.2	40.5	0.3	13.6	39		
10Fe/g-C ₃ N ₄ -silica	240	2	1	0.0	77.8	35.0	4.8	18.0	2.9	74.3	6.3	43.4	39		
10Fe/g-C ₃ N ₄	540	Z	T	9.0	96.5	33.4	11.1	12.6	9.7	66.7	1.3	53.8	39		
20Fe/AC					17.2	21.9	17.5	6.3	31.4	44.8	0.2	4.8	39		
10Fe/CNT	275	2	2	1.9	60.0	33.6	41.2	18.6(C ₂ -C ₄)	40.2	-	4.7	40		

10Fe/CNT-cold acid					61.0	33.6	38.9	18.9(0	C ₂ -C ₄)	42.2	-	4.8	40
10Fe/CNT-hot acid					74.0	37.1	23.7	23.5(0	C ₂ -C ₄)	52.8	-	5.8	40
10Fe/CNT-hot acid-					06.0		o -	24.24				6.0	40
silica					86.0	33.3	8.7	21.2(0	L ₂ -C ₄)	70.2	-	6.8	40
12Fe-in-CNT	270	2 5	2	20.0	86.0	38.9	25.6	38.2(C ₂ -C ₄)	36.2	_	6.1	41
12Fe-out-CNT	270	2.5	2	20.0	78.0	39.5	40.5	35.7(0	C ₂ -C ₄)	23.8	-	5.4	41
10Fe0.25Ru/CNT					28.0	5.5	14.7	31.4(0	C ₂ -C ₄)	53.9	-	5.3	42
10Fe0.25Ru0.2K/CN					25.0	10.0	4 4 -	20.24		16.1		4.0	42
т					25.0	10.0	14.5	39.3(0	L ₂ -C ₄)	46.1	-	4.8	42
10Fe0.25Ru0.6Cu/C	275	0.8	2	4.6	22.0	C 1	10.0	F1 7/		21.4			40
NT					23.0	6.1	10.8	51.7(0	-2-C4)	31.4	-	4.4	42
10Fe0.25Ru0.2K0.6					23.0	2.1	11.4	22.4(0	C ₂ -C ₄)	66.2	-	4.4	40
Cu/CNT													42
10Fe-in-CNT	270	F 1	2	20.0	40.0	18.0	12.0	41.0	18.0	29.0	2.3	33.1	43
10Fe-out-CNT	270	5.1	Z	20.0	29.0	12.0	15.0	54.0	12.0	19.0	4.5	24.0	43
5.6Fe-in-CNT					-	22.2	30.5	39.6	11.9	18.0	3.3	12.7	44
5.6Fe _x N-in-CNT	300	0.5	0.9	15.0	-	38.0	27.2	35.2	15.1	22.5	2.3	96.1	44
5.2Fe _x N-out-CNT					-	34.5	31.8	37.9	12.1	18.2	3.1	61.2	44
5.5FeN/CNT					20.5	38.0	27.2	35.2	15.1	22.5	2.3	96.0	45
6.5FeN0.4Mn/CNT					10.7	31.8	21.6	42.1	7.5	28.8	5.6	43.8	45
6.4FeN0.7Mn/CNT					11.8	36.1	23.6	43.9	8.3	24.2	5.3	48.4	45
6.6FeN1.6Mn/CNT	200	0.5	0.0	45.0	11.1	34.3	20.8	43.2	8.0	28.0	5.4	44.3	45
5.6FeN0.7Mn0.1K/C	300	0.5	0.9	15.0	0.0	21.2	21.0	42.4	7.0	20.2	6.2	41.0	45
NT					8.8	31.3	21.6	43.1	7.0	28.3	6.2	41.8	45
5.8FeN0.7Mn0.3K/C					11.0	20.4	20.0	42.6	7.0	20.4	6.2	F4 0	45
NT					11.9	38.4	20.0	43.0	7.0	29.4	0.2	54.0	
