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Summary Loglinear modeling for three-dimensional contingency tables was used with
data from 14 rainfall stations located in Alentejo and Algarve region, southern of Portugal,
for short term prediction of drought severity classes. Loglinear models were fitted to
drought class transitions derived from Standardized Precipitation Index (SPI) time series
computed in a 12-month time scale. Quasi-association loglinear models proved to be
the most adequate in fitting all the 14 data series. Odds and respective confidence inter-
vals were calculated in order to understand the drought evolution and to estimate the
drought class transition probabilities. The validation of the predictions was performed
for the 2004–2006 drought, particularly for periods when the drought was initiating and
establishing, and when it was dissipating. Despite the contingency tables of drought class
transitions present a strong diagonal tendency, results of three-dimensional loglinear
modeling present good results when comparing predicted and observed drought classes
with 1 and 2 months lead for those 14 sites. Only for a few cases predictions did not fully
match the observed drought severity, mainly for 2-month lead and when the SPI values are
near the limit of the severity class. It could be concluded that loglinear prediction of
drought class transitions is a useful tool for short term drought warning.
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Introduction

Successful water management to cope with drought
requires the understanding of the governing processes
and causes. Numerous drought definitions exist, mainly
.
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depending upon the perspectives of water users and manag-
ers (NDMC, 2006). Drought is defined herein as a natural but
temporary imbalance of water availability, consisting of a
persistent lower-than-average precipitation, of uncertain
frequency, duration and severity, of unpredictable or diffi-
cult to predict occurrence, resulting in diminished water re-
sources availability, and reduced carrying capacity of the
ecosystems (Pereira et al., 2002).

It is important to recognize the low predictability of
droughts, which make drought both a hazard and a disaster:
a hazard because it is a natural accident of unpredictable
occurrence but of recognizable recurrence, and a disaster
because it corresponds to the failure of the precipitation re-
gime, causing the disruption of the water supply to the nat-
ural and agricultural ecosystems as well as to other human
activities. The hazard and disaster nature of droughts makes
it important to develop prediction tools, including probabi-
listic ones, which may support early warning for timely
implementation of preparedness and mitigation measures
(Wilhite et al., 2000). The definition above is in agreement
with the recent statement on droughts by the AMS (2004),
where particular attention is given to the disaster nature
of droughts, their impacts and needs for prediction and
warning.

Droughts have a slow initiation and they are usually only
recognized when the drought is already established. They
are of long duration, and usually affect large areas. Their
impacts are pervasive. Forecasting of when a drought is
likely to begin or to come to an end is extremely difficult
(NDMC, 2006). An adequate lead-time, i.e. the period be-
tween the release of the prediction and the actual onset
of the predicted drought hazard, is often more important
than the accuracy of the prediction. The lead-time makes
it possible for decision and policy makers to timely imple-
ment policies and measures to mitigate the effects of
drought (Nichols et al., 2005).

For drought monitoring and warning, meteorologists and
hydrologists have developed indices, which depend on hy-
dro-meteorological parameters or rely on probabilities of
drought occurrence (Vogt and Somma, 2000; Hayes, 2006).
Drought indices based on one or more variables are com-
monly used to identify and monitor drought at different
time scales. The Standardized Precipitation Index (SPI),
although recently developed (McKee et al., 1993, 1995), is
widely used because it allows a reliable and relatively easy
comparison between different locations and climates. Sev-
eral drought indices have already been used in Portugal,
particularly in recent studies applied to the Alentejo region.
Comparisons among drought indices show the appropriate-
ness of using the Standardized Precipitation Index (SPI) to
characterize droughts in Alentejo (Paulo et al., 2003; Paulo
and Pereira, 2006).

