ESI

Theoretical Investigation of various aspects of Two Dimensional holey Boroxine, B3O3

Computational Details:

SIESTA code has the capability of making a cocktail of various functionals to be employed in the calculations^{1, 2}. In this regard, we combine GGA with the LDA to make a hybrid functional, though it is not in the true spirit of the hybrid since the exact Hartree-Fock exchange is absent^{3, 4}. The exchange energy is built by taking 50% of each functional, whereas, 25-75% GGA-LDA is used to define the correlation part. For AIMD simulations, we use both the hybrid and vdW-DF level by employing a 2x2 supercell. The heat treatment is performed at 300K and 600 K where the heat-bath is controlled by the Nosé–Hoover thermostat with NVT ensemble. The VASP calculations were carried out with a kinetic energy cutoff of 500 eV⁵⁻⁷. The forces and energy convergence criteria are set as 0.01 eV/Å and 10⁻⁶ eV, respectively. We use Methfessel-Paxton smearing with 0.05-0.001 eV smearing width since we also report various properties of graphene/graphite for the comparison⁸. Spin polarization is turned on in each and every case.

We also calculate the formation energy of B_3O_3 monolayer by taking the energy of one O from O_2 molecule as a chemical potential using the equation given in the main text. At PBE-D3 level, the formation energy of B_3O_3 monolayer is -5.03 eV/atom. With the same definition, the formation energy at PBE-D2 and hybrid levelsare -5.023 and -5.38 eV/atom, respectively. For completeness, the cohesive energy of O2 molecule is -3.377, -3.374, and -3.385 eV/atom at PBE-D3, PBE-D2, and hybrid level, respectively. The vulnerability of SIESTA's results to BSSE is a known fact, therefore, the energetics from SIESTA cannot be trusted. Yet we see a reasonable agreement between hybrid and PBE-D2/PBE-D3 values.

	Lattice	d _{BB} (Å)	d _{BO} (Å)	d ₀₀ (Å)	*Charge	Band-	Cohesive
	parameter				e	gap (eV)	energy
	<i>a</i> (Å)						(eV/atom)
GGA	7.83	1.73	1.39	6.28	0.15	3.66	
vdW-DF	7.89	1.74	1.39	6.33	0.15	3.80	
Hybrid	7.81	1.72	1.38	6.27	0.15	3.66	-7.08
PBE-D2	7.83	1.72	1.39	6.28	1.96	3.57	-6.71
PBE-D3	7.82	1.72	1.39	6.27	1.96	3.57	-6.72
M06-L	7.78	1.71	1.38	6.21	0.4	3.90	-6.3
HSEH1PBE	7.80	1.72	1.38	6.24	0.4	5.30	

Table 1: Structural parameters (in Å), charge transfer, band gaps and cohesive strengths at various levels of study. On an average, charge accumulation on O atoms is equal to the charge depletion on B atoms.

*Hirshfeld and Voronoi analyses in SIESTA, Bader in VASP, and Mulliken in Gaussian

Table S2 : Structural and energetics data at various levels of theory

	Relative energy (meV)	IIE (meV/atom)	E _{exf} (meV/A ²)	Interlayer separation, <i>h,h1/h2</i> (Å)			
PBE-D2							
B ₃ O ₃	1100						
AA-bilayer	870	9.6		3.55			
AB-bilayer	650	18.73		3.138/3.25			
AB2-bilayer	570	22.13		2.97/3.2			

AA-bulk	550	22.83	5.1	3.11			
AB-bulk	85	42.34	9.5	3.0/3.0			
AB2-bulk	0	45.88	10.37	2.97/3.0			
Graphene-		25		3.33			
bilayer							
Graphite		55.9	21	3.21			
vdW-DF							
B ₃ O ₃	1732						
AA-bilayer	1082	27		3.56			
AB-bilayer	984	31		3.33/3.52			
AB2-bilayer	856	36.5		3.03/3.33			
AA-bulk	456	53	11.8	3.6			
AB-bulk	103	68	15	3.27/3.27			
AB2-bulk	0	72	16	3.16/3.16			
Hybrid							
B ₃ O ₃	798						
AA-bilayer	565	9.7		3.5			
AB-bilayer	460	14.1		3.32/3.45			
AB2-bilayer	358	18.3		3.04/3.3			
AA-bulk	375	17	4	3.6			
AB-bulk	88	29	6.7	3.21/3.21			
AB2-bulk	0	33	7.5	3.09/3.14			
Graphene-		17.5		3.35			

bilayer			
Graphite	35	13	3.35

Figure S1: Electronic band structure of B3O3 monolayer with biaxial strain, (a) compression and (b) expansion

