Differences in extractability under subcritical water reveal interconnected hemicellulose and lignin recalcitrance in birch hardwoods

Antonio Martínez-Abad,^a Nicola Giummarella,^{b,c} Martin Lawoko,*^{b,c} and Francisco Vilaplana*^{a,c}

^aDivision of Glycoscience, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Centre, SE–106 91 Stockholm, Sweden

^bDepartment of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen 56-58, SE–100 44, Stockholm, Sweden.

^cWallenberg Wood Science Centre, KTH Royal Institute of Technology, Teknikringen 56-58, SE–100 44, Stockholm, Sweden.

Supplementary Material

Composition	Birch chips ^a	B1 ^b	B2 ^b	B3 ^b	B4 ^b	B5 ^b	B6 ^b	Residue ^a
(mg g ⁻¹)	_							
Ara	2.9	27.4	9.8	1.7	1.3	1.4	0.6	0.2
Rha	3.7	14.8	16.3	8.8	6.8	3.3	0.8	0.4
Gal	8.1	30.7	26.1	15.3	13.9	16.7	13.4	1.4
Glc	420.9	234.3	45.3	7.8	4.3	4.1	4.1	616.2
Xyl	264.7	148.4	643.0	739.1	723.6	626.6	342.4	116.5
Man	18.8	180.4	39.0	5.9	3.0	2.1	2.5	15.0
GalA	17.7	69.5	26.8	16.9	15.4	10.8	5.3	2.3
GlcA	0.3	4.0	4.1	3.0	2.8	3.4	1.9	0.3
MeGlcA	29.1	5.7	52.6	75.2	90.8	78.7	39.3	0.3
Total	766.5	715.1	849.0	851.4	840.1	728.0	402.4	752.6

Table S1. Complete monosaccharide composition of raw material, extracts and residue(quantification)

^aCarbohydrate content obtained by two step sulfuric hydrolysis ^bCarbohydrate content obtained by methanolysis

Proposed	m/z (M+Na⁺)	m/z (M+2Na⁺-H)	Proposed	m/z (M+Na⁺)	m/z (M+2Na⁺-H)
	205	227		1017	1020
×2 ×- ×-	247	360	χ_{50} AC ₃	1017	1033
	389		<u>Χ₆Ο Αυ₁</u> Χ-Δο	1005	1087
X ₂ X ₂	437	411	X ₂	1091	1119
X ₂ AC	479	501	X _c II ^{4m} ΔC _o	1107	1129
X ₂ U ^{4m}	495	517	<u>Χ₆Ο Ας</u>	1133	1125
Χ ₂ Ο	521	543	X ₂ Ac ₄	1139	1161
X ₂ U ^{4m} Ac ₄	537	559		1149	1171
X ₄	569	591	X-U ^{4m}	1155	1177
X ₂ U ^{4m} Ac ₂	579	601	X70	1175	1197
X ₄ AC ₁	611	633	X ₂ Ac ₂	1181	1203
X ₂ U ^{4m}	627	649		1191	1213
X,AC2	653	675	X ₂ U ^{4m} Ac ₁	1197	1219
X ₂ U ^{4m} Ac ₁	669	691	X•Ac•	1223	1245
X,AC2	695	717	X ₀	1229	1251
X5	701	723	X ₇ U ^{4m} Ac ₂	1239	1261
X ₃ U ^{4m} Ac ₂	711	733	X ₈ Ac ₄	1265	1287
X ₅ Ac ₁	743	765	X ₉ Ac ₁	1271	1293
X ₄ U ^{4m}	759	781	X ₇ U ^{4m} Ac ₃	1281	1303
X ₅ Ac ₂	785	807	X ₈ U ^{4m}	1287	1309
X ₄ U ^{4m} Ac ₁	801	823	X ₈ Ac ₅	1307	1329
X ₅ Ac ₃	827	849	X ₉ Ac ₂	1313	1335
X ₆	833	855	X ₇ U ^{4m} Ac ₄	1323	1345
X ₄ U ^{4m} Ac ₂	843	865	X ₈ U ^{4m} Ac ₁	1329	1351
X ₅ Ac ₄	869	891	X ₉ Ac ₃	1355	1377
X ₆ Ac ₁	875	897	X ₁₀	1361	1383
X ₄ U ^{4m} Ac ₃	885	907	X ₈ U ^{4m} Ac ₂	1371	1393
X ₅ U ^{4m}	891	913	X ₉ Ac ₄	1397	1419
X ₆ Ac ₂	917	939	$X_8U^{4m}Ac_3$	1413	1435
X ₅ U ^{4m} Ac ₁	933	955	X ₉ U ^{4m}	1419	1441
X ₆ Ac ₃	959	981	X ₉ Ac ₅	1439	1461
X ₇	965	987	X ₈ U ^{4m} Ac ₄	1455	1477
X ₅ U ^{4m} Ac ₂	975	997	X ₉ U ^{4m} Ac ₁	1461	1483
X ₆ Ac ₄	1001	1023	X ₈ U ^{4m} Ac ₅	1497	1519
X ₇ Ac ₁	1007	1029	X ₉ U ^{4m} Ac ₂	1503	1525
X ₅ U ^{4m} Ac ₃	1017	1039	X ₉ U ^{4m} Ac ₃	1545	1567

