Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxx

Paper

Electronic Supplementary Information for:

Hydrogen gas sensor based on metal oxide nanoparticles decorated graphene transistor

- 5 Zhangyuan Zhang^a, Xuming Zou^a, Lei Xu^a, Lei Liao^{*a}, Wei Liu^a, Johnny Ho^b, Xiangheng Xiao^{*a}, Changzhong Jiang^a, Jinchai Li^a
 - ^a Department of Physics and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China.
- 10 ^b Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR, China.

* E-mail:liaolei@whu.edu.cn, xxh@whu.edu.cn

15 ESI 1.

Fig. S1. Representative graphene transistor with no obvious sensitivity to different external environments, especially to the hydrogen gas. ESI 2.

ESI 3.

Nanoscale

Paper

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxx

Fig. S3. The sensitivity of graphene FETs decorated with different thickness metal oxide NPs. (a) (d) SnO₂. (b) (e) CuO. (c) (f) ZnO.

ESI 4.

5 Fig. S4. The selectivity of graphene FET decorated with SnO₂ NPs in different atmosphere conditions: Air, CO, NO, H₂. The gas concentration is all 1000 ppm.

ESI 5.

Cite this: DOI: 10.1039/c0xx00000x

Paper

Fig. S5 XPS characterization of the sample after the Sn deposition followed by annealing.

ESI 6.

5 Fig. S6. (a) Valence band spectra of the sample after the Cu and Zn deposition followed by annealing. (b-c) Band diagrams of CuO/Gra and ZnO/Gra interfaces before and after the NPs deposition.