Learning Robust Manipulation Strategies with Multimodal State
Transition Models and Recovery Heuristics

Austin S. Wang! and Oliver Kroemer

Abstract— Robots are prone to making mistakes when per-
forming manipulation tasks in unstructured environments. Ro-
bust policies are thus needed to not only avoid mistakes but also
to recover from them. We propose a framework for increasing
the robustness of contact-based manipulations by modeling the
task structure and optimizing a policy for selecting skills and
recovery skills. A multimodal state transition model is acquired
based on the contact dynamics of the task and the observed
transitions. A policy is then learned from the model using
reinforcement learning. The policy is incrementally improved
by expanding the action space by generating recovery skills with
a heuristic. Evaluations on three simulated manipulation tasks
demonstrate the effectiveness of the framework. The robot was
able to complete the tasks despite multiple contact state changes
and errors encountered, increasing the success rate averaged
across the tasks from 70.0% to 95.3%.

I. INTRODUCTION

Robots operating in unstructured environment will in-
evitably make mistakes. Mistakes are not desirable, but they
are only a major problem if the robot cannot detect and
recover from them autonomously. Usually the potential errors
that a robot may encounter will not be known a priori, and
thus the robot will have to learn strategies for recovering
from errors on its own. Learning to recover from errors
is however a challenging problem, as the robot needs to
consider a variety of different recovery options when learning
a robust policy. The robot may be able to continue from
the current situation and try to reach the original goals via
a different path, or it may need to backtrack an unknown
number of steps to reattempt a part of the task. Detecting
errors and performing recovery actions will allow the robot
to perform the overall task more reliably.

Contacts play an important role in performing manipu-
lation tasks and recovering from errors. Contacts constrain
motions and changes in contact states often correspond to
subgoals or errors in manipulation tasks, e.g., contacts for
grasping or accidental collisions. By monitoring for changes
in the contact state, the robot can detect subgoals and
errors more reliably. Distinct contact states are modeled as
a discrete set of contact modes, which will be leveraged in
our framework to learn a more accurate representation of the
task dynamics.

We propose a framwork that increases the robustness of a
policy learned from demonstration. The robot optimizes the

*This work received funding from Amazon through the Amazon Research
Award program.

LAustin S. Wang is with Department of Mechanical Engineering,
Carnegie Mellon University, Pittsburgh, PA 15213, USA

2Qliver Kroemer is with the Robotics Institute, Carnegie Mellon Univer-
sity, Pittsburgh, PA 15213, USA

2

S a1 * a8 _an
A c ®

Demonstrator’s
Intentions

Executing
Demonstrations

-0 —6~ T c

After
Optimization I H I
3 6

Fig. 1: Illustration of the task structure for an insertion
task. The purple circles are distributions of states with
similar properties, the orange diamonds are skills, the green
blocks are contact modes, and the arrows are transitions and
skill selections (darker lines indicate higher probabilities).
(Top) A demonstration of inserting the of the blue peg
into the hole. (Middle) Executing the demonstrated skills
cause unintended collisions, resulting in additional erroneous
contact modes « and 4. (Bottom) Optimizing the policy and
generating recovery skills results in additional skills 3 and 6
for transitioning between state distributions to recover from
errors.

policy based on a task representation that was learned from
executions of the initial demonstrated skills. As illustrated
in Fig. 1, the framework is initialized with a demonstration
of the desired task. The robot then repeatedly executes the
demonstrated skills to detect different types of errors. The
robot uses the resulting data, together with additional contact
mode information extracted at the end of each skill, to
construct a state transition model. The robot subsequently
optimizes the policy based on the generated task model. To
further increase the robustness of the policy, the robot utilizes
the model structure to generate additional recovery skills
over time. The resulting policy maximizes the success rate of
the tasks by skipping unnecessary skills and autonomously
recovering from errors.

We evaluated the proposed framework on three simulated
manipulation tasks with a Sawyer robot. The experiments

showed that incorporating the contact modes and recovery
skills, instead of simply executing the demonstrated skills
as given, lowered the mean task failure rate from 30.0% to
4.7%.