Table S2.Oligosaccharide assignment of the mass profiles obtained by ESI-MS.

NOTE: The assignation of the XOs to the m/z has been performed in-house using ChemDraw.

Lignin	δ _c	δ _H	Description
cross-Signal	(ppm)	(ppm)	
1	72.0	4.84	C_{α}/H_{α} in β O4
1	85.9	4.09	C_{β}/H_{β} in β O4 in Syringyl units
1	83.3	4.28	C_{eta}/H_{eta} in eta O4 in Guaiacyl units
2	86.9	5.40	C_{α}/H_{α} in phenylcoumaran
2	53.2	3.42	C_{β}/H_{β} in phenylcoumaran
3	85.1	4.64	C ₄ /H _a in resinol structure
3	53.5	3.04	C_{β}/H_{β} in resinol structure
3	71.1	4.16	C_{γ}/H_{γ} in resinol structure
3	71.1	3.78	C _γ /H _γ in resinol structure
4	81.0	5.06	C_{α}/H_{α} in Spirodienone
4	59.8	2.73	C_{β}/H_{β} in Spirodienone
5	106.0-106.5	7.20-7.30	C ₂ /H ₂ , C ₆ /H ₆ in a oxidized side Syringyl units
6	55.6	3.71	C/H in Methoxy Group
S _{2,6}	103.9	6.67	C_2/H_2 and C_6/H_6 in Syringyl units
G ₂	110.8	7.93	C ₂ /H ₂ in Guaiacyl units
G ₅	114.9	6.67-6.90	C₅/H₅ in Guaiacyl units
G ₆	118.8	6.74	C ₆ /H ₆ in Guaiacyl units

Table S3. Assignment of the main ${}^{13}C-{}^{1}H$ 2D HSQC correlation signals in DMSO-d6 obtained from the lignin populations in the Birch (B1-B6) extracts

NOTE: The inter-monolignol linkages were assigned according to Balakshin and Rencoret.ⁱ

Table S4. Assignment of the main ${}^{13}C{}^{-1}H$ 2D HSQC correlation signals in DMSO-d6 obtained from the lignin-carbohydrate complexes (LCC) in the Birch (B1-B6) extracts

LCC	δ _c	δ _H	Description
cross-Signal	(ppm)	(ppm)	
PG	99-104	4.8-5.3	Phenyl Glycoside
$BE_1(\alpha)$	80.1-82.5	4.4-4.7	Benzyl ether to C6/C5
$BE_2(\alpha)$	81.7-82.6	5.04-5.26	Benzyl ether to C2/C3 in α
γ-ester	60.5-63.0	4.1-4.3	γ-ester

NOTE: Lignin Carbohydrate bonds were assigned accordingly to previous work based mostly on model compoundⁱⁱ

Carbohydrate	δ _c	δ _H	Description
cross-Signal	(ppm)	(ppm)	
Ara	107.8	4.75	C_1/H_1 in β -L-arabinopyranoside
C ₆	60.0	3.56	C_6/H_6 in β -D-gluco-/mannopyranoside
Х	101.5	4.36	C_1/H_1 in β -D-xylopyranoside
X _{2Ac}	73.7	4.45	C ₂ /H ₂ in 2-O-acetyl-β-D-xylopyranoside
X _(2Ac)	100.0	4.44	C ₁ /H ₁ in 2- <i>O</i> -acetyl-β-D-xylopyranoside
X _{3Ac}	75.0	4.78	C ₃ /H ₃ in 3- <i>O</i> -acetyl-β-D-xylopyranoside
X _{23Ac}	71.4	4.49	C ₂ /H ₂ in 2,3-O-acetyl-β-D-xylopyranoside
X ₄	75.3	3.45	C_4/H_4 in β -D-xylopyranoside
X ₅	62.9	3.13/3.78	C_5/H_5 in β -D-xylopyranoside
X(nr)	103.4	4.14	C_1/H_1 in β -D-xylopyranoside of xylans non reducing end
$X_{t,\alpha}(r)$	92.3	4.84	C_1/H_1 in α -D-xylopyranoside of xylans reducing end
$X_{t,\beta}(r)$	97.3	4.20	C_1/H_1 in β -D-xylopyranoside of xylans reducing end
М	100.3	4.51	C_1/H_1 in β -D-mannopyranoside
M _{2Ac}	70.8	5.21	C_2/H_2 in 2-O-acetyl β -D-mannopyranoside
$M_{t,\alpha}(r)$	93.5	4.87	C_1/H_1 in α -D-mannopyranoside of mannans reducing end
Gal	105.3	4.23	C_1/H_1 in α -D-galactopyranoside
MeGlcA	96.8	5.11	C ₁ /H ₁ in 4-O-methyl-α-D-glucuronic Acid
MeGlcA	81.4	3.07	C₄/H₄ in 4-O-methyl-α-D-glucuronic Acid