Fe ₃ O ₄ /CNT					60.2	36.4	11.0	24.2	15.5	49.3	1.6	36.4	46
Fe _{2.98} Mn _{0.02} O ₄ /CNT					60.5	36.4	10.0	27.5	13.2	49.3	2.1	36.3	46
Fe _{2.97} Mn _{0.03} O ₄ /CNT					61.8	38.0	8.7	27.6	12.5	51.5	2.2	36.5	46
Fe _{2.93} Mn _{0.07} O ₄ /CNT	300	1	2	6.0	56.2	38.9	7.1	29.9	9.3	53.8	3.2	34.9	46
Fe _{2.86} Mn _{0.14} O ₄ /CNT					43.9	37.2	6.1	31.5	8.7	53.8	3.6	27.5	46
Fe _{2.73} Mn _{0.27} O ₄ /CNT					30.7	36.3	5.6	30.5	8.7	55.3	3.5	19.6	46
Fe _{2.5} Mn _{0.5} O ₄ /CNT					25.2	33.2	5.6	30.3	8.0	56.1	3.8	18.8	46
20Fe-CNT-NH ₃					48.3	22.5	-	-	-	-	-	76.8	47
20Fe-CNT-HNO ₃	340	25	1	50.0	26.5	11.5	-	-	-	-	-	41.7	47
40Fe-CNT-NH ₃	540	2.5	T	50.0	81.9	40.3	-	-	-	-	-	70.5	47
40Fe-CNT-HNO₃					0.0	24.0	-	-	-	-	-	38.5	47
10Fe-NCNT	_	_	_		14.4	18.6	22.2	46.7	5.7	25.4	8.2	2.7	48
10Fe-CNT-HNO ₃	200	01	1	12	9.1	16.8	30.6	36.4	7.8	25.2	4.7	1.6	48
10Fe-NCNT-K	300	0.1	т	4.2	16.5	23.6	17.3	54.6	5.9	22.2	9.3	2.8	48
10Fe/AC					4.8	9.9	17.4	30.6	7.5	44.5	4.1	1.0	48
2Fe/CNF					9.0	32.0	34.0	13.0	46.0	7.0	0.3	3.8	49
10Fe/CNF	340	2	1	-	11.0	46.0	59.0	4.0	34.0	0.0	0.1	1.3	49
20Fe/CNF					10.0	42.0	43.0	21.0	32.0	0.0	0.7	0.6	49

10FeNaS/CNF					86.0	47.0	8.0	52.0	7.0	28.0	7.4	5.5	49
20FeNaS/CNF					87.0	42.0	10.0	37.0	23.0	28.0	1.6	3.2	49
12Fe/CNF					88.0	42.0	13.0	52.0	12.0	18.0	4.3	3.0	50
$6Fe/\alpha$ - AI_2O_3					77.0	46.0	24.0	35.0	21.0	10.0	1.7	-	50
$12Fe/\alpha$ -Al ₂ O ₃					81.0	41.0	17.0	39.0	19.0	14.0	2.1	-	50
$25Fe/\alpha$ -Al ₂ O ₃					80.0	40.0	11.0	53.0	6.0	21.0	8.8	-	50
8Fe/β-SiC	340	2	1	-	77.0	42.0	35.0	19.0	39.0	4.0	0.5	-	50
13Fe/γ-Al ₂ O ₃					10.0	20.0	49.0	33.0	11.0	1.0	3.0	-	50
72Fe-Ti-Zn-K					79.0	41.0	24.0	28.0	29.0	10.0	1.0	-	50
32Fe-Cu-K-SiO ₂					79.0	37.0	26.0	36.0	12.0	18.0	3.0	-	50
63Bulk Fe					97.0	34.0	30.0	32.0	18.0	14.0	1.7	-	50
Fe₃C@C					73.2	30.4	21.8	30.6	26.7	20.9	1.1	-	51
Fe₃C@C-Na					12.6	27.6	19.5	32.1	4.6	43.8	7.0	-	51
Fe₃C@C-Mg	340	1	1	16.0	21.2	25.3	19.6	31.6	8.1	40.7	3.9	-	51
