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Abstract

1 Background
Annotating scientific literature with ontology concepts is a critical task in biology
and several other domains for knowledge discovery. Ontology based annotations
can power large-scale comparative analyses in a wide range of applications
ranging from evolutionary phenotypes to rare human diseases to the study of
protein functions. Computational methods that can tag scientific text with
ontology terms have included lexical/syntactic methods, traditional machine
learning, and most recently, deep learning.

2 Results
Here, we present state of the art deep learning architectures based on Gated
Recurrent Units for annotating text with ontology concepts. We use the Colorado
Richly Annotated Full Text Corpus (CRAFT) as a gold standard for training and
testing. We explore a number of additional information sources including NCBI’s
BioThesauraus and Unified Medical Language System (UMLS) to augment
information from CRAFT for increasing prediction accuracy. Our best model
results in a 0.84 F1 and semantic similarity.

3 Conclusion
The results shown here underscore the impact for using deep learning
architectures for automatically recognizing ontology concepts from literature. The
augmentation of the models with biological information beyond that present in
the gold standard corpus shows a distinct improvement in prediction accuracy.

Keywords: deep learning; gene ontology; automated annotation; scientific
literature

4 Background
Ontologies have become the de-facto mode of representing biological knowledge

since the development of the Gene Ontology (GO).1 Following the widespread

adoption of the GO, other bio-ontologies representing knowledge in disparate as-

pects of biology and biomedicine have been created. Today, an estimated 958 bio-

ontologies are in use spanning over 55 million annotations (as of 1-20-22 from

https://bioportal.bioontology.org/). While the use of bio-ontologies and

the number of annotations created using these ontologies have grown exponentially,

the methods used to create these annotations haven’t changed at a comparable

pace. The majority of ontology annotations are still created via manual curation -
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the process where a human curator reads scientific literature and manually selects

appropriate ontology concepts to describe phrases/words in the text. The process

of manual creation is slow, tedious, and unscalable to the rapid pace of scientific

publishing.2

Over the past decade, text mining approaches have been developed to conduct

ontology annotation in an automated manner. Preliminary solutions include syn-

tactic, lexical approaches followed by traditional machine learning applications.3

Lexical solutions for automated ontology annotation rely on similarities between

a piece of text and the name of an ontology concept or their synonym to assign

annotations.4 This approach can be challenging when the text does not match the

names of ontology concepts. Also, some ontology concept names contain a large

number of words which makes text matching difficult.4

Text mining tools that use machine learning based methods employed super-

vised learning techniques using gold standard corpora.3 These methods can form

generalizable associations between text and ontology concepts leading to improved

accuracy. The rise of deep learning in the areas of image and speech recognition

has translated into text-based problems as well. Preliminary research has showed

that deep learning methods result in greater accuracy for text-based tasks including

identifying ontology concepts in text.5–9 Deep learning methods use vector represen-

tations that enable them to capture dependencies and relationships between words

using enriched representations of character and word embeddings from training

data.10

The semantic complexities of identifying the appropriate ontology concept for a

word/phrase are quite challenging. In the simplest case, the name of the ontology

concept is an exact match to the piece of text. For example, the phrase “brain de-

velopment” in the sentence “HOMER proteins have also been implicated in axon

guidance during brain development” is annotated to the GO term “brain devel-

opment (GO:0007420)”. Sometimes, a match can also be made by comparing the

text to the names of known synonyms of concepts in the ontology. In most cases,

there aren’t clear matches between the words being annotated to the names of the

ontology concepts. For example, the word “olfactory” in the sentence “Class I olfac-

tory receptors are bracketed, and the remaining olfactory receptors are class II.” is

annotated to the GO term “sensory perception of smell (GO:0007608)”. 80% of the

annotations made in the latest version of the CRAFT corpus have no clear match

between the text and the name of the ontology concept used for annotation. This

is a clear indication of the complexity of the problem at hand, one that cannot be

solved just by syntactic methods or by text matching. These are the cases where

effective training can make a substantial difference.

Training deep learning models requires good quality training datasets. The Col-

orado Richly Annotated Full Text Corpus (CRAFT)11 is a widely used training

resource for automated annotation approaches. The current version of the CRAFT

corpus (v4.0) provides annotations for 97 biological/biomedical articles with con-

cepts from 7 ontologies including the GO. CRAFT uses a number of formats with

different levels of complexity to represent annotations.

One of the challenges in creating effective deep learning models is translating all

of CRAFT’s annotations to formats that can be leveraged by the models. This
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process involves a substantial amount of preprocessing that’s designed specifically

for each annotation format to ensure that each annotation is represented soundly

and completely in the training data. Another challenge when using machine learn-

ing solutions - including deep learning models is the availability and abundance of

training data. Not all concepts in the ontology are represented in the gold standard

corpus hindering the ability of the trained models to recognize those unseen con-

cepts. Among the concepts that are present in the training data, some of them occur

frequently while others are sparse. It might be necessary to augment the primary

training corpus with information from other sources to improve prediction accuracy.

The choice of deep learning model and architecture also impacts prediction perfor-

mance. We have conducted comparisons of models such as CNNs, GRUs, LSTMs,

RNNs in previous work9,12 whose findings enable us to making informed choices in

this study. Here, we present a deep learning architecture that leverages inputs from

multiple sources and in different formats (characters, words, etc.) to improve on the

state-of-art in terms of prediction performance.

We make two contributions in this study - 1) publicly available preprocessed

annotations from the CRAFT corpus for training deep learning models and 2) deep

learning architectures for identifying ontology concepts.

4.1 Related Work

Substantial work has been conducted in the area of employing automated methods

for identifying ontology annotations. The majority of this work is geared towards

identifying GO annotations since the GO is the most widely used biological ontology.

Some of the preliminary work in this space was aimed to assign GO terms to protein

sequences and not to free text in literature.

