Electronic Supplementary Information (ESI)

Palladium(II) and platinum(II) saccharinate complexes with bis(diphenylphosphino)methane/ethane: synthesis, S-phase arrest and ROS-mediated apoptosis in human colon cancer cells

Ceyda Icsel,^a Veysel T. Yilmaz,^{*a} Muhittin Aygun,^b Buse Cevatemre,^c Pinar Alper^d and Engin Ulukaya^d

^aDepartment of Chemistry, Faculty of Arts and Sciences, Uludag University, 16059 Bursa, Turkey. ^bDepartment of Physics, Faculty of Sciences, Dokuz Eylul University, 35210 Izmir, Turkey ^cDepartment of Biology, Faculty of Arts and Sciences, Uludag University, 16059 Bursa, Turkey. ^dDepartment of Medical Biochemistry, Faculty of Medicine, University of Istinye, 34010 Istanbul, Turkey

Corresponding Author:

Prof. Dr. Veysel T. Yilmaz Department of Chemistry Faculty of Arts and Sciences Uludag University 16059 Bursa, Turkey

E-mail: vtyilmaz@uludag.edu.tr

Table S1 Crystallographic data and structure refinement for complexes 1–8.

	1	2	3	4	5	6	7	8
empirical formula	$C_{39}H_{32}N_2O_7P_2PdS_2$	$C_{41}H_{36}N_2O_7P_2PtS_3$	$C_{64}H_{52}N_2O_6P_4PdS_2$	$C_{64}H_{52}N_2O_6P_4PtS_2$	$C_{40}H_{32}N_2O_6P_2PdS_2$	$C_{40}H_{32}N_2O_6P_2PtS_2$	$C_{66}H_{56}N_2O_6P_4PdS_2$	$C_{72}H_{70}N_4O_8P_4PtS_2$
formula weight	873.12	1021.93	1239.47	1328.16	869.13	957.82	1267.52	1502.41
crystal system	monoclinic	tetragonal	triclinic	triclinic	tetragonal	tetragonal	monoclinic	monoclinic
space group	P2 ₁ /n	I4 ₁ /a	ΡĪ	PĪ	P421c	P 4 2₁c	P21/C	P21/C
a, Å	21.662(5)	37.9658(17)	11.1137(4)	11.1118(4)	15.4948(5)	15.7420(8)	12.053(2)	12.0410(6)
<i>b,</i> Å	17.152(2)	37.9658(17)	11.1173(8)	11.1453(4)	15.4948(5)	15.7420(8)	15.931(2)	15.8287(7)
с, Å	23.382(4)	12.1250(9)	13.1286(6)	13.1213(5)	18.9918(8)	19.1532(9)	17.923(2)	18.0559(9)
α, deg	90.00	90	76.066(5)	75.742(3)	90	90	90	90
<i>β,</i> deg	117.04(2)	90	66.277(4)	66.147(4))	90	90	102.841(13)	102.811(5)
γ, deg	90.00	90	85.214(4)	85.857(3)	90	90	90	90
V, Å ³	7738(3)	17477(2)	1441.17(14)	1439.74(10)	4559.7(4)	4746.4(5)	3355.3(8)	3355.7(3)
Т, К	293(2)	293(2)	293(2)	293(2)	293(3)	293(2)	293(2)	293(2)
Ζ	8	16	1	1	4	4	2	2
$ ho_{ m calc}$ (g cm ⁻³)	1.499	1.554	1.428	1.532	1.266	1.340	1.255	1.487
μ (mm ⁻¹)	0. 722	3.477	0.560	2.675	0.610	3.152	0.482	2.307
F(000)	3552	8128	636	668	1768	1869	1304	1528
θ(°)	2.869-25.026	3.166-25.012	3.129-26.372	2.860-25.681	2.940-25.027	3.083-25.017	3.200-25.027	3.176-25.675
collected refls	23748	14104	12075	10635	8111	7421	9542	11914
data/ parameters	13573 /841	7687/333	5872/358	5463/358	3927/241	4085/150	5885/361	6314/413
goodness-of-fit	0.998	0.951	1.061	1.028	0.965	1.027	1.013	1.063
R ₁ [/>2σ]	0.0765	0.0865	0.0485	0.0332	0.0457	0.0555	0.0629	0.0417
wR ₂	0.1563	0.2224	0.1319	0.0781	0.1092	0.1545	0.1642	0.0898

Complexes	Т(К)	<i>K</i> s∨(M⁻¹)	<i>K</i> _F (M⁻¹)	ΔG°	ΔH°	ΔS°
		x 10 ⁻⁴	x 10 ⁻⁴	(kJ/mol)	(kJ/mol)	(J/Kmol)
1	293	2.3	10.9	-28.3	-86.4	-198.1
	297	1.9	8.2	-27.5		
	300	1.6	5.4	-26.9		
3	293	3.6	37.0	-31.4	-37.8	-22.0
	297	3.1	34.7	-31.3		
	300	2.8	27.1	-31.2		
4	293	6.6	24.0	-30.3	-100.5	-239.6
	297	5.9	15.8	-29.3		
	300	5.2	10.5	-28.6		
6	293	1.4	5.2	-29.5	-75.8	-158.0
	297	1.2	3.7	-28.9		
	300	1.0	2.9	-28.4		
7	293	2.3	6.3	-26.9	-49.1	-75.7
	297	1.7	5.3	-26.6		
	300	1.4	4.2	-26.4		
8	293	1.8	4.6	-26.2	-144.6	-404.0
	297	1.5	2.6	-24.6		
	300	1.3	1.4	-23.3		

Table S2 Temperature-dependent fluorescence emission titration data for the interaction of the complexes with FS-DNA.