Fe₃C@C-Ca					28.5	33.8	19.2	35.1	9.7	36.0	3.6	-	51
Fe₃C@C-K					27.6	25.0	18.2	32.1	9.5	40.2	3.4	-	51
9Fe@CMK-3-300	240	1	n		13.0	-	18.7	50.4	4.8	26.1	10.5	-	52
14Fe@CMK-3-500	340	T	Z	-	14.8	-	13.4	54.6	4.9	27.1	11.1	-	52
6Fe-Na-CMK-3					3.9	-	23.4	48.0	4.7	23.9	10.2	7.6	53
8Fe-Na-2S-CMK-3	340	1	2	-	12.1	-	19.6	56.0	6.1	18.3	9.2	16.2	53
10Fe-Na-3S-CMK-3					11.3	-	18.2	56.0	5.9	19.9	9.5	15.5	53
34Fe@C-400					74.0	47.0	15.0	16.0	30.0	39.0	0.5	38.0	54
38Fe@C-500	240	2		20.0	76.0	46.0	15.0	14.0	29.0	42.0	0.5	36.0	54
42Fe@C-600	340	2	1	30.0	74.0	46.0	14.0	13.0	30.0	43.0	0.4	31.0	54
53Fe@C-900					53.0	45.0	13.0	17.0	30.0	40.0	0.6	19.0	54
38Fe@C					70.0	43.0	20.0	27.0(0	C ₂ -C ₄)	53.0	_	-	55
38Fe@C/Al	240	4 -			68.0	43.0	21.0	29.0(0	C ₂ -C ₄)	50.0	-	-	55
25Fe@C/Al	340	1.5	1	-	33.0	33.0	19.0	34.0(0	C ₂ -C ₄)	47.0	-	-	55
15Fe@C/Al					7.0	19.0	20.0	45.0(0	C ₂ -C ₄)	35.0	-	-	55
34Fe-Na-S/C-micro					35.0	-	17.0	49.0	5.0	29.0	9.8	8.0	56
34Fe-Na-S/C-Xero	340	1	2	-	51.0	-	19.0	47.0	6.0	28.0	7.8	15.0	56
34Fe-Na-S/C-Aero					35.0	-	12.0	50.0	4.0	34.0	12.5	8.0	56
25Fe@C					59.0	46.8	14.6	15.9	12.7	56.8	1.3	49.0	57
31Fe@C	340	2	1	60.0	70.0	47.0	15.0	15.8	12.0	57.2	1.3	44.0	57
38Fe@C					72.0	47.4	15.5	14.6	14.4	55.5	1.0	38.0	57
34Fe@C					33.8	33.7	11.5	18.3	6.8	63.4	2.7	15.0	58
32Fe@NC	300	2	1	36.0	81.8	42.9	15.1	21.4	12.8	50.7	1.7	32.0	58
11Fe/PANI					79.0	44.0	24.0	47.0	14.0	15.0	3.4	40.1	59
10Fe/SiO ₂					50.0	45.0	29.0	25.0	25.0	21.0	1.0	27.9	59
10Fe/CNT	350	2	1	9.0	75.0	44.0	25.0	29.0	31.0	15.0	0.9	41.9	59
10Fe/AC					62.0	41.0	30.0	28.0	25.0	17.0	1.1	34.6	59
11Fe/N-AC					73.0	42.0	27.0	36.0	19.0	18.0	1.9	37.0	59
18Fe/rGO					60.0	50.0	48.0	31.0	20.0	6.3	1.6	33.3	60
18Fe-0.5K/rGO	340	2	1	-	60.0	50.0	31.0	51.0	14.0	3.3	3.6	55.6	60

18Fe-1K/rGO					60.0	50.0	26.0	62.0	7.9	4.4	7.8	64.6	60
18Fe-1.5K/rGO					60.0	50.0	22.0	67.0	6.8	5.0	9.9	27.1	60