Similarity based approaches identify GO annotations based on similarity between

protein sequences.13–15 When a sequence database is searched for a protein se-

quence, GO terms associated with similar sequences retrieved from the search are

assigned to the query sequence. Probabilistic methods assume that the probability

of shared GO functions is higher between proteins in close proximity on a protein in-

teraction graph.16–20 Markov Random Fields and Bayesian frameworks were used to

determine probability of shared GO functions in these approaches. Later, machine

learning approaches such as Support Vector Machines were used to identify hidden

relationships between protein features such as sequences, structure, etc. to anno-

tate new proteins.21–24 The latest developments in this area employ deep learning

models for the task of automatically annotating proteins with GO terms. Vari-

ous supervised deep learning architectures like Long Short Term Memory (LSTM),

Convoluted Neural Networks (CNN), Recurrent Neural Networks (RNN), Gated

Recurrent Units (GRU), and Bidirectional RNNs have been shown to perform well

at this task.

The early use of automated concept annotation had set the stage for more so-

phisticated problems such as associating ontology concepts to pieces of text from

scientific literature. The task of automatically annotating scientific literature with

ontology concepts is the task of focus in our study. Preliminary studies in this area

employed the use of lexical, syntactical, and traditional machine learning.3 In prior

work, we presented a review of these approaches and conducted a performance com-

parison using a gold standard dataset.3 However, in more recent years, the state of
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art has evolved to leverage deep learning models due to the promise of increased

accuracy and speed.5–8 In addition, deep learning models can develop richer repre-

sentations of the input training data by using vector representations that capture

dependencies between words, characters, and sequence structures. In the next sec-

tion, we will discuss applications that use deep learning for automated ontology

annotation of text.

In early uses of deep learning for ontology annotation of text, CNNs combined with

LSTMs were used.25 The work provided a proof-of-concept for the use of deep learn-

ing for ontology annotation and showed improved performance over traditional, ma-

chine learning methods. Other studies conducted performance comparisons among

deep learning models and found that CNNs with enhanced inputs such as character

embeddings were particularly effective for biomedical named entity recognition.26

In a previous study,12 we presented a deep learning architecture that used multiple

GRUs with a character+word based input. The model was compared to seven mod-

els from existing work using the CRAFT corpus as a gold standard. Results showed

that our GRU-based model outperformed prior models. This work was limited to

predicting unigram annotations and did not take into account the rich semantic

information in ontology hierarchies. Subsequent work9 from our group improved

on this by expanding the types of annotations predicted and by incorporating se-

mantics from ontology subsumption into the prediction. Surprisingly, we found that

GRU based models consistently outperformed the commonly used LSTM based ar-

chitectures. Contrary to expectations, the inclusion of ontology hierarchy resulted

in a modest improvement in performance.9

Most recent publications in this area have separated the ontology annotation task

to two sub-tasks - 1) span detection: detecting the part of text that corresponds

to an ontology concept, and 2) concept normalization: identifying the ontology

concept most appropriate for the identified piece of text.27,28 Using the CRAFT

corpus as a training set, the study reports that Bidirectional encoder representa-

tions from transformers for biomedical text mining (BioBERT) resulted in the best

performance (0.81 F1) for the span detection sub-task. The Open-source toolkit for

Neural Machine Translation (OpenNMT) yielded the best performance for concept

normalization. Overall, their results suggest that their approach using BioBERT for

span detection and OpenNMT for concept normalization achieved state-of-the-art

performance for most ontologies in CRAFT corpus while using substantially fewer

computational resources.

Treating the ontology annotation task as a sequence-to-sequence problem, an-

other study29 compared the performance of an LSTM model with BERT. This

study divided the ontology annotation task into span detection and named entity

normalization (NEN). However, instead of treating the steps like a pipeline where

the output for the first step feeds into the next, these steps are carried out indepen-

dently and agreement between the predictions is examined. The work uses ontology

pretraining using names and synonyms of concepts found in the ontology. This step

enables the models to predict concepts that might not be seen in the training data.

The pretraining is further combined with a rule-based dictionary-lookup system

that directly queries concept names from the ontology. Results show that the pre-

training and lookup systems improve performance. The study reports an F1 score
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of 0.84 using a bidirectional LSTM based architecture. Note that this system cur-

rently cannot handle sophisticated annotation formats such as discontinuous and

overlapping annotations as represented in the CRAFT corpus.

5 Methods
5.1 Training Dataset

This study used version v4.0.1 (https://github.com/UCDenver-ccp/CRAFT/

releases/tag/v4.0.1) of The Colorado Richly Annotated Full Text Corpus

(CRAFT),11 a manually annotated corpus containing 97 articles each of which

is annotated to 10 ontologies. All of the articles in the CRAFT corpus are part

of the PubMed Central Open Access Subset. We selected GO annotations from

the CRAFT corpus as our training and testing set because the largest number of

annotations in CRAFT are made using the GO.

5.2 Data Preprocessing

Each of the 97 articles in the CRAFT corpus has a corresponding xml annotation

file which describes annotations within the sentences using character indexes of the

article. The first step is to preprocess each annotation into a format that can be

used by the deep learning models. All 97 articles are read as UTF-8 encoded strings

and the corresponding xml file for each article is parsed. The following preprocessing

steps are performed to translate annotations from the CRAFT corpus to the desired

input formats for the deep learning models.

5.2.1 Sentence segmentation and Tokenization

As mentioned earlier, annotations for each CRAFT article are recorded in the

corresponding xml annotations file via character index spans. The following is an

example of a sentence and its corresponding annotation:

Sentence: “We observed a severe autosomal recessive movement disorder in mice

used within our laboratory.”

Annotation:

<annotat ion>

<mention id=”GO CC 2016 02 16 test Instance 22573”/>

<annotator id=”GO CC 2016 02 16 test Instance 10000”>Mike Bada , Un ive r s i t y o f C

<span s t a r t =”115” end=”124”/>

<spannedText>autosomal</spannedText>

</annotat ion>

<c lassMent ion id=”GO CC 2016 02 16 test Instance 22573”>

<mentionClass id=”GO:0030849”>autosome</mentionClass>

</classMention>}

Here, the word “autosomal” with a character span of 115 - 124 is tagged to GO

term “GO:0030849”. In order to obtain annotations per word, we utilize a sentence

segmentation library called SpaCy (https://spacy.io/). First, the segmenter splits
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the text into sentences by accounting for sentence end marks (such as periods, ex-

clamation, question marks, etc.) and then uses a tokenizer to split the sentences

into individual words (or tokens) by accounting for word boundaries (such as space,

hyphen, tab, etc.). For example, the above sentence is split into individual tokens

as follows:

Sentence: “We observed a severe autosomal recessive movement disorder in mice

used within our laboratory.”