Figure S2:Geometric structures of bilayer B3O3 in (a) AA, (b) AB, and (C) AB2 stacking.

Figure S3:Bilayer B3O3 band structures at hybrid level of theory

Figure S4:Electronic band structures of AB2 stacked bilayer B3O3 in the presence of external electric field

Figure S5:Comparison of the band structures of bilayer and bulk B3O3 at hybrid level of theory

#						
# CRYSTAL	L DATA					
#						
data_VES	IA_phase_1					
_chemical	l_name_commo	on	'B303-PB	E-D3		
_cell_ler	ngth_a		7.82000			
_cell_ler	ngth_b		7.82000			
_cell_ler	ngth_c		20.00000			
_cell_ang	gle_alpha		90			
_cell_ang	gle_beta		90			
_cell_ang	gle_gamma		120.00			
_space_gr	roup_name_H-	-M_alt	'P 1'			
_space_g	roup_IT_num	per	1			
loop_						
_space_g	roup_symop_c	operation_xyz				
х, у	, Z'					
1						
Toob_	aita labal					
_atom	_site_lapel	D. OTT				
_atom	_site_occupa	ancy				
_acom	_site_fract_	 V				
_atom	site fract	-9				
atom	site adp ty	me				
atom	site B iso	or equiv				
atom	site type s	symbol				
B1	1.0	0.640757	0.972400	0.149790	Biso	1.000000 E
B2	1.0	0.331130	0.972395	0.150143	Biso	1.000000 E
B3	1.0	0.331131	0.662809	0.150149	Biso	1.000000 E
B4	1.0	0.204228	0.408949	0.150141	Biso	1.000000 E
B5	1.0	0.894609	0.099345	0.149779	Biso	1.000000 E
B6	1.0	0.204243	0.099371	0.150136	Biso	1.000000 E
01	1.0	0.536195	0.767330	0.149853	Biso	1.000000 0
02	1.0	0.536183	0.072900	0.149842	Biso	1.000000 0
03	1.0	0.230582	0.767334	0.150399	Biso	1.000000 0
04	1.0	0.999154	0.304403	0.149835	Biso	1.000000 0
05	1.0	0.999176	0.998851	0.149827	Biso	1.000000 0
06	1.0	0.304767	0.304424	0.150395	Biso	1.000000 0

Cif file of monolayer B3O3 at PBE-D3 level. VESTA software is used for the conversion.9

- 1. P. Ordejón, E. Artacho and J. M. Soler, *Physical Review B*, 1996, **53**, R10441.
- 2. J. M. Soler, E. Artacho, J. D. Gale, A. García, J. Junquera, P. Ordejón and D. Sánchez-Portal, *Journal of physics: Condensed matter*, 2002, **14**, 2745.
- 3. J. P. Perdew, K. Burke and M. Ernzerhof, *Physical review letters*, 1996, **77**, 3865-3868.
- 4. J. P. Perdew and A. Zunger, *Physical Review B*, 1981, **23**, 5048-5079.
- 5. G. Kresse and J. Hafner, *Physical Review B*, 1994, **49**, 14251-14269.
- 6. S. Grimme, *Journal of computational chemistry*, 2006, **27**, 1787-1799.
- 7. S. Grimme, J. Antony, S. Ehrlich and H. Krieg, *The Journal of chemical physics*, 2010, **132**, 154104.
- 8. M. Methfessel and A. T. Paxton, *Physical Review B*, 1989, **40**, 3616-3621.

9. K. Momma and F. Izumi, *Journal of applied crystallography*, 2011, 44, 1272-1276.