Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2016

Supporting Information

Asymmetric Synthesis of (-)-Renieramycin T

Junhao Jia, Ruijiao Chen, Hao Liu, Xiong Li, Yuanliang Jia and Xiaochuan Chen*

Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of

Chemistry, Sichuan University, Chengdu 610064, PR China

E-mail: <u>chenxc@scu.edu.cn</u>

Table of contents

A.	Spectra for compounds	.S3
В.	Tables S1 and S2 (NMR cpmparison between synthetic and natural samples)	.S23

^1H NMR (400 MHz, CDCl_3) and ^{13}C NMR (100 MHz, CDCl_3) of compound 22

^1H NMR (400 MHz, CDCl_3) and ^{13}C NMR (100 MHz, CDCl_3) of compound 23

^1H NMR (400 MHz, CDCl_3) and ^{13}C NMR (100 MHz, CDCl_3) of compound 24

1 H NMR (400 MHz, CDCl₃) and 13 C NMR (100 MHz, CDCl₃) of compound **25a**

^{1}H NMR (400 MHz, CDCl_3) and ^{13}C NMR (100 MHz, CDCl_3) of compound 25b

^1H NMR (400 MHz, CDCl_3) and ^{13}C NMR (100 MHz, CDCl_3) of compound 26

 ^1H NMR (400 MHz, CDCl_3) and ^{13}C NMR (100 MHz, CDCl_3) of compound $\boldsymbol{27}$

 ^1H NMR (400 MHz, CDCl_3) and ^{13}C NMR (100 MHz, CDCl_3) of compound 29

^1H NMR (400 MHz, CDCl_3) and ^{13}C NMR (100 MHz, CDCl_3) of compound 30a

 ^1H NMR (400 MHz, CDCl_3) and ^{13}C NMR (100 MHz, CDCl_3) of compound 30b

 ^1H NMR (400 MHz, CDCl_3) and ^{13}C NMR (100 MHz, CDCl_3) of compound 31

^1H NMR (400 MHz, CDCl_3) and ^{13}C NMR (100 MHz, CDCl_3) of compound 32

 1 H NMR (400 MHz, CDCl₃), 13 C NMR (100 MHz, CDCl₃) and NOESY of compound **33**

^1H NMR (400 MHz, CDCl_3) and ^{13}C NMR (100 MHz, CDCl_3) of compound 34

^1H NMR (400 MHz, CDCl_3) and ^{13}C NMR (100 MHz, CDCl_3) of compound 35

 ^1H NMR (400 MHz, CDCl_3) and ^{13}C NMR (100 MHz, CDCl_3) of compound 43

 ^1H NMR (400 MHz, CDCl_3) and ^{13}C NMR (100 MHz, CDCl_3) of compound 44

 ^1H NMR (400 MHz, CDCl_3) and ^{13}C NMR (100 MHz, CDCl_3) of compound 45

 ^{1}H NMR (400 MHz, CDCl_3) and ^{13}C NMR (100 MHz, CDCl_3) of (-)-Renieramycin T

Atom No.	Natural (500 MHz, CDCl ₃)	Synthetic (400 MHz, CDCl ₃)	Δδ(ppm)
1	4.16 (dd, 4.9, 3.7)	4.15 (m)	-0.01
3	3.24 (ddd, 11.9, 2.7, 2.4)	3.23 (br d, 11.7)	-0.01
4	α 2.87 (dd, 15.0, 2.4)	2.87 (br d, 14.1)	0.00
Т	β 1.67 (dd, 15.0, 11.9)	1.67 (dd, 15.0, 11.9)	0.00
11	4.00 (dd, 2.7, 0.5)	4.00 (m)	0.00
13	3.37 (ddd, 7.3, 2.4, 0.5)	3.37 (br d, 7.6)	0.00
14	α 2.75 (dd, 20.8, 7.3)	2.74 (dd, 20.8, 7.6)	-0.01
11	β 2.30 (d, 20.8)	2.30 (d, 20.8)	0.00
21	4.11 (d, 2.4)	4.11 (d, 2.4)	0.00
22	a 3.99 (dd, 11.3, 4.9)	3.99 (dd, 11.2, 5.2)	0.00
22	b 4.41 (dd,11.3, 3.7)	4.42 (dd, 11.3, 3.6)	0.01
26	6.00 (qq, 7.3, 1.5)	5.99 (qq, 7.2,1.4)	-0.01
27	1.85 (dq, 7.3, 1.5)	1.84 (dq, 7.3,1.5)	-0.01
28	1.69 (dq, 1.5,1.5)	1.69 (dq, 1.5,1.5)	0.00
6 -CH ₃	2.11 (s)	2.10 (s)	-0.01
16 -CH ₃	1.94 (s)	1.94 (s)	0.00
17 -OCH ₃	3.98 (s)	3.97 (s)	-0.01
N -CH ₃	2.29 (s)	2.28 (s)	-0.01
	a 5.85 (d, 1.5)	5.85 (br s)	0.00
UCH ₂ O	b 5.92 (d,1.5)	5.91 (br s)	-0.01

Tables S1. Comparison of ¹H NMR data for natural **7** with those of synthetic 7^1

Atom No.	Natural (125 MHz, CDCl ₃)	Synthetic (100 MHz, CDCl ₃)	$\Delta\delta(ppm)$
1	56.4	56.4	0.00
3	56.2	56.2	0.00
4	26.8	26.8	0.00
5	144.7	144.7	0.00
6	106.2	106.2	0.00
7	144.9	144.9	0.00
8	136.8	136.8	0.00
9	112.1	112.1	0.00
10	113.1	113.1	0.00
11	54.9	54.9	0.00
13	54.8	54.8	0.00
14	21.2	21.2	0.00
15	186.1	186.2	0.01
16	129.0	129.1	0.01
17	155.4	155.4	0.00
18	182.8	182.8	0.00
19	135.7	135.7	0.00
20	141.8	141.8	0.00
21	59.6	59.6	0.00
22	64.6	64.5	-0.01
24	167.1	167.1	0.00
25	126.8	126.7	-0.01
26	139.7	139.9	0.02
27	15.7	15.8	0.01
28	20.5	20.6	0.01
6 -CH ₃	8.8	8.8	0.00
16 -CH ₃	8.7	8.7	0.00
17 -OCH ₃	60.9	61.0	0.01
N -CH ₃	41.4	41.5	0.01

Tables S2. Comparison of 13 C NMR data for natural 7 with those of synthetic 7 1

OCH ₂ O	101.1	101.0	-0.01
CN	117.4	117.5	0.01

References:

1. N. Daikuhara, Y. Tada, S. Yamaki, K. Charupant, S. Amnuoypol, K. Suwanborirux, N. Saito, *Tetrahedron Lett*, 2009, **50**, 4276.