II. RELATED WORK

The proposed framework learns a policy for sequencing
skills to perform manipulation tasks. Skill chaining was
proposed by Konidaris et al. [1] as a framework that starts
by learning skills to reach the goal states and then learns
additional skills to reach the initiation sets of the current
skills. In this manner, the framework grows skill trees from
the goal outward. Robots often learn to perform complex
tasks using hierarchical policies or sequences of skills. Some
approaches assume that the individual skills are provided
to the robot [2], [3], while others focus on segmenting and
learning skills [4], [5]. The high-level policies for selecting
skills have been learned using reinforcement learning [6],
[71, [8] and imitation learning [9], [10].

Contact modes are often used to model distinct contact
states in manipulation tasks. The term modes is adopted
from hybrid systems literature [11], where they correspond
to distinct continuous system dynamics that the system can
jump between. The modal structure of a task may be learned
[12], [13] or predefined. A number of previous planning ap-
proaches exploit the contact mode structure of manipulation
tasks [14], [15], [16], [17]. This structure can also be used as
a basis for learning skills for transitioning between contact
modes [12]. Common mode transition skills include grasping
and placing. The detection of mode transitions can be used
to reduce uncertainty [18], or to determine if a subgoal or
error has occurred [13]. In our framework, the robot uses
observations of the contact modes as auxiliary information
for modeling the dynamics of the task.

The high dimensional state spaces and highly nonlinear
dynamics in manipulation tasks have always posed a chal-
lenge for planning manipulation strategies. Koval et al. [19]
used a lattice in configuration space and performed planning
by solving regions relevant to the task online. Other methods,
similar to our approach, create simplified task representations
by exploiting the structure of contact-rich manipulation tasks,
e.g. aggregating similar states together [20], or creating
abstract models based on transitions between sets of states
[21]. Our approach to creating the state transition model
was inspired by [22], which showed that the state space for
sequencing skills depends on the pre- and post- conditions
of the skills.

The improved robustness of the proposed framework is
the result of the robot incorporating additional recovery
skills over time. The additional skills allow the robot to
recover from errors and skip unnecessary skills in the task
execution. Niekum et al. [4] proposed a framework for
learning low-level skills and high-level policies for selecting
skills from demonstrations. Their framework also allowed the
robot to identify errors in the task execution and incorporate
additional demonstrations of recovery skills to create a more
robust overall policy. Su et al. [13] proposed a method for

detecting when a skill failed to reach its goal state. The
robot would then reattempt the same skill to recover from
the error. Phillips-Grafflin et al. [20] recovered from errors
by assuming reversibility and repeating skills multiple times
until they succeeded. In the proposed framework, the robot
automatically generates additional skills for recovering to
different states.

ITI. STATE TRANSITION MODELS

The goal of the proposed framework is to learn a high-
level policy for chaining together low-level skills. The robot
will begin by learning a state transition model based on
the data collected while attempting the task using the initial
demonstrated skills.

We assume a quasi-static environment, i.e. the state of the
system can be fully defined by the poses of the arm and the
manipulated objects after each skill execution. The task is
then modeled as a continuous-state Markov Decision Process
(MDP). The states are defined as the poses of the end-effector
relative to the manipulated object, and are assumed to be
fully observable.

The state transition distributions are only dependent on
the current state and the executed actions. However, in the
presence of contact mode switches, those distributions are
hard to model using the pose information alone, as the
effects of skills are strongly affected by the low-level action
constraints imposed by the contact mode. A slight shift in
pose might be the difference between contact or no contact,
thus executing the same skill might have a completely
different effect. Hence, contact mode observations will be
used to provide additional structure to the transition model.

