Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2015

Supplementary Information

Transformer oil based hexylamine-multiwalled carbon nanotubes coolant with optimized electrical, thermal and rheological enhancements

Ahmad Amiri ^{1,*}, S. N. Kazi ^{1,}[‡], Mehdi Shanbedi ^{2,}[†], Mohd Nashrul Mohd Zubir¹, Hooman Yarmand¹, B.T. Chew¹

¹ Department of Mechanical Engineering, University of Malaya, Kuala Lumpur, Malaysia

² Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad,

Iran

Corresponding Author: <u>*ahm.amiri@gmail.com</u> (A. Amiri) †<u>salimnewaz@um.edu.my</u> (S. N. Kazi) <u>*mehdi.shanbedi@stu-mail.um.ac.ir</u> (M. Shanbedi)

Figure S1. The viscosity of pure TO and MWNT-HA based TO coolants at different weight concentrations and shear rates.

Viscosity at 20 °C	17.754 cP			
Viscosity at 40 °C	7.807 cP			
Density at 20 °C	0.843 °C/gr Cm ⁻³			
Flash point	150 °C			
Pour point	Lower than -45 °C			
Breakdown voltage	57 kV			

Table S₁. Rheological properties of the pure transformer oil

Table S₂. Zeta potential and associated suspension stability 1.

Z potential (mv)	Stability			
0	Little or no stability			
15	Some stability but settling lightly			
30	Moderate stability			
45	Good stability, possible settling			
60	Very good stability, little settling likely			

A summary of experimental studies on the thermal conductivity of TO-based nanofluids is listed in Table S₃ which increase the possibility of sediment. As compared with recent studies², the present work reaches higher enhancement in thermal conductivity at similar experimental condition. For example, Patel et al. ³ obtained 10, 11.5, 14 and 17% enhancements in the thermal conductivities of TO-based nanofluids by the addition of Al_2O_3 at 20, 30, 40 and 50 °C, respectively. Such enhancements are obtained for 3% Al2O3 loading, while we work at very low weight fractions of 0.001 and 0.005. In fact, the strategy of the present study is the utilization of low concentration of highly-soluble MWNT-HA in TO to avoid sediment, since the bulk fluid in the transformer is motionless.

Table S₃. Summary of experimental studies on thermal conductivity of TO-based nanofluids.

Authors [Ref.]	Particle Material/ Base fluids	Fraction (vol% or wt%)	Particle size(nm)	Additives	Enhancement (%) in Thermal Conductivity
Xuan & Li ⁴	Cu/Transformer oil	2.5-7.5	100	Oleic acid	12-43
Patel et al. ³	Al ₂ O ₃ / Transformer oil	0.5-3	45	-	3-10 at 20 °C 4.5-11.5 at 30 °C 6.5-14 at 40 °C
		0.5-3	31		8-17 at 50 °C

	CuO Transformer				5-12.5 at 20 °C
	oil				7-17.5 at 30 °C
					8-19.5 at 40 °C
		0.5-3	80		9.5-26 at 50 °C
	Cu/Transformer				13-27.5 at 20 °C
	011				13.5-29 at 30 °C
					15-33 at 40 °C
		0.5-3	80		16-38 at 50 °C
	Al /Trace of a reason				9-18.5 at 20 °C
	oil				9.5-24 at 30 °C
Choi et al. ⁵	Al ₂ O ₃	0.5			5%
		1.0			8%
		2.0			12.5%
		4.0			20%
					(Room
					Temperature)
Choi et al. ⁵	AIN	0.5			8%
					(Room
					Temperature)
Beheshti et	MWNT-COOH	0.001	15nm *	-	<1% at 30 °C
al. ²		0.01	30 µm		~1% at 30 °C
		0.001			<6% at 60 °C
		0.01			<8% at 60 °C
		0.001			~ 0% at 70 °C
		0.01			<0% at 70 °C
Present	MWNT-HA	0.001	30nm *		2.56% at 30 °C
Study		0.005	(5-15)		3.2% at 30 °C
		0.001	μm		6.87% at 60 °C
		0.005			7.78% at 60 °C
		0.001			9.14% at 70 °C
		0.005			9.85% at 70 °C

Table S₄ also shows a comparison of the natural convection and forced convection heat transfer coefficients of nanofluids with different nanoparticles loading. The convective heat transfer coefficient of MWNT-HA/TO nanofluid was compared with those of other nanoparticles-based TO nanofluids reported in the literature. Obviously, the present samples had a relatively high natural convection and forced convection heat transfer coefficients in comparison to other nanoparticles loading in TO at similar weight fraction, in particular, as compared with MWNT-COOH/TO nanofluids ² at similar experimental conditions. Our results showed the natural convection and forced convection heat transfer coefficient enhancements of 23 and 28% at weight fraction of 0.005, which demonstrate a significant increase at a very low concentration.

Authors [Ref.]	Particle Material/ Base fluids	Fraction (vol% or wt%)	Particle size(nm)	Additives	Enhancement (%)
Beheshti et al.	MWCNT-COOH/	0.001-	15*30000	-	10.04-16.42 at 50W
2	Transformer oil	0.01%wt			10.85-11.83 at 70W
					16.78-18.82 at 90 W
					12.94-14.01 at 120 W
					9.27-10.46 at 150 W
					(Free Convection)
					5.78-12.92 at 50W
					12.08-15.94 at 70W
					6.57-11.72 at 90W
					4.35-7.1 at 120W
					6.55-9.17 at 150W
					(Force Convection)
Choi et al. ⁶	Al ₂ O ₃ / Transformer	0.5	13	Oleic acid	20
	oil				overall heat transfer
	AlN/ Transformer oil	0.5	50		coefficient (U)
Chun et al. ⁷	Al ₂ O ₃ / Transformer	0.5	~43	-	13
	oil		27-43		10
			7		25
					Laminar (h)
Rajesh et al. ⁸	Al/Transformer oil	0.5	100		70
					heat transfer coefficient
Present Study	MWNT-HA	0.001-0.005	30nm * (5-		12-23%
			15) μm		Free Convection
		0.001.0.005			13-28%
		0.001-0.005			Forced Convection

Table S4. Summary of experimental studies on convective heat transfer properties of nanofluids

References:

- 1. L. Vandsberger, McGill University, 2009.
- 2. A. Beheshti, M. Shanbedi and S. Z. Heris, *Journal of Thermal Analysis and Calorimetry*, 2014, **118**, 1451-1460.
- 3. H. E. Patel, T. Sundararajan and S. K. Das, *Journal of Nanoparticle Research*, 2010, **12**, 1015-1031.
- 4. Y. Xuan and Q. Li, *International Journal of Heat and Fluid Flow*, 2000, **21**, 58-64.
- 5. C. Choi, H. S. Yoo and J. M. Oh, *Current Applied Physics*, 2008, **8**, 710-712.
- 6. C. Choi, H. Yoo and J. Oh, *Current Applied Physics*, 2008, **8**, 710-712.
- 7. B.-H. Chun, H. U. Kang and S. H. Kim, *Korean Journal of Chemical Engineering*, 2008, **25**, 966-971.
- 8. E. Rajesh and K. Prabhu, in *Film and Nucleate Boiling Processes*, ASTM International, 2012.