17Fe-2K/rGO					60.0	50.0	20.0	68.0	6.2	6.7	11.0	22.0	60
20.3Fe/rGO					58.0	40.9	42.3	33.2	23.2	1.1	1.4	34.2	61
20.3Fe-6.3Mg/rGO					59.0	40.7	35.6	33.0	26.9	4.5	1.2	24.7	61
20.3Fe-6.3Mg-					F0 0	40 F	21.4	40.2	10 F	ГO	2.6	106.0	61
0.5K/rGO					59.0	40.5	31.4	49.2	13.5	5.9	3.0	106.0	
20.3Fe-6.3Mg-					50.0	44.4	27.4	F0 0		6.4	7.0	107.0	61
1K/rGO	340	2	1	-	59.0	41.1	27.1	58.8	1.1	6.4	7.6	107.6	
20.3Fe-6.3Mg-					50.0	40.0	20.2	CE 0	C D	0.5	10 5	122.0	61
2K/rGO					59.0	40.8	20.3	65.0	6.2	8.5	10.5	133.8	
20.3Fe-6.3Mg-					50.0	40 F	10.0	64.2	F 0	10.2	10.0	C1 7	61
5K/rGO					59.0	40.5	19.0	04.2	5.9	10.3	10.9	01.7	
20.3Fe-2K/rGO					59.0	49.0	22.0	63.7	6.4	7.9	10.0	54.5	61
Fe _x O _y /CNS	250	2	1		72.6	-	29.9	53.5	41.2	16.6	3.35	188.2	62
Fe _x O _y /CNT	350	Z	T	-	42.1	-	29.7	61.0	33.1	9.0	1.19	86.1	62
3Fe/C					32	20.6	20.4	6.2	26.7	26.0	0.2	76.9	63
6Fe/C–Si-02					21	13.8	19.4	7.7	19.4	39.6	0.4	22.8	63
10Fe/C-Si-04	200	2	2.4	10.0	74	30.9	10.8	14.0	10.5	33.7	1.3	51.6	63
8Fe/C–Si-06	300	2	2.1	16.0	41	20.1	15.5	13.8	16.5	34.1	0.8	36.7	63
10Fe/C-Si-08					39	21.4	19.2	16.8	14.0	28.7	1.2	27.3	63
10Fe/Si					26	12.5	20.0	15.9	10.9	41.9	1.5	17.9	63

C₂⁼-C₄⁼=Olefins with carbon number of 2-4; C₂⁰-C₄⁰=Paraffins with carbon number of 2-4; O/P=Olefins/Paraffins ratio with carbon number of 2-4; MTY=Iron time yield (10^{-5} mol_{CO} g_{Fe}⁻¹ s⁻¹). ^aC₂-C₄=Hydrocarbons with carbon number of 2-4;

References

- 1. Y. Pei, Y. Ding, H. Zhu, J. Zang, X. Song, W. Dong, T. Wang and Y. Lu, *Catal. Lett.*, 2014, **144**, 1433-1442.
- G. Jiao, Y. Ding, H. Zhu, X. Li, J. Li, R. Lin, W. Dong, L. Gong, Y. Pei and Y. Lu, *Appl. Catal.* A-Gen., 2009, 364, 137-142.
- 3. 76 Y. Pei, Y. Ding, j. Zang, X. Song, W. Dong, H. Zhu, T. Wang and W. Chen, *Chin. J. Catal.*, 2013, **33**, 808-812.
- 4. H. Du, H. Zhu, T. Liu, Z. Zhao, X. Chen, W. Dong, W. Lu, W. Luo and Y. Ding, Catal. Today,

2017, 281, 549-558.