A. Exploratory Data Generation

To extract the structure of the manipulation task, we
begin by providing the robot with a sequence of skills for
performing the task. In our evaluations, the skills are defined
as straight line Cartesian end-effector movements, and each
skill a is parameterized by an end-effector goal pose g
relative to the observed object frame. Although one could use
more complex skill representations, e.g., DMPs [23], straight
line movements are often well suited for low-level skills [13].
Due to stochastic transitions and contact constraints, the end-
effector pose after executing a will not be the same as g. The
robot will encounter a variety of states as it explores the
task, including erroneous states that the demonstrator had
not intended as part of the task.

Each state will correspond to a contact mode which will
impose a certain set of local dynamics and constraints. The
robot can observe these constraints by applying low-level
actions and observing the results. Hence, at the start and
end of each skill execution, the robot performs a sequence
of local 3D perturbations in the end-effector pose Axg,
which we assume to be reversible, and observes the resulting
changes in the end-effector position Az. Note that Az, is
the controller input in the form of the change in desired
end-effector position. The robot then fits a linear model to
this data Az = AAz,4. In our experiments, the off-diagonal

elements tended to be close to zero, so the diagonal elements
of the matrix A are used as contact mode observations
o™ = diag(A). In the future, we will explore more expressive
representations of the local constraints. The auxiliary contact
mode observation is then appended to the state to form an
augmented state feature z; =< s;, 0] >.

The robot attempts the task multiple times using the initial
sequence of demonstrated skills. For each execution of a skill
a; the robot receives an experience in the form of the tuple
er =< zy,a, 1, 2z, >, with the current augmented state z;,
the skill executed a;, the reward received r;, and the next
augmented state z;. The experiences are stored in a buffer
and used to learn state transition models in an offline fashion.

B. Transition Model

Given the exploratory dataset, the next step is to model the
state transition distributions for the skills. Our skills have the
property of acting as funnels in the state space: given a state
within an input region of the state space, the skill execution
will result in a transition to a state within a corresponding
output region of the state space. Sequentially selecting skills
can thus be seen as chaining together funnels to reach desired
states [1]. A funnel 7 is associated with an action a;, an
input region ¢;, and an output region ;. In our model, input
regions are represented as unimodal gaussian distributions
#i(2) = N(z|pi, Si). Due to the unpredictable nature of
hybrid systems (e.g. a pushed bottle may slide or fall over),
output regions are modeled as multimodal gaussian mixtures
Yi(2') = 32, wiN (2 |pj;, 2;). The state transition model
is then formed in a locally weighted fashion:

/ 2o i) ei(2)d(ai, a)
Pl) = o ()l a)

where a; is the skill associated with the ith funnel, and 9§ is
the Kroenecker delta function that only takes a value of one
if the two inputs are the same and zero otherwise. The input
and output regions can thus be seen as a model of the skill’s
preconditions and corresponding postconditions [22].

Contact modes are discrete in nature, and thus an ideal
model would be to incorporate them as discrete variables.
These discrete mode values would be functions of the contin-
uous state. However, the discontinuous mapping between the
states and the contact modes is unknown and hard to learn,
which is why the continuous contact mode observations are
used in our model. The auxiliary mode observations allow
the robot to better distinguish between regions of the state
space with different contact constraints. Intuitively, we can
decompose the input and output distributions as ¢;(z;) =
63 (50 (0f") and similarly (=) = ¥i(s))oP (o]"),
where ¢(s) and $(s’) capture the effects of high-level
skills and ¢*(0™) and ™ (0™') capture the effects of low-
level actions. Both of these transition types are important for
creating a robust transition model.

Given the general form of the transition model, the next
step is to extract the input and output regions. The robot
learns a model of the regions by clustering the exploratory
data points for the individual skills. The components of the

Algorithm 1 Learning Funnels in State Space

Experiences: < zt, at,r¢, 25 >, t € {1,..., N}
Set of skills (action space): A where a; € A Vit
Distance measure between states: D, (z;, z;)
Distance measure between distributions: D (o5, ¢;)

I @pegui < 0]

2: for all o € A do

3: Ci) «— 0

4 /I Cluster output states

5: U + CLUSTER({#}|a; == a}, D,)

6 for all) € ¥ do

7 I Cluster respective initial states

8: ® « CLUSTER({z]2}; € ¥}, D.)