Tokens: [‘We’, ‘observed’, ‘a’, ‘severe’, ‘autosomal’, ‘recessive’, ‘movement’, ‘dis-

order’, ‘in’, ‘mice’, ‘used’, ‘within’, ‘our’, ‘laboratory’, ‘.’ ]

Annotation: {‘start’: 115, ‘end’: 124, ‘spanned text’: ‘autosomal’, ‘go term’:

‘GO:0030849’ }

5.2.2 IOB Tagging

The deep learning models need to know if each individual word/token corresponds

to a GO term. Each extracted word/token is mapped to a GO term or an out-of-

concept annotation. Here we use the range specified in the xml to map the token to

one of three tags: 1) GO to indicate an annotation, ‘O’ for a non-annotation (out-

of-concept), and ‘EOS’ to indicate the end of sentence. For example, the following

sentence would be tagged as below:

Sentence: “We observed a severe autosomal recessive movement disorder in mice

used within our laboratory.”

Tokens: [ ‘We’, ‘observed’, ‘a’, ‘severe’, ‘autosomal’, ‘recessive’, ‘movement’, ‘dis-

order’, ‘in’, ‘mice’, ‘used’, ‘within’, ‘our’, ‘laboratory’, ‘.’ ]

IOB Tags: [‘O’, ‘O’, ‘O’, ‘O’, ‘GO:0030849’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’,

‘O’, ‘O’, ‘O’, ‘O’, ‘EOS’]

The above example shows a simple case where a single word is annotated to a GO

concept. In other cases, a sequence of words/tokens is annotated to a GO term. We

utilize the IOB (Inside, Outside, Beginning)30 standard for annotating multi-span

tokens to account for such annotations. The IOB format uses three prefixes to tag

tokens in a sentence: 1) ‘B-GO’ is used to specify the beginning of the annotation,

2) ‘I-GO’ is used to map the tokens following the beginning of annotation till the

end, and 3) ‘O’ is used to map tokens that don’t correspond to a GO term. The

following sentence shows an example of IOB formatting:

Sentence: “The phosphatidylserine receptor primarily functions in apoptotic cell

clearance.”

Annotation: {‘start’: 1862, ‘end’: 1886, ‘spanned text’: ‘apoptotic cell clearance’,

‘go term’: ‘GO:0043277’}]
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Tokens: [ ‘The’, ‘phosphatidylserine’, ‘receptor’, ‘primarily’, ‘functions’, ‘in’,

‘apoptotic’, ‘cell’, ‘clearance’, ‘.’ ]

IOB Tags: [ ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘B-GO:0043277’, ‘I-GO:0043277’,

‘I-GO:0043277’, ‘EOS’ ]

In the above example, the phrase “apoptotic cell clearance” is annotated to

GO:0043277. We tag the token ‘apoptotic’ with B-GO:0043277 indicating the be-

ginning of the annotation. The tokens ‘cell’ and ‘clearance’ are tagged with I-

GO:0043277 indicating the continuation of the annotation. O is used to map the

rest of the tokens which do not correspond to any annotations and EOS is used to

map ‘.’ signifying the end of the sentence.

5.2.3 Annotation Formats

Sentences in the CRAFT corpus are annotated following a set of annotation formats

and guidelines as detailed in https://github.com/UCDenver-ccp/CRAFT/tree

/master/concept-annotation. Below, we describe how sentences that contain

annotations in different formats are represented in the IOB format.

• No annotations: Some sentences in an article might not contain any anno-

tations. In this case, all tokens are represented by ‘O’ tags except the ending

character which is represented by ‘EOS’ tag.

Sentence: “Rescue of Progeria in Trichothiodystrophy by Homozygous Lethal

Xpd Alleles”

Annotations: {None}

IOB Tags: [‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘EOS’

]

• Disjoint annotations: A sentence might contain one or more annotations

that don’t overlap in terms of annotation span. In this case, all tokens not

corresponding to an annotation are tagged with O tags. The end of sentence

character is represented by EOS tag. Tokens that mark the the beginning of

an annotation are marked with a B-GO:term followed by I-GO:term to

represent subsequent tokens corresponding to an annotated phrase.

Sentence: “A cell progressing from anaphase to cytokinesis (pink arrow-

heads).”

Annotations: {‘anaphase’ — GO:0051322; ‘cytokinesis’ — GO:0000910}

IOB Tags: [‘O’, ‘O’, ‘O’, ‘O’, ‘B-GO:0051322’, ‘O’, ‘B-GO:0000910’,

‘O’, ‘O’, ‘O’, ‘O’, ‘EOS’ ]

• Overlapping annotations: Here we show an example of a sentence con-

taining annotations with overlapping spans. In this case, a phrase (sequence

of words/tokens) is annotated to a GO concept, and a word or a sub-phrase

within the original phrase is annotated to a different GO concept.

Sentence: “Having excluded a direct role in vesicle formation and mem-

brane fusion, annexin A7 might act by its property as Ca2+-binding protein”

Annotations: {‘vesicle’ — GO:0031982; ‘vesicle formation’ — GO:0006900}

In these instances, we make n copies of the sentence where n is the number

of different annotations. Each copy contains a modified sentence that repre-

sents the text needed to convey one of the annotations. The above example is
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represented as two sentences with each sentence representing one of the two

annotations.