- H. Du, H. Zhu, X. Chen, W. Dong, W. Lu, W. Luo, M. Jiang, T. Liu and Y. Ding, *Fuel*, 2016, 182, 42-49.
- V. M. Lebarbier, D. Mei, D. H. Kim, A. Andersen, J. L. Male, J. E. Holladay, R. Rousseau and Y. Wang, *J.Phsy.Chem.C.*, 2011, **115**, 17440-17451.
- Z. Zhao, W. Lu, C. Feng, X. Chen, H. Zhu, R. Yang, W. Dong, M. Zhao, Y. Lyu, T. Liu, Z. Jiang and Y. Ding, J. Catal., 2019, 370, 251-264.
- Z. Zhao, W. Lu, H. Zhu, W. Dong, Y. Lyu, T. Liu, X. Chen, Y. Wang and Y. Ding, *J. Catal.*, 2018, 361, 156-167.
- 9. T. Wang, Y. Ding, Y. Lü, H. Zhu and L. Lin, J.Nat. Gas. Chem., 2008, 17, 153-158.
- 10. T. Wang, Y. Ding, J. Xiong, L. Yan, H. Zhu, Y. Lu and L. Lin, *Catal. Lett.*, 2006, **107**, 47-52.
- Z. Zhao, W. Lu, R. Yang, H. Zhu, W. Dong, F. Sun, Z. Jiang, Y. Lyu, T. Liu, H. Du and Y. Ding, ACS Catal., 2017, 8, 228-241.
- M. Trépanier, A. Tavasoli, A. K. Dalai and N. Abatzoglou, *Fuel Process. Technol.*, 2009, 90, 367-374.
- A. Tavasoli, R. M. M. Abbaslou, M. Trepanier and A. K. Dalai, *Appl. Catal. A-Gen.*, 2008, 345, 134-142.
- H. Xiong, M. A. M. Motchelaho, M. Moyo, L. L. Jewell and N. J. Coville, *Catal. Today*, 2013, 214, 50-60.
- H. Xiong, M. A. M. Motchelaho, M. Moyo, L. L. Jewell and N. J. Coville, *J. Catal.*, 2011, 278, 26-40.
- T. O. Eschemann, W. S. Lamme, R. L. Manchester, T. E. Parmentier, A. Cognigni, M. Rønning and K. P. de Jong, J. Catal., 2015, 328, 130-138.
- 17. M. Zaman, A. Khodadi and Y. Mortazavi, Fuel Process. Technol., 2009, 90, 1214-1219.
- A. C. Ghogia, S. Cayez, B. F. Machado, A. Nzihou, P. Serp, K. Soulantica and D. Pham Minh, *ChemCatChem*, 2019, 12, 1117-1128.
- H. Zhang, C. Lancelot, W. Chu, J. Hong, A. Y. Khodakov, P. A. Chernavskii, J. Zheng and D. Tong, J. Mater. Chem., 2009, 19.
- 20. G. L. Bezemer, U. Falke, A. J. van Dillen and K. P. de Jong, Chem. Commun., 2005, 731-733.
- G. Bezemer, P. Radstake, U. Falke, H. Oosterbeek, H. Kuipers, A. Vandillen and K. Dejong, J. Catal., 2006, 237, 152-161.
- G. L. Bezemer, P. Radstake, V. Koot, A. Van Dillen, J. Geus and K. De Jong, J. Catal., 2006, 237, 291-302.
- H. Qin, S. Kang, Y. Wang, H. Liu, Z. Ni, Y. Huang, Y. Li and X. Li, ACS Sustain. Chem. Eng., 2016, 4, 1240-1247.
- M. W. Dlamini, T. N. Phaahlamohlaka, D. O. Kumi, R. Forbes, L. L. Jewell and N. J. Coville, *Catal. Today*, 2020, 342, 99-110.
- 25. Z. Wang, G. Laddha, S. Kanitkar and J. J. Spivey, *Catal. Today*, 2017, 298, 209-215.