9: P dUD

10: Il Merge similar initial state clusters

11: P+ CLUSTER({¢|$ € &}, Dy)

12: (presult — (I)result U {AU ¢|(p € P}

pcd
13: return .

14: function CLUSTER(X, D)

15: Cluster all z € X using DBSCAN with D(x;, z;)

16: return {Y7,Y5, ..., Yy}, where each Y; is a set
containing all =’s belonging to the «¢th cluster

transition model are constructed by a clustering of states,
similar to the symbolic state generation procedure proposed
by Konidaris et al.[22]. The clustering approach for the
individual skills is illustrated in Fig. 2 and Algorithm 1. The
robot begins by clustering the skill’s samples according to the
next states z’. The clustering is performed using DBSCAN
[24]. The algorithm clusters together any samples z;, z;
within a distance D (z;,z;) = ||s; — s;|, + || oI — 0}"“2 <
€s, Where €, is a length scale hyperparameter with a value
of 2. This process results in a set of output clusters z/AJ The
samples for each of these output clusters is then clustered
again based on the initial states z using DBSCAN. The
resulting clusters ¢3 correspond to distinct regions of the state
space, and each of these clusters should be associated to
one input Gaussian and one output Gaussian. The final step
in our clustering approach merges clusters of samples with
similar initial state distributions z. In particular, two state
distributions ¢;, ¢, are merged if Dy(¢;, ;) < €4, Where
Dy is implemented with the Bhattacharyya distance [25] and
€p = 0.05.

The resulting clusters of samples are subsequently used
to compute parameters of the input distributions ¢;(z) using
maximum likelihood. To avoid slight mismatches between
input distributions ¢; across skills, we compare the dis-
tance measure [y between all pairs of input distributions
regardless of the associated skill, and redefine the input
distributions using their combined samples for any pairs ¢;,
¢; that satisfies the same merging condition Dy (s, ¢;) <
€y The multimodal output distributions ;(z’) could in
theory also be approximated using the clustered samples.

s, 7" ° A 5 M ° B
o, N o,
o, 0 1 L)
° °
[0: 0?00
e®"e ®
o0 5,7 : s,2

s mg

52 ° C

®e

o,

°

o':

e® o
o0 5, 7"
—emsanio— - - 7p

b1 ¢

Fig. 2: Conceptual illustration of the clustering process. (A) Raw data. (B) Cluster output states. (C) Cluster initial states

corresponding to each output cluster. (D) Merge initial states.

Fig. 3: Visualization of the clustering process. (Left) Ex-
perience poses and contact modes. Colors indicate different
contact modes. (Right) Sets of samples resulting from the
clustering of distributions. Colors indicate different distribu-
tion modes.

However, in practice, these distributions do not need to be
computed explicitly to learn the policy, as we will explain
in the following section.

An example of the clustering can be seen in Fig. 3 for a
basic maze task. The resulting clusters allow the transition
distribution to capture both the high-level skill transitions
and the low-level constraints corresponding to the different
contact modes.

IV. POLICY LEARNING

Given the state transition model, the next step is to learn a
policy for selecting skills given the current states and contact
mode observations. To further improve the robustness of the
policy, we present a heuristic for incorporating additional
recovery skills over time.

A. Learning a Policy for Selecting Skills

To learn a policy for selecting skills, we associate an
expected reward r; with each skill a; and input region ¢;
pair, which is obtained by taking the weighted average over

experiences
YT COLICD)
CY 9i(2)0(ais ar)

where we use t to iterate over all experiences. We then model
the reward function as

r(z,a)

_ 2iridi(2)0(ai, a)
Zj ¢j(2)6(a;,a)

where we use ¢ and j to iterate over learned funnels.