Sentence 1: “Having excluded a direct role in vesicle and membrane fusion,

annexin A7 might act by its property as Ca2+-binding protein”

Annotations: {‘vesicle’ — GO:0031982}

IOB Tags: [‘O’, ‘O’, ‘O’, ‘O’,‘O’,‘O’, ‘B-GO:0031982’ ‘O’, ‘O’,

‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘EOS’ ]

Sentence 2: “Having excluded a direct role in vesicle formation and mem-

brane fusion, annexin A7 might act by its property as Ca2+-binding protein”

xml Annotations: {‘vesicle formation’ – GO:0006900}

IOB Tags: [‘O’, ‘O’, ‘O’, ‘O’,‘O’,‘O’, ‘B-GO:0006900’, ‘I-GO:0006900’,

‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘EOS’

]

If a sentence contains a case of overlapping annotations and other disjoint an-

notations (non-overlapping annotations), we create sentences that capture the

different variations of the overlapping annotations while keeping the disjoint

annotations common.

Sentence: “Having excluded a direct role in vesicle formation and mem-

brane fusion, annexin A7 might act by its property as Ca2+-binding protein”

Annotations: ‘vesicle’ — GO:0031982; ‘vesicle formation’ — GO:0006900;

‘membrane’ — GO:0016020

The sentence is represented as follows:

Sentence 1: “Having excluded a direct role in vesicle and membrane fusion,

annexin A7 might act by its property as Ca2+-binding protein.”

Annotations: ‘vesicle’ — GO:0031982; ‘membrane’ — GO:0016020

IOB Tags: [‘O’, ‘O’, ‘O’, ‘O’,‘O’,‘O’, ‘B-GO:0031982’ ‘O’, ‘B-

GO:0016020’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’,

‘EOS’ ]

Sentence 2: “Having excluded a direct role in vesicle formation and mem-

brane fusion, annexin A7 might act by its property as Ca2+-binding protein.”

Annotations: ‘vesicle formation’ — GO:0006900; ‘membrane’ — GO:0016020

IOB Tags: [‘O’, ‘O’, ‘O’, ‘O’,‘O’,‘O’, ‘B-GO:0006900’, ‘I-GO:0006900’,

‘O’, ‘B-GO:0016020’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’,

‘O’, ‘EOS’ ]

• Multiple overlapping annotations: Sentences can also have more than one

phrase with sub-annotations. In such a case, where there exist m phrases with

n1, n2, · · · , nm overlapping subphrases, there will n1×n2×...×nm copies with

all possible combinations of sub-phrase mappings.

Sentence: “Having excluded a direct role in vesicle formation and mem-

brane fusion, annexin A7 might act by its property as Ca2+-binding pro-

tein.”

Annotations: {‘vesicle’ — GO:0031982; ‘vesicle formation’ — GO:0006900;

‘membrane’ — GO:0016020; ’membrane fusion’ — GO:0061025}

In this example, we have two instances of overlapping annotations with two

sub-phrase annotations each. This sentence would be transformed to four

sentences that each represents a unique combination of annotations.
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Sentence 1: “Having excluded a direct role in vesicle and membrane, an-

nexin A7 might act by its property as Ca2+-binding protein.”

Annotations: {‘vesicle’ — GO:0031982; ‘membrane’ — GO:0016020}

IOB Tags: [‘O’, ‘O’, ‘O’, ‘O’,‘O’,‘O’, ‘B-GO:0031982’ ‘O’, ‘B-

GO:0016020’,‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’,

‘EOS’ ]

Sentence 2: “Having excluded a direct role in vesicle formation and mem-

brane, annexin A7 might act by its property as Ca2+-binding protein.”

Annotations: {‘vesicle formation’ — GO:0006900; ‘membrane’ — GO:0016020}

IOB Tags: [‘O’, ‘O’, ‘O’, ‘O’,‘O’,‘O’, ‘B-GO:0006900’, ‘I-GO:0006900’,

‘O’,‘B-GO:0016020’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’,‘O’,

‘EOS’ ]

Sentence 3: “Having excluded a direct role in vesicle and membrane fu-

sion, annexin A7 might act by its property as Ca2+-binding protein.”

Annotations: {‘vesicle’ — GO:0031982; ’membrane fusion’ — GO:0061025}

IOB Tags: [‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘B-GO:0031982’, ‘O’, ‘B-

GO:0016025’, ‘I-GO:0016025’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’,

‘O’, ‘O’, ‘O’, ‘EOS’ ]

Sentence 4: “Having excluded a direct role in vesicle formation and mem-

brane fusion, annexin A7 might act by its property as Ca2+-binding pro-

tein.”

Annotations: {‘vesicle formation’ — GO:0006900; ‘membrane fusion’ —

GO:0061025}

IOB Tags: [‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘B-GO:0006900’, ‘I-GO:0006900’,

‘B-GO:0016025’,‘I-GO:0016025’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’,

‘O’, ‘O’, ‘O’, ‘EOS’ ]

• Discontinuous annotations: Some sentences in the CRAFT corpus contain

discontinuous annotations where non-consecutive words/tokens are annotated

to a single concept, while tokens between them are not.

Sentence: “Because the F7 is the most severely affected allele, it is possible

that the difference between the heart and kidney levels is due to a developmen-

tal delay in v/p formation.”

Annotations: “v formation” — GO:0097084

Here we see “v formation” is annotated to GO:0097084, whereas “/p” is not.

In such a case we represent the sentence by removing the tokens/words which

were not annotated (“/p”). This is done to represent the continuous span of

the phrase to GO term mapping.

Transformed Sentence: “Because the F7 is the most severely affected allele,

it is possible that the difference between the heart and kidney levels is due to

a developmental delay in v formation.”

IOB tags: [‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’,

‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’,

‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘B-GO:0097084’, ‘I-GO:0097084’, ‘EOS’ ]

We acknowledge the representation of discontinuous annotations is not ideal.

However given that the majority of annotations in CRAFT are continuous,

we prioritized the data to follow the same pattern.
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Some sentences might have a combination of disjoint, overlapping and/or dis-

continuous annotations. These sentences are broken down to smaller cases with

precedence in the order of - overlapping, discontinuous, and disjoint annotations.

If there are overlapping annotations, they are treated first i.e., multiple copies of

the sentence are created and mapped for their annotations. Then for each copy, the

discontinuous annotations are handled while keeping and the disjoint annotations

common between the representations.