- 26. Y. Chen, X. Li, M. U. Nisa, J. Lv and Z. Li, Fuel, 2019, 241, 802-812.
- V. I. Isaeva, O. L. Eliseev, R. V. Kazantsev, V. V. Chernyshev, A. L. Tarasov, P. E. Davydov, A. L. Lapidus and L. M. Kustov, *Polyhedron*, 2019, 157, 389-395.
- 28. Q.-X. Luo, L.-P. Guo, S.-Y. Yao, J. Bao, Z.-T. Liu and Z.-W. Liu, J. Catal., 2019, 369, 143-156.
- C. Zhang, X. Guo, Q. Yuan, R. Zhang, Q. Chang, K. Li, B. Xiao, S. Liu, C. Ma, X. Liu, Y. Xu, X. Wen, Y. Yang and Y. Li, *ACS Catal.*, 2018, 8, 7120-7130.

- V. I. Isaeva, O. L. Eliseev, R. V. Kazantsev, V. V. Chernyshev, P. E. Davydov, B. R. Saifutdinov, A. L. Lapidus and L. M. Kustov, *Dalton Trans*, 2016, 45, 12006-12014.
- 31. Y. Pei, Z. Li and Y. Li, *AlChE J.*, 2017, **63**, 2935-2944.
- 32. B. Qiu, C. Yang, W. Guo, Y. Xu, Z. Liang, D. Ma and R. Zou, *J. Mater. Chem. A*, 2017, **5**, 8081-8086.
- 33. N. Li, C.-p. Ma, C.-h. Zhang, Y. Yang and Y.-w. Li, J. Fuel Chem. Technol., 2019, 47, 428-437.
- X. Sun, A. I. O. Suarez, M. Meijerink, T. van Deelen, S. Ould-Chikh, J. Zecevic, K. P. de Jong, F. Kapteijn and J. Gascon, *Nat Commun*, 2017, 8, 1680.
- Z. Tian, C. Wang, Z. Si, L. Ma, L. Chen, Q. Liu, Q. Zhang and H. Huang, *Appl. Catal. A-Gen.*, 2017, 541, 50-59.
- P. A. Chernavskii, G. V. Pankina, R. V. Kazantsev and O. L. Eliseev, *ChemCatChem*, 2018, 10, 1313-1320.
- 37. W. Ma, E. L. Kugler and D. B. Dadyburjor, *Energ. Fuel.*, 2007, **21**, 1832-1842.
- 38. W. Ma, E. L. Kugler and D. B. Dadyburjor, *Energ. Fuel.*, 2011, 25, 1931-1938.
- H. Park, D. H. Youn, J. Y. Kim, W. Y. Kim, Y. H. Choi, Y. H. Lee, S. H. Choi and J. S. Lee, *ChemCatChem*, 2015, 7, 3488-3494.
- 40. R. M. Malek Abbaslou, A. Tavasoli and A. K. Dalai, Appl. Catal. A-Gen., 2009, 355, 33-41.
- R. M. M. Abbaslou, A. Tavassoli, J. Soltan and A. K. Dalai, *Appl. Catal. A-Gen.*, 2009, 367, 47-52.
- 42. M. C. Bahome, L. L. Jewell, K. Padayachy, D. Hildebrandt, D. Glasser, A. K. Datye and N. J. Coville, *Appl. Catal. A-Gen.*, 2007, **328**, 243-251.
- 43. W. Chen, Z. Fan, X. Pan and X. Bao, J. Am. Chem. Soc., 2008, 130, 9414-9419.
- 44. 170 Z. Yang, S. Guo, X. Pan, J. Wang and X. Bao, *Energy Environ. Sci.*, 2011, 4, 4500-4503.
- 45. Z. Yang, X. Pan, J. Wang and X. Bao, *Catal. Today*, 2012, **186**, 121-127.
- J.-D. Xu, K.-T. Zhu, X.-F. Weng, W.-Z. Weng, C.-J. Huang and H.-L. Wan, *Catal. Today*, 2013, 215, 86-94.