Using this reward function and state transition model, the
action value function can be written as:

Qi) = r(z.a) + [P([200) myx Qe ')

_ 2.:1%9i(2)8(ai, a)
> 9i(2)d(aj,a)

where ¢; = r; +7 [, ¥i(2') max, Q(2',a’)dz’". However,
the Q-value function parameters ¢; cannot be computed
analytically because integrating over all possible output states
is intractable. We therefore treat the next state z; as a sample
from ¢;(2’), and compute the parameters g; using gradient
descent with the update rule:

0
¢ < @i +o[Qr — Q(z, ar)] yQ(Zv a)
qi 2e,0
where
Qu =i +ymax Q(z,d')
and
9 _ 9i(=t)d(ai, ar)
T I SISt P Ty

Once the value estimates are computed, a softmax policy
m(alz) = e@=a) /37, e@(=ar) i5 used to select actions while
continuing to explore state-action pairs in a structured man-
ner. After every attempt of the task, the model is updated with
the new data and value iteration is run until convergence.

B. Generating Recovery Skills

After obtaining a policy for the initial set of skills, the
robot will sometimes perform unneccessary or erroneous
skill executions. These executions may result in transitions
to states that were not seen in the original demonstrations,
and the initial skills are therefore also not well-suited for
handling these situations. To increase the robustness and
performance of the overall policy, the robot will need to
acquire additional recovery skills. These skills should be
generated in an incremental manner and exploit the prior
structure of the task model.

We propose a skill generation heuristic for backtracking
to previous states and skipping immediate successor states.
These skills will allow the robot to effectively undo the
effects of erroneous skill executions. At each skill selection
step, the robot attempts to generate and execute a new skill

using the proposed heuristic with a probability of 0.1 in our
evaluations.

Our skill generation heuristic is based on the funnel inputs
¢i(z+). We define the jth funnel to be a successor of the ith

funnel if Z o /)¢()
S Do)

with a threshold h = 0.1, which corresponds to the prob-
ability of transitioning to z; when at z; marginalized over
different skills. Conversely, if the jth funnel is a successor
of the ith funnel, then the ith funnel is a predecessor of the
jth funnel.

Given the current augmented state z; the current funnel
is given by argmax; ¢;(z¢). The robot then defines a set
of candidate funnels that include the current funnel’s pre-
decessors and its successors’ successors. The predecessor
candidates allow the robot to back track one step, while the
successors’ successors will allow the robot to skip erroneous
or redundant actions.

Candidate funnels are removed from the candidate set if
the robot already has a skill for transitioning from the current
funnel to the candidate one. Candidates are also removed if
the value of the current funnel ¢; is larger than the discounted
value of the candidate q., i.e., ¢; > ~vq.. The robot then
selects the candidate with the highest value 7 = arg max. q.
and generates a corresponding skill with the goal parameters
given by the target funnel’s mean g = p(¢,).

As the robot generates new skills, the sets of successors
and predecessors will also change and new candidates will
be created as a result. For example, if the robot generates
a skill for reaching a predecessor, then this funnel will also
become part of the successors. The robot will subsequently
attempt to create skills for reaching its successor’s as part of
the successor’s successor rule. Similarly, if the robot manages
to skip a skill and reach a successor’s successor, the robot
will then attempt to generate skills for skipping this next
skill as well. In this manner, the heuristic allows the robot to
incrementally generate skills for improving robustness and
performance based on the task structure.

V. EXPERIMENTS

In this section, we explain how we evaluate the proposed
approach and discuss the results.

A. Experiment Setup

Three simulated tasks were used to evaluate the perfor-
mance of the proposed framework using the Mujoco physics
engine [26]. First, the robot has to escape a 2D maze as
shown in Fig. 1 where the rod end-effector remains at a
fixed height above the table. The second task involved a
key-shaped end-effector and a T-shaped hole. The goal of
the task is to insert the key into the vertical part of the hole
and then slide it to the end of the horizontal slot. In the final
task, the robot is equipped with a gripper. The robot has to
grasp a drawer handle, pull the handle down to release a
latch, and then pull the drawer open. The task environments

el

Fig. 4: Task Environments. (Left) Maze. (Middle) Keyhole.
(Right) Drawer.

are referred to as Maze, Keyhole, and Drawer respectively,
as shown in Fig. 4.