Developing prediction and early warning tools appropri-
ate to the climatic and agricultural conditions prevailing
in different drought prone areas is a current research chal-
lenge. Predictions may refer to simple relationships be-
tween precipitation and surface temperature anomalies
that relate to seasonal rainfall (Cordery, 1999) or to climate
forecasts useful for improving the warning lead-time of
droughts using drought indices (Steinemann, 2006). A sto-
chastic approach was recently developed by Cancelliere
et al. (2007) to forecast monthly SPI for various time scales.
Present trends also include neural networks and stochastic
models applied to time series of precipitation or streamflow
(Mishra and Desai, 2006; Thyer et al., 2006). Recent devel-
opments in drought forecasting at large and regional scales
using the SPI are reported by Bordi and Sutera (2007) and
Cacciamani et al. (2007), respectively. At present, more
powerful tools explore teleconnections, mainly in relation
to the El Niño-southern oscillation (ENSO) phenomenon
(Cordery and McCall, 2000; Tadesse et al., 2005; Kim
et al., 2006), whose influences on atmospheric circulation
patterns are apparent in regions very far from the Pacific
Ocean, and the North Atlantic oscillation (Wedgbrow
et al., 2002).

Atmospheric circulation patterns governing wet and dry
rainfall regimes in Portugal are quite complex, which makes
it difficult to explore global circulation for prediction of
droughts (Trigo et al., 2004; Santos et al., 2005); however,
conditions determining drought events are well known (San-
tos et al., 2006). The stochastic properties of the SPI time
series were explored for predicting drought class transitions
using Markov chains modeling (Paulo et al., 2005; Paulo and
Pereira, 2007) and loglinear models were also first used with
this purpose (Paulo et al., 2005). Loglinear models were
successfully applied to analyse drought class transitions
and to search for impacts of climate change on drought fre-
quency and severity (Moreira et al., 2006). As part of a study
aimed at developing drought risk management tools, the SPI
time series with the 12-month time scale for 14 rainfall sta-
tions in the region of Alentejo, southern Portugal, were ana-
lyzed using the loglinear models (Nelder, 1974; Agresti,
1990). The objective is modeling two consecutive transi-
tions between drought classes derived from the SPI to deter-
mine the most probable drought class 1 and 2 months ahead
knowing the drought classes in two preceding months. The
objective of this research is to search for a model able to
use currently monitored data and to predict when a drought
is initiating, how it is developing when installed, and when it
is terminating. Creating a lead prediction, even at short
time scale, improves the usefulness of drought monitoring
and related information (Hayes et al., 2007). Adopting the
SPI drought severity classes, a drought is initiating when
the near normal drought class tends to be maintained
or aggravating, i.e. when monthly predictions of drought
class transitions indicate a probable increase in severity.
A drought is dissipating when transitions from severe/
extreme drought classes to moderate and near normal
classes occur.

This approach has to be later combined with other pre-
dictions of stochastic nature (e.g. Paulo and Pereira,
2007; Cancelliere et al., 2007) and weather regime model-
ing. Large scale atmospheric circulation in terms of low fre-
quency components (time scales of 1–3 months) tends to
cluster around certain weather regimes whose resident
and recurrence times, as well as the transition probabilities,
seem to be well characterized by hidden Markov chains, as
observed for the Euro-Atlantic region (Kondrashov et al.,
2004; Deloncle et al., 2007). Weather regimes are also prob-
abilistically linked to local climate conditions of precipita-
tion and temperature since certain regimes are more
favorable than others for drought conditions. In particular
for Iberia, the influence of blocking and the North Atlantic
oscillation (NAO) regimes has been studied in terms of
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seasonal conditioning of river flows and precipitation (Trigo
et al., 2004). Further combining stochastic and weather
regimes approaches should improve predictions and
hopefully extend them to 3 months lead time or to seasonal
predictions.