While creating multiple copies of the sentences can lead to over-sampling of such

cases, the overall number of such sentences were very low in comparison to the total

number of sentences present in the training data. Furthermore, this is only done in

the training dataset, where the validation data is preprocessed separately leading

to more robust metrics presented in the results.

5.2.4 POS Tagging and Token Encoding

Following the tokenization and IOB tagging, we enrich training data with parts-of-

speech (POS) information and a compressed character representation. POS tagging

looks at the contextual information of the word based on the words surrounding

it in a sentence or a phrase. Here we used the SpaCy POS tagger to evaluate and

tag the tokens of sentences with 15 parts of speech tags — adjective, adposition

(such as - in, to, during), adverb, auxiliary (such as - is, has done, will do, should

do), conjunction, coordinating conjunction, determiner, interjection, noun, numeral,

particle, pronoun, proper noun, punctuation, subordinating conjunction, symbol,

verb, other (not annotated to any of the others), space.

While the POS tagging looks at the word level representation of the context, we

also represent character level nuances of a token using character encodings. These

encodings represent upper-case and lower case characters with ‘C’ or ‘c’ respectively.

Numbers are represented using an ‘N’ and punctuation (such as commas, periods,

and dashes) are retained in the encoding. Character encodings enable a succinct

representation of a token’s unique characters which can indicate named entities and

aid in the model’s learning.

Here we show an example of a sentence tagged with POS and character represen-

tations.

Sentence: “Smith-Lemli-Opitz syndrome (SLOS, MIM 270400), a relative common

dysmorphology disorder, is caused by mutations in DHCR7 [2-5], which encodes for

7-dehydrocholesterol ▽7-reductase and catalyzes a final step of cholesterol biosyn-

thesis.”

Character Representation: [‘Ccc-Ccc-Ccc’, ‘ccc’, ‘(’, ‘CCC’, ‘,’, ‘CCC’,

‘N’, ‘)’, ‘,’, ‘c’, ‘ccc’, ‘ccc’, ‘ccc’, ‘ccc’, ‘,’, ‘cc’, ‘ccc’, ‘cc’,

‘ccc’, ‘cc’, ‘CCCN’, ‘[’, ‘N-N’, ‘]’, ‘,’, ‘ccc’, ‘ccc’, ‘ccc’, ‘N-ccc’,

‘U’, ‘ccc’, ‘ccc’, ‘c’, ‘ccc’, ‘ccc’, ‘cc’, ‘ccc’, ‘ccc’, ‘.’]

Parts-of-Speech: [‘NNP’, ‘NN’, ‘-LRB-’, ‘NNP’, ‘,’, ‘NNP’, ‘CD’, ‘,’,

‘,’, ‘DT’, ‘JJ’, ‘JJ’, ‘NN’, ‘NN’, ‘,’, ‘VBZ’, ‘VBN’, ‘IN’, ‘NNS’, ‘IN’,

‘NNP’, ‘XX’, ‘CD’, ‘,’, ‘,’, ‘WDT’, ‘VBZ’, ‘IN’, ‘NN’, ‘NN’, ‘CC’, ‘VBZ’,

‘DT’, ‘JJ’, ‘NN’, ‘IN’, ‘NN’, ‘NN’, ‘.’]
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5.2.5 BioThesaurus Encoding

In addition to POS and token encoding, which capture sentence and token level

context present in the data, we also include information from existing large scale

knowledge bases. The first data source we use is BioThesaurus,31 which is a database

of protein and gene names mapped to the UniProt Knowledgebase. The database

contains over 2.8 million names/tokens from separate data sources and is well re-

garded as a comprehensive thesaurus mapping words to their molecular/biological

entities. We query BioThesaurus for each of the tokens extracted from the articles.

First, we map if a token is present (1) or absent (0) in the database. If a token is

present, we map if it identifies as a protein name, biomedical terms, chemical terms,

and/or macromolecule. Sometimes, a token can be identified to multiple categories.

In the following example we show the mapping of a token as queried from the Bio-

Thesaurus: Sentence: “Hematopoiesis is precisely orchestrated by lineage-specific

DNA-binding proteins that regulate transcription in concert with coactivators and

corepressors.”

Tokens: [‘Hematopoiesis’, ‘is’, ‘precisely’, ‘orchestrated’, ‘by’, ‘lineage-

specific’, ‘DNA-binding’, ‘proteins’, ‘that’, ‘regulate’, ‘transcription’, ‘in’, ‘concert’,

‘with’, ‘coactivators’, ‘and’, ‘corepressors’, ‘.’]

Protein: [0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0]

Biomedical: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0]

Chemical: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

Macromolecule: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

5.2.6 Unified Medical Language System (UMLS) Encoding

Continuing with the information augumentation, we also query the UMLS32

database for tokens extracted from the articles. UMLS is another comprehensive

database of over 2 million names representing medical and bio-medical terms ag-

gregrated from several databases such as NCBI taxonomy, Gene Ontology, the Med-

ical Subject Headings (MeSH), OMIM, ICD-10-CM, SNOMED CT, and the Digital

Anatomist Symbolic Knowledge Base.

Here we query the metathesaurus component of the database for the extracted

tokens. Words/tokens associated with a UMLS term are encoded as 1 or 0 otherwise.

If a phrase (sequence of tokens) is found in UMLS, all tokens from the phrase are

encoded as 1 Below we show an example of the mapping:

Sentence: “Hematopoiesis is precisely orchestrated by lineage-specific DNA-

binding proteins that regulate transcription in concert with coactivators and core-

pressors.”

Tokens: [‘Hematopoiesis’, ‘is’, ‘precisely’, ‘orchestrated’, ‘by’, ‘lineage-specific’,

‘DNA-binding’, ‘proteins’, ‘that’, ‘regulate’, ‘transcription’, ‘in’, ‘concert’, ‘with’,

‘coactivators’, ‘and’, ‘corepressors’, ‘.’]