For each of the tasks we define a goal region G: the
rod’s tip is outside of the maze, the key is at the end
of the horizontal slot, and the drawer is more than 10cm
open. After each skill execution, the robot receives a reward
r = —d — [s ¢ G]dt, where 0t is the time duration of the
skill, d is the distance travelled during the execution of the
skill, and s is the resulting state. A 60-second time limit is
also imposed on all tasks, at which point episodes terminate
automatically. The arm is controlled using an Cartesian
impedance controller. We simulated action noise using a
zero-mean Gaussian with a standard deviation of lcm.

To evaluate the effects of incorporating recovery skills,
the robot was initially provided with a sequence of 6, 4,
and 6 skills to perform each of the tasks respectively. The
robot then generated an MDP model with state transition
estimates of the task as described in Section III. The robot
was then given an additional 40, 100, and 100 episodes for
each of the Maze, Keyhole, and Drawer tasks respectively.
During these episodes, the robot was allowed to generate
additional skills using the heuristic described in Section IV.
We designate checkpoints for evaluation right after learning
the initial MDP model and after every 25 episodes of skill
generation. At each checkpoint, we evaluate performance by
freezing the policy and attempting the task 100 times. No
new skills were generated and no additional training data
was acquired during these evaluation attempts. The success
rates are shown in the top row of Fig. 5. The success rates
are averaged over 10 runs of the experiment. Fig. 6 shows
the success rates as a function of time.

To evaluate the effects of incorporating the contact modes,
we reran the experiment without using the contact mode
information 2™ in the state clustering process. Results of
running the same experiments are on the right of Fig. 5.

B. Discussion

As shown in the left column of Fig. 5, implementing the
additional recovery skills increased the mean success rate of
the three tasks from 70.0%, 62.0%, and 78.0% to 96.1%,
94.6%, and 95.1% respectively. Perfect success rates were
even achieved in at least one experiment run for all three
tasks using the recovery skills. Fig. 7 illustrates an episode
of the execution of the drawer task in which the arm was
able to recover from multiple erroneous states by utilizing
newly acquired recovery skills. The importance of contact
mode information is emphasized in the right column of

Task success rate (%)
Task success rate (%)

demo 0 10 20 30
Episodes of skill generation

demo 0 10 20 30 40
Episodes of skill generation

Keyhole Keyhole

Task success rate (%)
Task success rate (%)

0
demo 0 25 50 75
Episodes of skill generation

demo 0 25 50 75 100
Episodes of skill generation

Drawer Drawer

Task success rate (%)
Task success rate (%)
o
3

0
demo [25 50 75
Episodes of skill generation

demo [25 50 75 100
Episodes of skill generation

Fig. 5: Success rates for the three simulated manipulation
tasks (Left) with contact mode information and (Right) with-
out contact mode information. The success rate is evaluated
over 100 test episodes and averaged over 10 training trials.
Results from executing the demonstration skills, using the
initial MDP policy without recovery skills, and using the
MDP policy augmented with recovery skills are colored as
red, green, and blue respectively.

Maze Keyhole

100
80 80
60 60

40 40

—— Demonstration
—— MDP Policy
—— MDP Policy + Recovery skills

0 10 20 30 40 50 60
Time (s)

20 —— Demonstration
—— MDP Policy
—— MDP Policy + Recovery skills

0 10 20 30 40 50 60
Time (s)

20

Probability of task being completed (%)
Probability of task being completed (%)

Drawer

80

60

40

—— Demonstration
—— MDP Policy
—— MDP Policy + Recovery Skils

20

0 10 20 30 40 50 60
Time (s)

Probability of task being completed (%)

Fig. 6: Cumulative plot of success rate over time. The
percentage corresponds to how often the robot solves the task
before the given time. The discrete jumps in percentages are
due to the fact that skills usually require a constant amount
of time to execute, and thus episodes involving the same
combination of skills will terminate at approximately the
same time.