These short time drought predictions are important for
warning farmers about the probable initiation or establish-
ment of a drought, about its continuation or its probable
termination in a few months. This information may help
them to make decisions to cope with that predicted situa-
tion. Several studies refer to the usefulness of climatic
information for agricultural decision making (Yevjevich
et al., 1983; Ogallo et al., 2000). Short time drought predic-
tions may also be used to alert water managers and decision
or policy makers about the need to enforce appropriate
preparedness measures before a drought is effectively
installed, or to prepare for a post-drought period. The
Australian experience constitutes a good example of moving
from drought disaster mitigation into risk management
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Figure 1 Selected rainfall stations in Alentejo and Algarve and mo
rainfall stations (1931/1932 to 1998/1999).
(Wilhite, 2005). Thus, this loglinear monthly prediction ap-
proach is to be later combined with other prediction tools
of different nature, including stochastic and weather
regime transitions models, to improve predictions and
hopefully extend them to 3 months. The model approach
is presented and results for two periods, when the
2004–2006 drought was initiating and was dissipating, are
discussed.

Data: SPI drought classes

Input data to this study consists of SPI monthly values
computed in a 12-month time scale for the period from
September 1932 to June 2006. This index was derived
from monthly rainfall data from 14 meteorological sta-
tions. The location of these meteorological stations is gi-
ven in Fig. 1. The average monthly distribution of
precipitation in Alentejo is also presented in Fig. 1, which
shows a typical Mediterranean precipitation pattern, with
tation Name Station Longitude Latitude Altitude
lo de Vide 17M01 7.45 39.42 540 

gem de Magos 20E01 8.69 38.99 20 

 20I01 8.02 38.90 192 
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rainfall concentration during the autumn and winter
months, and a very dry summer.

The SPI was used for the identification of drought events
and to evaluate their severity. In this study, the time series
on transitions among drought classes are used. The severity
drought classes adopted are defined in Table 1. They are
modified from those proposed by McKee et al. (1993,
1995) by grouping the severe and extremely severe drought
classes for modeling purposes since transitions referring to
the extremely severe droughts are much less frequent than
for other classes; thus, a possible bias is avoided.

The methods used to assess the quality of precipitation
data series and to compute the SPI at the 12-month time
scale are described by Paulo et al. (2003, 2005). Annual pre-
cipitation data sets were investigated for randomness,
homogeneity and absence of trends using the autocorrela-
tion test (Kendall s), the Mann–Kendall trend test and the
homogeneity tests of Mann–Whitney for the mean and the
variance (Helsel and Hirsch, 1992). In addition, the appro-
priateness for using the gamma distribution to compute
the 12-month time scale SPI was verified with non-paramet-
ric tests.

The SPI may be computed on shorter or longer time
scales, which reflect different lags in the response of
water cycle to precipitation anomalies. However, the SPI
values computed from precipitation data sets having dif-
ferent lengths are highly correlated and consistent if the
gamma distributions of precipitation relative to those dif-
ferent time periods are similar. When the time scale is
short, for instance 3-month, the SPI reflect the seasonality
of the data and is more appropriate to identify drought
impacts on agriculture. As the time scale increases the
SPI responds more slowly to changes in precipitation,
and results for the 12-month time scale identify dry peri-
ods of long duration which relate with the global impact
of drought on hydrologic regimes and water resources of
a region (Paulo et al., 2003; Paulo and Pereira, 2006).
For this reason, the 12-month time scale was selected.
Examples of SPI 12-month time scale for several locations
in the target region of Alentejo are shown by Moreira
et al. (2006).
Loglinear models with three-dimensions

Three-dimensions loglinear models

Loglinear modeling (Agresti, 1990), which describe associ-
ation patterns among categorical variables, is performed
Table 1 Drought class classification of SPI (modified from
McKee et al., 1993)

Code Drought classes SPI values

1 Non-drought SPI P 0
2 Near normal �1 < SPI < 0
3 Moderate �1.5 < SPI 6 �1
4 Severe/extreme SPI 6 �1.5
for the cell counts in contingency tables. The Poisson sam-
pling model for counts is usually used for counts in contin-
gency tables and assumes that they are independent
Poisson random variables. Three-dimensional loglinear
models aim at fitting the observed frequencies of transi-
tions between each drought class, denoted as Oijk, and
to model the corresponding expected frequencies, denoted
as Eijk, which are the estimates of the observed frequen-
cies for each cell of a three-dimensional contingency table
(Table 2).

