Engineering electrodeposited ZnO films and their memristive switching performance

Ahmad Sabirin Zoolfakar^{*af}, Rosmalini Abdul Kadir^{af}, Rozina Abdul Rani^a, Sivacarendran Balendhran^a, Xinjun Liu^b, Eugene kats^d, Suresh Bhargava^e, Madhu Bhaskaran^{ac}, Sharath Sriram^{ac}, Serge Zhuiykov^d, Anthony P. O'Mullane^e and Kourosh Kalantar-zadeh^{*a}

^aSchool of Electrical and Computer Engineering, RMIT University, Melbourne, VIC 3001, Australia

^bSchool of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 500–712, Korea

^cFunctional Materials and Microsystems Research Group, RMIT University, Melbourne, VIC 3001, Australia

^dMaterials Science and Engineering Division, CSIRO, Highett, VIC, Australia

^eSchool of Applied Sciences, RMIT University, Melbourne, VIC 3001, Australia

^fFaculty of Electrical Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Malaysia

E-mail: ahdsabirin@yahoo.com and kourosh.kalantar@rmit.edu.au

Reproducibility of the Zn and O composition as a function of film processing

In order to verify the reproducibility of the Zn and O composition as a function of film processing, we fabricated five different samples for each type of ZnO films (SL, ECD 1000s, ECD 3000s, SL & ECD 500s, SL & ECD 1000s). Figure S1 shows the average of Zn and O elemental composition. The tests were performed on five times.

Fig. S1 Average of Zn and O elemental compositions for six different types of ZnO (standard ZnO target and films). The tests were performed on five similarly fabricated samples. The standard deviation was < 10%.