Fig. 7: Visualization of an execution of the drawer task. In
the fourth image, the handle slipped away during the process
of pulling the drawer out, but since the latch is already out
of the socket, the manipulator uses learned recovery skills to
swoop back to pull the drawer out without grabbing it.

Fig. 5, where the resulting performance exhibits no obvious
improvement over naively executing the demonstration skills.

More insight into the learned strategies can be gained by
looking at how long it takes for the manipulator to complete
the tasks in Fig. 6. Executing the fixed demonstration skill
sequence results in the episodes terminating at the same time
regardless of whether the task has been completed. Directly
after forming the policy based on the state transition model,
the algorithm often finds shortcuts by directly executing the
next skill. However, there are times when the shortcut is
more risky and leads to a decrease in success rate, as in
the Keyhole case. After generating recovery skills, the agent
not only discovers more shortcuts and optimizes paths better
due to the additional data, but also generates skills to recover
from errors, which results in much higher success rates and
shorter completion times.

The set of distributions ¢;’s is currently based on exploring
the task with the initial demonstration skills. The perfor-
mance could therefore potentially be further increased by
continuously adapting the state distributions over time as the
robot acquires more data.

VI. CONCLUSIONS

We introduced a framework for learning more robust
policies for performing contact-based manipulation tasks
under uncertainty. An initial set of skills is used to explore
the task and subsequently extract a suitable state abstrac-
tion based on observed transitions and contact modes. We
proposed a heuristic for generating additional recovery skills
based on the learned task model. The robot subsequently
learned a policy for selecting skills using value iteration. The
framework was successfully evaluated on three simulated
manipulation tasks and lowered the failure rate averaged over
all three tasks from 30.0% to 4.7%.

In the future, we will explore modeling the tasks as
Partially Observable Markov Decision Processes (POMDPs)
[27] to handle observation uncertainties. We will also explore
contact mode estimation methods based on sensory signals
during skill executions [13], or by actively perturbing the
end-effector to maximize information gain.

[1]

[2]

[3]

[6]

[7]

[8]

[10]

(1]

[12]

[13]

[14]

REFERENCES

G. Konidaris and A. G. Barto, “Skill discovery in continuous reinforce-
ment learning domains using skill chaining,” in Advances in Neural
Information Processing Systems (NIPS), Y. Bengio, D. Schuurmans,
J. D. Lafferty, C. K. I. Williams, and A. Culotta, Eds. Curran
Associates, Inc., 2009, pp. 1015-1023.

P. Pastor, M. Kalakrishnan, L. Righetti, and S. Schaal, “Towards
associative skill memories,” in IEEE-RAS International Conference
on Humanoid Robots (Humanoids), 2012, pp. 309-315.

F. Meier, E. Theodorou, F. Stulp, and S. Schaal, “Movement segmen-
tation using a primitive library,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2011, pp. 3407-3412.

S. Niekum, S. Chitta, A. G. Barto, B. Marthi, and S. Osentoski,
“Incremental semantically grounded learning from demonstration,” in
Robotics: Science and Systems (RSS), 2013.

D. H. Grollman and O. C. Jenkins, “Incremental learning of subtasks
from unsegmented demonstration,” in IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), 2010, pp. 261-266.
J. Mugan and B. Kuipers, “Autonomous learning of high-level states
and actions in continuous environments,” IEEE Transactions on Au-
tonomous Mental Development (TAMD), vol. 4, no. 1, pp. 70-86,
March 2012.

C. Daniel, G. Neumann, O. Kroemer, and J. Peters, ‘“Hierarchical
relative entropy policy search,” Journal of Machine Learning Research
(JMLR), vol. 17, no. 93, pp. 1-50, 2016.

B. C. da Silva, G. Baldassarre, G. Konidaris, and A. Barto, “Learning
parameterized motor skills on a humanoid robot,” in IEEE Interna-
tional Conference on Robotics and Automation (ICRA), May 2014,
pp. 5239-5244.

S. Manschitz, J. Kober, M. Gienger, and J. Peters, “Learning to
sequence movement primitives from demonstrations,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2014, pp. 4414-4421.