Table S5. Assignment of the main ${}^{13}C-{}^{1}H$ 2D HSQC correlation signals in DMSO-d6 obtained from the carbohydrate structural units in the Birch (B1-B6) extracts

NOTE: The annotation of the carbohydrate structures was performed according to the work by Telemann and Ralphⁱⁱⁱ.

Figure S1. Comparison of sugar composition of the extracts by methanolysis and sulfuric hydrolysis

Figure S2. Refractive index (DRI) and ultraviolet (UV) detection traces from sizeexclusion chromatography (SEC) of the birch extracts. The carbohydrates are low UV absorbing and are mostly detected by the DRI signal, whereas lignin are strong UV absorbers and can be detected by both DRI and UV. The evolution of the UV and DRI traces offers indirect evidence of the hemicellulose and lignin contributions to the molar mass distributions, respectively. For the initial extracts B1-B4, a "decoupling" from DRI and UV traces can be observed. This indicates that the hemicellulose populations with larger molar mass are only limitedly connected to lignin, and only the smaller eluting compounds assigned to lignin contribute to the UV signal. However, for the recalcitrant extracts B5-B6 both DRI and UV signals coincide, which may indicate that the hemicellulose and lignin populations are largely interconnected.

Figure S3. Sequencing of the X₄Ac_nmU isomer series: A. Single ion chromatogram for the extract B3 by LC-ESI-MS. B. Single ion chromatogram for the extract B5 by LC-ESI-MS. The isomer X₄mU (m/z 880) shows a single peak (1). The isomer X₄AcmU (m/z 922) shows one single peak (2), which is significantly abundant in extract B5. The isomer X₄Ac₂mU (m/z 964) show two predominant peaks (3) and (4) which are predominantly abundant in extract B3. The isomer X₄Ac₃mU (m/z 1006) show one predominant peak, which is only detectable in extract B3. C. Fragmentation spectra by LC-ESI-MS/MS of the peaks (1-4), where the specific placement of the acetyl groups on the Xylp units can be assigned. Unfortunately, the regioselective position of the acetyl group on the *O*-2 or *O*-3 of the Xylp units cannot be assigned. The isomer X₄Ac₃mU (m/z 1006) could not be sequenced successfully.

NOTE: The assignation of the fragmentations has been performed in-house using ChemDraw.

i - M.Y. Balakshin, E.A Capanema and H-m. Chang, Holzforschung, 2007, 61, 1-7.; - M.Y. Balakshin, E.A. Capanema, H. Gracz, H-m. Chang and H. Jameel, Planta, 2011, 233, 1097–1110;

- H. Kim, J. Ralph and T. Akiyama, Bioenergy Resources, 2008, 1, 56–66.;

- J. Rencoret, G. Marques, A. Gutierrez, L. Nieto, J.I. Santos, J. Jimenez-Barbero, A.T. Martinez and J.C. del Rio, Holzforschung, 2009, **63**, 691–698.

ii -G. Brunow, J. Sipilä and T. Mäkela, Holzforschung, 1989, 43, 55-59;

- M.Y. Balakshin, E.A Capanema and H-m. Chang, Holzforschung, 2007, 61, 1-7;

- Y. Miyagawa, T. Mizukami, H. Kamitakahara and T. Takano. Holzforschung, 2014, 68 (7), 747–760.

iii - A. Teleman, J. Lundqvist, F. Tjerneld ,H. Stålbrand and O- Dahlman, Carbohydrate research, 2000, 329, 807-815;

- A. Teleman, M. Nordstrom, M. Tenkanen, A. Jacobs and O. Dahlman, Carbohydrate Research, 2003, 338, 6, 525-534;

- Kim, H.; Ralph, J.; Akiyama, T. Bioenergy Res., 2008, 1, 56–66.