The contingency table, considering the objectives of this
study, has three classification criterions (A, B and C) with
levels i, j and k, (i = 1, . . .,4), (j = 1, . . .,4) and (k =
1, . . .,4), respectively. Criterions A, B and C refer to drought
classes at months t � 2, t � 1 and t, respectively. The levels
1, . . .,4 are associated to the drought classes: 1 to the ‘non-
drought’ class, 2 to the ‘near normal drought’ class, 3 to the
‘moderate drought’ class, and 4 to the ‘severe/extreme
drought’ class.

The observed frequencies (Oijk) are the response variable
for the loglinear models and refer to the observed number
of transitions between the drought class i at month t � 2
(criterion A) and drought class j at month t � 1 (criterion
B) and drought class k at month t (criterion C). The observa-
tion O111 is the number of times that a given site stays for
three consecutive months in drought class 1 (‘Non-
drought’). So, the three-dimensional loglinear models allow
modeling the expected frequencies of drought class transi-
tions corresponding to a 2-month step transition from
drought class i to class j (t � 2! t � 1) and from class j
to class k (t � 1! t).

Several models for three-dimensional contingency tables
were tested. The quasi-association model is the one that
better fitted the observed frequencies. For the three-
dimensional contingency table above, this model is given by

logEijk ¼ kþ kA
i þ kB

j þ kC
k þ buivj þ auiwk þ gvjwk þ suivjwk

þ d1iIði¼ jÞ þ d2iIði¼ kÞ þ d3jIðj¼ kÞ þ d4iIði¼ j¼ kÞ
ð1Þ

where k is the constant term in the model, kA
i represents the

ith level for criterion A, kB
j represents the jth level for

criterion B and kC
k represents the kth level for criterion C,

ui, vj and wk are, respectively, the ith level score for
criterion A, the jth level score of criterion B, and the kth
level score for criterion C, with i, j and k 2 {1,2,3,4}
(usually it is taken ui = i, vj = j and wk = k). In this model,
b, a, g and s are the linear association parameters, and
d1i, d2i and d4i are parameters associated to the ith diagonal
element of A criterion and d3j to the jth diagonal element
of B criterion. I is the indicator function defined as usual
by

I ðconditionÞ ¼
0 if condition true

1 if condition false

�
ð2Þ

In loglinear models with Poisson sampling, the errors are
Poisson random variables and the parameter estimation
for loglinear models is performed with the Maximum Likeli-
hood Method. The residual deviance given by

D ¼ 2
X
i

X
j

X
k

Oijk logðOijk=EijkÞ ð3Þ



Table 2 Three-dimensional contingency table for two consecutive transitions between drought classes

Drought class at
month t � 2

Drought class month t

1 2 3 4

Drought class month
t � 1

Drought class month
t � 1

Drought class month
t � 1

Drought class month
t � 1

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1 O111 O121 O131 O141 O112 O122 O132 O142 O113 O123 O133 O143 O114 O124 O134 O144

2 O211 O221 O231 O241 O212 O222 O232 O242 O213 O223 O233 O243 O214 O224 O234 O244

3 O311 O321 O331 O341 O312 O322 O332 O342 O313 O323 O333 O343 O314 O324 O334 O344

4 O411 O421 O431 O441 O412 O422 O432 O442 O413 O423 O433 O443 O414 O424 O434 O444
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is proved to have approximate chi-square distribution with
degrees of freedom equal to the number cells in the
contingency table minus the number of linearly independent
estimated model parameters, see Nelder (1974) and
Agresti (1990). To evaluate the goodness of fitting of a log-
linear model a chi-square test can be used, see again Nelder
(1974) and Agresti (1990). The null hypothesis tested is: the
model fits well data. Thus, the null hypothesis is not
rejected for those models having a residual deviance
not exceeding the chi-square quantile for a probability
1 � a = 0.95 and the corresponding degrees of freedom. In
other words, all the models presenting a test p-value
exceeding the chosen significance level of a = 0.05 are
considered well fitted. The quasi-association (QA)
model (Eq. (1)) proved to be the most adequate for all the
14 sites.