G. Konidaris, S. Kuindersma, R. Grupen, and A. Barto, “Robot
learning from demonstration by constructing skill trees,” International
Journal Robotics Research (IJRR), vol. 31, no. 3, pp. 360-375, Mar.
2012.

A. van der Schaft and J. Schumacher, An Introduction to Hybrid
Dynamical Systems, ser. Lecture Notes in Control and Information
Sciences. Springer, 2000.

O. Kroemer, C. Daniel, G. Neumann, H. van Hoof, and J. Peters,
“Towards learning hierarchical skills for multi-phase manipulation
tasks,” in IEEE International Conference on Robotics and Automation
(ICRA), 2015, pp. 1503 — 1510.

Z. Su, O. Kroemer, G. Loeb, G. Sukhatme, and S. Schaal, “Learning to
switch between sensorimotor primitives using multimodal haptic sig-
nals,” in From Animals to Animats 14: 14th International Conference
on Simulation of Adaptive Behavior, vol. 9825, 2016, pp. 170-182.
J. R. Chen and B. J. McCarragher, “Programming by demonstration
- constructing task level plans in hybrid dynamic framework,” in

[15]

[16]

(171

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

IEEE International Conference on Robotics and Automation (ICRA).
Symposia Proceedings (Cat. No.OOCH37065), vol. 2, 2000, pp. 1402—
1407 vol.2.

G. Lee, T. Lozano-Prez, and L. P. Kaelbling, “Hierarchical planning for
multi-contact non-prehensile manipulation,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2015, pp. 264—
271.

A. Jain and S. Niekum, “Efficient hierarchical robot motion planning
under uncertainty and hybrid dynamics,” CoRR, vol. abs/1802.04205,
2018.

W. R. N. Guan, Charlie; Vega-Brown, “Efficient planning for near-
optimal compliant manipulation leveraging environmental contact,” in
IEEE International Conference on Robotics and Automation (ICRA),
May 2018.

A. Sieverling, C. Eppner, F. Wolff, and O. Brock, “Interleaving motion
in contact and in free space for planning under uncertainty,” in 2017
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Sept 2017, pp. 4011-4073.

M. C. Koval, D. Hsu, N. S. Pollard, and S. S. Srinivasa,
“Configuration lattices for planar contact manipulation under
uncertainty,” CoRR, vol. abs/1605.00169, 2016. [Online]. Available:
http://arxiv.org/abs/1605.00169

C. Phillips-Grafflin and D. Berenson, “Planning and resilient
execution of policies for manipulation in contact with actuation
uncertainty,” CoRR, vol. abs/1703.10261, 2017. [Online]. Available:
http://arxiv.org/abs/1703.10261

K. Hsiao, L. P. Kaelbling, and T. Lozano-Perez, “Grasping pomdps,”
in Proceedings 2007 IEEE International Conference on Robotics and
Automation, April 2007, pp. 4685-4692.

G. Konidaris, L. P. Kaelbling, and T. Lozano-Perez, “From skills
to symbols: Learning symbolic representations for abstract high-level
planning,” Journal of Artificial Intelligence Research, vol. 61, pp. 215—
289, 2018.

A. J. Ijspeert, J. Nakanishi, and S. Schaal, “Learning attractor land-
scapes for learning motor primitives,” in International Conference on
Neural Information Processing Systems (NIPS), 2002, pp. 1547-1554.
M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based
algorithm for discovering clusters a density-based algorithm for dis-
covering clusters in large spatial databases with noise,” in Proceedings
of the Second International Conference on Knowledge Discovery and
Data Mining, ser. KDD’96, 1996, pp. 226-231.

T. Jebara, R. Kondor, and A. Howard, “Probability product kernels,”
Journal of Machine Learning Research (JMLR), vol. 5, pp. 819-844,
2004.

E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine
for model-based control,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2012, pp. 5026-5033.

M. T. J. Spaan, Partially Observable Markov Decision Processes.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 387-414.