UMLS: [1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0]

Prior to preprocessing, CRAFT articles were divided using an 80-20 split to cre-

ate training and testing data. Training and testing data were then processed into

sentences, tokenized, translated different annotation formats, and encoding using

BioThesaurus and UMLS. The training data is used for development of the deep

learning models (described in the following section). Testing data is used to evaluate

model performance.
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5.3 Deep Learning Architecture

After all the preprocessing steps described above are complete, we develop multi-

dimensional vectors for each sentence of the articles. Our deep learning architec-

ture (Figure 2) consists of three key components — 1) Input Pipelines; 2) Embed-

ding/Latent Representations; and 3) Sequence Modeler. Below we describe each of

the components:

5.3.1 Input Pipelines

The recurrent neural architecture used in our approach requires fixed size inputs.

Accordingly, we restrict each sentence to contain a maximum of 71 words/tokens.

This is based on the third standard deviation of the distribution of frequency of

words present in sentences. Sentences with lower number of words are padded with

the token <PAD> and ones with higher number of tokens are truncated to a length

of 71. All corresponding input vectors are also adjusted accordingly to reflect the

maximum sequence length representation of a sentence.

Each sentence and each token six different components that are provided as input

— 1) token (Xtoken
train ), 2) character sequence (Xchar

train), 3) token-character representa-

tion (Xrepr
train), 4) parts-of-speech (XPOS

train), 5) BioThesaurus (X
BIOT
train ), and 6) UMLS

(XUMLS
train ).

The token (Xtoken
train ) input, is a sequential tensor consisting of 71 tokens, where

each token is represented with a high dimensional one hot encoded vector (for

34,164 unique words/tokens present within our corpus vocabulary). Apart from the

<PAD> token, we also use <UNK> token to represent unknown tokens. This is done

to generalize the model for words which were not available in the training data

but can be present in testing dataset. Similarly, the character sequence (Xchar
train) is

also a sequential tensor consisting of character sequences present in a word/token.

Here, we limit the maximum character length to 15 based on the third standard

deviation of the character distribution. Tokens with longer sequences are truncated

and tokens with shorter are padded with a <PAD> character identifier. A single input

sentence tensor for Xchar
train has a shape of (1,71,15), for 71 tokens and 15 characters.

Next we provide character representations (Xrepr
train) and POS tags (XPOS

train). Both

of these are based on words/tokens in sentences and are given as an input of 71 vec-

tors. Biothesaurus encodings (XBIOT
train ) contain a four dimensional vector sequence

where each token is one hot encoded for its association with protein, biomedical,

chemical and macromolecule categories. UMLS encodings (XUMLS
train ) are also pro-

vided as an one hot encoded vector sequence, where 1 indicates a token’s presence

and 0 indicates absence in UMLS.

5.3.2 Embedding/Latent Representations

Our architecture utilizes embeddings to provide a compressed latent space repre-

sentation for very high dimensional input components. For example, the one hot

vectorization of an individual word has a dimensionality of 34,166. In order to

represent them succinctly and with contextual representation, we evaluated three

different approaches for embeddings — 1) supervised embedding layer, 2) GloVe

layer, 3) ELMo layer.

The supervised embedding is a bottleneck layer which learns to map the one

hot encoded input into a smaller dimensional representation. The weights of this
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layer are learnt from the back propagation of losses based on the final output of

the model. The resulting embedding learns the mapping of the IOB tags to the

tokens of the sentences. The layer is used with token inputs (Xtoken
train ), character

sequences (Xchar
train), and character representation (Xrepr

train), each of which have very

high dimensionality in their original vectors. We utilize 100 dimensional output

representation for each of the aforementioned outputs, where weights are uniformly

initialized at the start of the model training.

We also evaluate GloVe33 and ELMo34 pretrained embeddings for the Xtoken
train

input. Both are unsupervised approaches towards learning contextual representation

of words from large scale corpora. GloVe uses word co-occurrence statistics to learn

the embeddings. Pretrained data from cased Commmon Crawl with 840B tokens,

2.2M vocabulary, and 300 dimensional output embedding vector is used for this.

In comparison, the embeddings in ELMo are learned via a bidirectional language

model where the sequence of the words are also taken into account. We use the

pretrained model on 1 Billion Word Benchmark, which consists of approximately

800M tokens of news crawl data and has an embedding of 1024 dimensional output

embedding vector. While the embeddings are initialized from pretrained models, we

allow for updates/retraining to the embedding models during the training of our

larger model.

5.3.3 Sequence Modeler

In order to model the input sequences we utilize a deep bi-directional gated recur-

rent model (Bi-GRU). Bi-GRU was first proposed by Cho et. al.35 as a more efficient

approach than Long -Short Term Memory (LSTM)36 while being able to tackle the

vanishing gradient problem of vanilla Recurrent Neural Networks (RNN). The ap-

proach uses a gated mechanism to decide what information needs to be transmitted

to the output of a single unit.

In our prior work,12,37 we had evaluated multiple models based on RNN, LSTM,

and GRU, and concluded that the GRU based architecture performed the best on

CRAFT v2 annotation data. Building on that result, we employ the Bi-GRU as the

base of our architecture in this work. As shown in Figure 2, we utilize Bi-GRUs in

two locations in the architecture, first to model the sequence of characters present

in each token and a second main Bi-GRU model to concatenate input pipelines to-

gether. After the embedding of the characters, they are passed via the first Bi-GRU

(consisting of 150 units) resulting in a sequence representation of the characters in

a sentence. 10% dropout is used in this pipeline to regularize the output to prevent

overfitting.