- 47. H. J. Schulte, B. Graf, W. Xia and M. Muhler, *ChemCatChem*, 2012, 4, 350-355.
- 48. J. Lu, L. Yang, B. Xu, Q. Wu, D. Zhang, S. Yuan, Y. Zhai, X. Wang, Y. Fan and Z. Hu, *ACS Catal.*, 2014, 4, 613-621.
- H. M. Torres Galvis, J. H. Bitter, T. Davidian, M. Ruitenbeek, A. I. Dugulan and K. P. de Jong, J. Am. Chem. Soc., 2012, 134, 16207-16215.
- H. M. Torres Galvis, J. H. Bitter, C. B. Khare, M. Ruitenbeek, A. I. Dugulan and K. P. de Jong, Science, 2012, 335, 835-838.
- 51. X. Zhao, S. Lv, L. Wang, L. Li, G. Wang, Y. Zhang and J. Li, *Mol. Catal.*, 2018, 449, 99-105.
- M. Oschatz, T. W. van Deelen, J. L. Weber, W. S. Lamme, G. Wang, B. Goderis, O. Verkinderen, A. I. Dugulan and K. P. de Jong, *Catal. Sci. Technol.*, 2016, 6, 8464-8473.
- 53. M. Oschatz, W. S. Lamme, J. Xie, A. I. Dugulan and K. P. de Jong, *ChemCatChem*, 2016, **8**, 2846-2852.
- T. A. Wezendonk, V. P. Santos, M. A. Nasalevich, Q. S. Warringa, A. I. Dugulan, A. Chojecki,
 A. C. Koeken, M. Ruitenbeek, G. Meima and H.-U. Islam, *ACS Catal.*, 2016, 6, 3236-3247.
- 55. L. Oar-Arteta, M. J. Valero-Romero, T. Wezendonk, F. Kapteijn and J. Gascon, *Catal. Sci. Technol.*, 2018, **8**, 210-220.
- M. Oschatz, S. Krause, N. A. Krans, C. Hernandez Mejia, S. Kaskel and K. P. de Jong, *Chem.Commun.*, 2017, 53, 10204-10207.

- V. P. Santos, T. A. Wezendonk, J. J. Jaen, A. I. Dugulan, M. A. Nasalevich, H. U. Islam, A. Chojecki, S. Sartipi, X. Sun, A. A. Hakeem, A. C. Koeken, M. Ruitenbeek, T. Davidian, G. R. Meima, G. Sankar, F. Kapteijn, M. Makkee and J. Gascon, *Nat Commun*, 2015, 6, 6451.
- 58. B. An, K. Cheng, C. Wang, Y. Wang and W. Lin, ACS Catal., 2016, 6, 3610-3618.
- B. Gu, S. He, W. Zhou, J. Kang, K. Cheng, Q. Zhang and Y. Wang, J. Energ. Chem., 2017, 26, 608-615.
- Y. Cheng, J. Lin, K. Xu, H. Wang, X. Yao, Y. Pei, S. Yan, M. Qiao and B. Zong, ACS Catal., 2015, 6, 389-399.
- 61. Y. Cheng, J. Lin, T. Wu, H. Wang, S. Xie, Y. Pei, S. Yan, M. Qiao and B. Zong, *Appl. Catal., B*, 2017, **204**, 475-485.
- Y. Zhou, S. Natesakhawat, T. D. Nguyen-Phan, D. R. Kauffman, C. M. Marin, K. Kisslinger, R. Lin, H. L. Xin, E. Stavitski and K. Attenkofer, *ChemCatChem*, 2019, 11, 1625-1632.
- V. Subramanian, V. V. Ordomsky, B. Legras, K. Cheng, C. Cordier, P. A. Chernavskii and A. Y. Khodakov, *Catal. Sci. Technol.*, 2016, 6, 4953-4961.