Table S3 Temperature-dependent fluorescence emission titration data for the interaction of the complexes with HSA.

Complexes	T(K)	<i>K</i> _{SV} (M⁻¹)	<i>K</i> _F (M⁻¹) x	∆G°	ΔH°	ΔS°
		x 10 ⁻⁴	10 ⁻⁵	(kJ/mol)	(kJ/mol)	(J/Kmol)
1	293	12.6	5.1	-32.2	-50.6	-62.9
	297	11.1	4.7	-31.9		
	300	9.9	3.4	-31.7		
3	293	10.6	16.7	-35.1	-51.3	-55.4
	297	9.8	13.2	-34.8		
	300	9.1	10.9	-34.6		
4	293	8.3	3.7	-27.4	-50.9	-80.3
	297	7.7	2.9	-27.1		
	300	7.2	2.3	-26.8		
6	293	3.8	2.5	-30.4	-71.8	–141.3
	297	3.2	2.0	-29.8		
	300	2.8	1.4	-29.2		
7	293	4.2	2.9	-30.7	-87.6	–194.1
	297	3.9	2.1	-29.9		
	300	3.1	1.4	-29.3		
8	293	4.3	3.5	-30.3	-93.5	-215.7
	297	3.9	2.8	-29.4		
	300	3.4	1.6	-28.8		

Fig. S1 continued

Fig. S1 ¹H- (a) ¹³C- (b) and ³¹P-NMR spectra (c) of 1–8.

Fig. S2 continued

Fig. S2 continued

Fig. S2 continued

Fig. S2 ESI-MS spectra of 1–8.

6 7 8

6 7 8

Fig. S3 The dose-response graphics for **1–8** obtained from SRB assay, showing the effect of the complexes (20 μ M) on the growth of the cell lines after 48 h of treatment.

Fig. S4 UV spectra of the potent complexes, showing their stability in MeOH, DMSO and saline at 0, 24 and 48 h.

Fig. S5 The dose-response graphics for the potent complexes and cisplatin obtained from ATP assay, showing the effect of the complexes on the growth of the cell lines after 48 h of treatment.

Fig. S6 Cell cycle progression of HCT116 cells treated with IC₉₀ doses of 1 (50 μ M), 3 (30 μ M), 4 (20 μ M) and cisplatin (44 μ M) for 24 h.

Fig. S7 ROS generation in HCT116 cells treated with IC₉₀ doses of 1 (50 μ M), 3 (30 μ M), 4 (20 μ M) and cisplatin (44 μ M) for 24 and 48 h.

Fig. S8 (a) Annexin-V positivity and (b) Caspase 3/7 activity in HCT116 cells treated with IC_{90} doses of **1** (50 μ M), **3** (30 μ M), **4** (20 μ M) and cisplatin (44 μ M) for 24 and 48 h.

Fig S9 Mitochondrial membrane depolarization in HCT116 cells treated with the IC₉₀ doses of 1 (50 μ M), 3 (30 μ M), 4 (20 μ M) and cisplatin (44 μ M) for 24 and 48 h.

Fig S10 Formation of DNA double-strand breaks in HCT116 cells treated with the IC₉₀ doses of **1** (50 μ M), **3** (30 μ M), **4** (20 μ M) and cisplatin (44 μ M) for 6, 12, 24 and 48 h.

Fig. S11 Time-dependent morphological changes in the nuclei of HCT116 cells induced by the IC_{90} doses of **1** (50 μ M), **3** (30 μ M), **4** (20 μ M) and cisplatin (44 μ M). Cells were stained with Hoechst 33342 followed by detection using fluorescence microscope. Magnification: 40×.

Fig. S12 Absorption titration spectra of FS-DNA solutions (50 μ M) with increasing amounts of the potent complexes (0–15 μ M) of in Tris-HCl buffer. Inset: plot of 1/[complex] vs. 1/(A–A₀).

Fig. S13 Emission titration spectra of EB-bound DNA solutions in the absence and presence of increasing concentrations of the potent complexes (0–50 μ M) in Tris-HCl. [EB] = 5 μ M, [DNA] = 50 μ M. The Inset shows the Stern-Volmer plot of the fluorescence data.

Fig. S14 The relative viscosity of FS-DNA (0.8 mM bp) upon addition of increasing amounts of the potent complexes, EB and Hoechst 33258 in Tris-HCl buffer. η is the viscosity of DNA in the presence of complex, and η_0 is the viscosity of DNA alone. r = [Complex]/[DNA(bp)].

Fig. S15 Thermal denaturation profiles of FS-DNA (100 μ M) in the absence and in the presence of the potent complexes (10 μ M) in Tris-HCl.

Fig. S16 UV absorption spectra of HSA (10 μ M) upon addition of increasing amounts of the potent complexes (0–10 μ M) in Tris-HCl buffer. The arrow shows the increases in absorbance. Inset: plot of 1/[complex] vs. 1/(A–A_0).

Fig. S17 Emission spectra of HSA (5 μ M; λ_{ex} = 280 nm) in presence of the potent complexes (0-10 μ M). The arrow shows the emission intensity changes upon increasing complex concentration. Insets: Stern-Volmer plot of the fluorescence data.

Fig. S18 Synchronous spectra of HSA (5 μ M) in presence of the potent complexes (0-10 μ M) at $\Delta\lambda$ = 15 nm (**a**) and $\Delta\lambda$ = 60 nm (**b**). Arrows show the emission intensity changes upon increasing concentration of the complexes.

Fig. S19 3D fluorescence spectra of HSA (5 μ M), and HSA (5 μ M) + the potent complexes (5 μ M) in Tris-HCl buffer.