The character sequence representation is then concatenated with other embed-

dings, i.e. token (supervised/GloVe/ELMo), character representation, and parts of

speech, and input tensors from Bio-Thesaurus and UMLS. This concatenated fea-

ture map representing each sentence is then passed to a spatial dropout, which

removes 30% of the 1-D sequence features from the input to the main Bi-GRU. The

main Bi-GRU processes the feature maps (with 10% dropout), and outputs to a

single time-distributed dense layer of 1774 nodes (representing each of the output

tags). A sigmoid activation is used in the last layer, where the final prediction is

based on the highest probability value of the tags.
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Figure 1 shows a snapshot of the model architecture in the context of training

and inference of a sample set of tokens. Here we show the training/inference on a

sequence of tokens “vesicle”, “formation”, and “in” (which are parts of a sentence)

as it is evaluated by the network. Each token is preprocessed to obtain the repre-

sentative tensors – Xtoken
train , Xchar

train, X
repr
train, X

POS
train, X

BIOT
train , and XUMLS

train . Xtoken
train ,

Xchar
train, X

repr
train, and XPOS

train which are passed through embedding layers, where the

embedding of Xtoken
train can be a complete pretrained architecture such as GloVe or

ELMo. The embedding of Xchar
train is also passed via a Bi-directional GRU (Bi-GRU)

layer. All of the resulting values are concatenated to be processed via the main

Bi-GRU layer. Here we show each direction of the GRU layers as the process the

input sequence. The first layer processes the sequence in its left to right ordering,

i.e. “vesicle”, “formation”, and “in”, whereas the second layer processes the reverse,

i.e. “in”, “formation”, and “vesicle”. The bi-directionality allows the architecture to

learn the preceding and succeeding sequence patterns within the sequence tokens in

a sentence. The states of both the GRU layers are then concatenated to provided to

the final dense layer, which is the sigmoid classifier of the architecture, and predicts

the associated IOB tags for the input tokens. Here we select the tag with the highest

probability for each of the tokens.

We evaluated the impact of including each pipeline and token embedding approach

to create nine different models that differ in the inputs pipelines provided to them.

We evaluated three embeddings (CRAFT, GloVe, ELMo) in conjunction with these

models to result in a total of 28 experiments. Architecture hyper-parameters, which

include — supervised embedding shape ({20, 50, 100, 150, 200}), dropout ({01,

.2, .3, .5, .7}), number of epochs ({50, 100, 200, 300}), and class weighting, were

evaluated using a grid search approach. We used Adam38 as our optimiser for all of

the experiments with a default learning rate of 0.0001. Learning rate reduction on

plateau of loss was used, which reduced the rate by a factor of 0.1 if the loss stayed

constant for 4 epochs. A batch size of 16 was used in all of our experiments.

Bidirectional Encoder Representations from Transformers (BERT)39 is a popular

attention model developed by Google. BERT has rapidly become the state of the art

in several applications, especially those involving text processing. Instead of looking

a text sequence in one direction, BERT uses bidirectional training which allows it

to build better representations and context of textual inputs. The classic version

of BERT was pretrained on a large corpus of English data. SciBERT, a variant of

BERT, is trained on a large multi-domain corpus of scientific literature to improve

performance on prediction of scientific entities. We compared the best model from

our experiments with both versions of BERT.

5.4 Performance Evaluation Metrics

The performance of each experiment is evaluated using a modified F1 score. The

model is tasked with predicting non-annotations (indicated by an ‘O’ tag) or anno-

tations (indicated by a ‘GO’ tag). Since the majority of tags in the training corpus

are non-annotations, the model predicts them with great accuracy. In order to avoid

biasing the F1 score, we omit accurate predictions of ‘O’ tags from the calculation

to report a relatively conservative F1 score.
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F1 quantifies whether the model’s prediction matches the actual annotation ex-

actly. However, ontology-based prediction systems need to be evaluated while ac-

commodating partially accurate predictions. For example, a model might not re-

trieve the exact ontology concept as the gold standard but a related concept (sub-

class or super-class) achieving partial accuracy. Semantic similarity metrics40 de-

signed to measure different degrees of similarity between ontology concepts can be

leveraged to measure the similarity between the predicted concept and the actual

annotation to quantify the partial prediction accuracy. Here, we use Jaccard similar-

ity40 that measures the ontological distance between two concepts to assess partial

similarity.

6 Results and Discussion
The CRAFT v4.0.1 dataset contains 18689 annotations pertaining to 974 concepts

from the three GO sub-ontologies across 97 articles. Table 1 provides further infor-

mation of the coverage of GO terms in CRAFT.

Table 2 shows the performance scores for Models 1 through 9 (M1 - M9) which

differ in the inputs provided to them. M1 is built with only tokens and no other

inputs. Gradually, we add characters, character representation, parts of speech, and

other inputs in each subsequent model. Each model is tested with three embed-

dings (CRAFT, GloVe, and ELMo). F1 and Jaccard semantic similarity are used

to evaluate the models.

The base model with only tokens as input results in a F1 score in the range of 0.78

(for the CRAFT embedding) to 0.81 (GloVe and ELMo) and a semantic similarity

of 0.81 to 0.82. The higher semantic similarity indicates that there are instances

where the model misses the exact annotation in the gold standard yet predicts a

partially related concept. These instances are captured and accounted for in the

semantic similarity metric via partial credit whereas they receive a score of 0 in the

F1 calculation.

Adding character sequences (M2) improves F1 and semantic similarity scores

across almost all embeddings. Adding token-character representation (M3) yields

mixed results. We see an improvement in F1 and Semantic similarity for the CRAFT

embedding. However, both scores stay unchanged with GloVe and decrease with

ELMo. The inclusion of parts of speech (M4) causes a decrease in scores with

CRAFT and ELMo. Both scores remain unchanged with GloVe. Providing protein

names from BioThesaurus (M5) improves both scores for CRAFT and ELMo while

we observe a decrease in Glove. Here, we observe the highest F1 (0.84) and se-

mantic similarity (0.84) across all models tested so far. M6 - M9 yield comparable

results but do not result in further improvements over M5. In summary, our best

model resulted in an F1 score and semantic similarity score of 0.84 with the ELMo

embedding.

We further analyzed our best model to gather insights into the model’s perfor-

mance. First, we explored if the occurrence frequency of a concept in the training

corpus impacts the model’s prediction performance on that concept. Figure 3 breaks

down the F1 score into five bins based on the GO terms’ frequency of occurrence in

the corpus. We see that GO terms with a frequency of co-occurrence between 1-10

have substantial variability in their F1 scores. Most of the GO terms with 10-20
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occurrences show F1 scores between 0.6 and 1. We see some outliers in this bin

where the F1 scores are lower than 0.6. All bins with occurrences of 20 and higher

show high F1 scores (> 0.8) and low variability. This figure clearly shows that the

model makes incorrect predictions for GO terms with low occurrences (< 20) in the

corpus. We did not observe evident differences in prediction performance when the

1-10 occurrence bin was further subdivided into smaller intervals (Figure 4).

