## **Supplementary information**

## Synthesis of an Injectable, Self-Healable and Dual Responsive Hydrogel for Drug Delivery and 3D Cell Cultivation

Yaling Zhang, \*ab Changkui Fu, a Yongsan Li, Ke Wang, Xing Wang, Yen Weia and Lei Tao\*a

E-mail: leitao@mail.tsinghua.edu.cn

<sup>b.</sup> Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, P. R. China. Email:zhangyaling0@126.com; zhangyl@caep.cn

<sup>c.</sup> The State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China.



**Figure S1** Appearance change of a gelatin hydrogel (up) and the united dynamic hydrogel (down) after being punched a hole at different times.



**Figure S2** Photos of hydrogels immersed in buffers a) at 0 h and b) after 8 h, and SEM photos of freezedried hydrogels after immersion in buffers c) pH~6.0 and d) pH~7.0 for 8 h (scale bars 100  $\mu$ m).

<sup>&</sup>lt;sup>a.</sup> The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.



**Figure S3** Temperature responsive property of transparency a) and b) modulus change of the hydrogel under acidic conditions (pH~5).

| Conditions                       |      | R     | Ritger-Peppas model |                       |  |
|----------------------------------|------|-------|---------------------|-----------------------|--|
| Temp.                            | / рН | n     | k                   | <i>R</i> <sup>2</sup> |  |
| Rhodamine B Release System       |      |       |                     |                       |  |
| 25°C                             | 4.5  | 0.794 | 0.142               | 0.989                 |  |
|                                  | 6.2  | 0.571 | 0.064               | 0.995                 |  |
|                                  | 7.4  | 0.579 | 0.059               | 0.997                 |  |
| 37°C                             | 4.5  | 0.871 | 0.227               | 0.998                 |  |
|                                  | 6.2  | 0.784 | 0.095               | 0.975                 |  |
|                                  | 7.4  | 0.533 | 0.064               | 0.998                 |  |
| 40 °C                            | 4.5  | 0.765 | 0.252               | 0.997                 |  |
|                                  | 6.2  | 0.648 | 0.185               | 0.999                 |  |
|                                  | 7.4  | 0.553 | 0.083               | 0.993                 |  |
| Cisplatin Release System         |      |       |                     |                       |  |
| 37 °C                            | 4.5  | 0.714 | 0.166               | 0.980                 |  |
|                                  | 6.2  | 0.728 | 0.034               | 0.977                 |  |
|                                  | 7.4  | 0.686 | 0.024               | 0.996                 |  |
| 100% I I I I I I I<br>80%<br>20% |      |       |                     |                       |  |

**Table S1** Release kinetic data for different systems by fitting release data to the Ritger-Peppas equation(n: diffusion exponent; k: kinetic constant; R<sup>2</sup>: correlation coefficient).



0.10

Concentration(mg/mL)

0.20

0.50

1.00

0%

control

0.05