We compared our best model with classic BERT as well as SciBERT (Table 3).

We find that SciBERT performs better than BERT by 3 points in F1 and 2 points

in semantic similarity. Our model improves SciBERT’s F1 by 4 points and semantic

similarity by 2 points.

The model predicted 83.61% of annotations in the test set accurately. 9.34%

were prediction errors where the model miss-classified GO annotations as non-

annotations (‘O’ tags). 1.72% were prediction errors where the model miss-classified

‘O’ tags as GO terms. Finally, in 5.32% of cases, the model predicted a different

GO term than the GO term in the test corpus.

For each word in a sentence, the model outputs a tensor of sigmoid ( 1
(1+exp(−xi))

)

activation outputs. These outputs are then converted to probabilities using a soft-

max function ( exp(xi)∑
j
exp(xj)

). We can calculate the entropy (H(X)) over the tensor

of probabilities to observe the level of “information” within the probabilities. For

example, if there is uniformity in the probabilities for the predicted annotations, en-

tropy is maximized, and vice versa. We visualized the interactions between entropy,

predicted probability and the frequency of annotations, in Figure 5. Here, the dots

represent the predicted annotations (annotation with highest sigmoid activation) by

the model. Incorrect predictions are shown in red and correct predictions in blue.

We observe that as the probability score increases (for the top prediction) and the

entropy reduces (across prediction tensor) the model predictions are more accurate.

The high probability of the top prediction indicates the model’s confidence and low

entropy indicates that the model assigned low probabilities to the other potential

predictions thereby offering a clear discrimination between the top prediction and

the rest.

In comparison, incorrect predictions (Figure 6) are concentrated in a small area

demarcated by low probability, high entropy, and low frequency. These incorrect

predictions happen overwhelmingly at frequencies under 10 and at probability values

lower than 0.1. The entropy values of the majority of these predictions is close to

1 indicating that the model assigned near uniform probabilities to the potential

predictions. This combined with the low probability indicates that the model was

not confident of any of the predictions it made.

We tested if there are differences in the entropy, frequency, and probability dis-

tributions between correct vs. incorrect predictions using two-sided independent

T-tests. We found statistically significant differences at the Bonferroni-corrected

threshold of α = 0.01 between correct vs. incorrect predictions for entropy (p =

1.5e-221), frequency of occurrence (p = 2.9e-20), and probability of highest predic-

tion (p=0.0).

7 Future Work
While the models presented here accurately predicted about 83% of annotations in

the test set, there is substantial room for improvement in the remaining 17% where
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the model made prediction errors. One of the goals is for these models to make

ontology-aware predictions. This means that in cases where the model fails to make

an exactly accurate prediction, it should predict a closely related ontology concept

(such as a parent or a super-class). We found that in cases where the model predicts

a GO term that is different from the ground truth, the mean semantic similarity is

a meagre 0.08 indicating that there is scant partial similarity between the incorrect

predictions and the ground truth. Our future work will focus on moving incorrect

predictions closer to the ground truth by creating ontology-aware models that take

the ontology’s hierarchy into account.
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Figures

Figure 1: Workings of a GRU model with an example input sequence

Figure 2: Architecture of a Gated Recurrent Unit (GRU) based model using

multiple input pipelines

Tables



Devkota et al. Page 19 of 21

Figure 3: Distribution of F1 scores by occurrence frequency of GO terms in

CRAFT

Figure 4: A closer look at the distribution of F1 scores for GO terms with 10 or

less occurrences in CRAFT

Figure 5: Distribution of incorrect and correct predictions with respect to entropy,

probability, and frequency of occurrences.

Figure 6: Distribution of incorrect predictions with respect to entropy, probabil-

ity, and frequency of occurrences.

Table 1: Coverage of GO ontology concepts and annotations in the CRAFT corpus
GO sub-ontology Concepts in ontology Total annotations in CRAFT Unique occurrences in CRAFT

Biological Process (BP) 30490 18392 710
Cellular Component (CC) 4463 6976 241
Molecular Function (MF) 12257 464 5
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Table 2: Performance comparison of nine models based on GRUs with different input pipelines. Models are evaluated using F1 and semantic similarity.

Model
Input Pipelines Embeddings

X
token
test X

char
test X

repr
test X

POS
test

X
BIOT
test X

UMLS
test

CRAFT GloVe ELMo
Prot. Biom. Chem. Macr. F1 Sem. F1 Sem. F1 Sem.

M1 X 0.78 0.79 0.82 0.83 0.81 0.81
M2 X X 0.79 0.80 0.82 0.83 0.82 0.83
M3 X X X 0.80 0.81 0.82 0.83 0.81 0.81
M4 X X X X 0.79 0.80 0.82 0.83 0.82 0.83
M5 X X X X X 0.81 0.82 0.81 0.82 0.84 0.84
M6 X X X X X X 0.79 0.80 0.82 0.83 0.83 0.83
M7 X X X X X X X 0.81 0.82 0.82 0.84 0.84 0.84
M8 X X X X X X X X 0.80 0.81 0.82 0.83 0.83 0.84
M9 X X X X X X X X X 0.80 0.81 0.82 0.83 0.84 0.84
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Table 3: Performance comparison between our best model and two variants of BERT
Model F1 Semantic Similarity
BERT 0.77 0.80

SciBERT 0.80 0.82
M9 0.84 0.84
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Figure 1

Workings of a GRU model with an example input sequence

Figure 2

Architecture of a Gated Recurrent Unit (GRU) based model using

multiple input pipelines



Figure 3

Distribution of F1 scores by occurrence frequency of GO terms in CRAFT

Figure 4

A closer look at the distribution of F1 scores for GO terms with 10 or

less occurrences in CRAFT

Figure 5

Distribution of incorrect and correct predictions with respect to entropy,



probability, and frequency of occurrences.

Figure 6

Distribution of incorrect predictions with respect to entropy, probability,

and frequency of occurrences.