Several cases of very low expected frequencies, even <
1, were obtained. This situation causes difficulties when
predicting less frequent transitions (Deloncle et al.,
2007) and may be questioned for the application of chi-
Table 3 Selected loglinear QA submodels, degrees of freedom,

Site Selected submodel

Castelo de Vide log Eijk ¼ kþ kAi þ kBj þ kCk þ buivj þ gvjwk þ
Barragem de Magos log Eijk ¼ kþ kAi þ kBj þ kCk þ buivj þ gvjwk þ
Pavia log Eijk ¼ kþ kAi þ kBj þ kCk þ buivj þ gvjwk þ
Vila Viçosa log Eijk ¼ kþ kAi þ kBj þ kCk þ buivj þ gvjwk þ
Moinhola log Eijk ¼ kþ kAi þ kBj þ kCk þ buivj þ gvjwk þ
Reguengos log Eijk ¼ kþ kAi þ kBj þ kCk þ buivj þ gvjwk þ
Grândola log Eijk ¼ kþ kAi þ kBj þ kCk þ buivj þ gvjwk þ
Viana do Alentejo log Eijk ¼ kþ kAi þ kBj þ kCk þ buivj þ gvjwk þ
Serpa log Eijk ¼ kþ kAi þ kBj þ kCk þ buivj þ gvjwk þ
Reliquias log Eijk ¼ kþ kAi þ kBj þ kCk þ buivj þ gvjwk þ
Castro Verde log Eijk ¼ kþ kAi þ kBj þ kCk þ buivj þ gvjwk þ
Barragem da Bravura log Eijk ¼ kþ kAi þ kBj þ kCk þ buivj þ gvjwk þ
Martim Longo log Eijk ¼ kþ kAi þ kBj þ kCk þ buivj þ gvjwk þ
São Brás de Alportel log Eijk ¼ kþ kAi þ kBj þ kCk þ buivj þ gvjwk þ
square tests for fitting and asymptotic results commonly
used in inference associated with linear generalized mod-
els (e.g. Rao, 1973). However, Bhattacharya and Chan
(1996) concluded that the classic chi-square test and the
approximations based in this test have a very good perfor-
mance and are therefore appropriate for expected fre-
quencies less than 1.

The backward elimination method (Agresti, 1990) was
applied to each complete QA model (Eq. (1)) adjusted to
each location data set to reduce the number of model
parameters without significant loss of information. This
method allows the selection of an alternative sub-model
eliminating the less significant parameters of the QA model,
as illustrated in Appendix 1 for Grândola.

For all sites, the adjusted models have test p-values
exceeding a = 0.05, which means that none of them is to
be rejected. For each site the selected sub-model obtained
from backward elimination, the respective degrees of free-
dom (d.f.), residual deviance and p-values are presented in
Table 3.
residual deviances and p-values for all sites

d.f. Residual
deviance

p-Value

d1iIði ¼ jÞ þ d2iIði ¼ kÞ þ d3jIðj ¼ kÞ 40 31.85 0.8175

d1iIði ¼ jÞ þ d3jIðj ¼ kÞ 44 41.28 0.5889

d1iIði ¼ jÞ þ d3jIðj ¼ kÞ 44 28.52 0.9659

d1iIði ¼ jÞ þ d2iIði ¼ kÞ þ d3jIðj ¼ kÞ 40 17.24 0.9994

d1iIði ¼ jÞ þ d2iIði ¼ kÞ þ d3jIðj ¼ kÞ 40 26.75 0.9462

d1iIði ¼ jÞ þ d2iIði ¼ kÞ þ d3jIðj ¼ kÞ 40 39.97 0.4716

d1iIði ¼ jÞ þ d2iIði ¼ kÞ þ d3jIðj ¼ kÞ 40 30.34 0.8655

d2iIði ¼ kÞ þ d4jIðj ¼ kÞ 44 14.81 0.9999

d1iIði ¼ jÞ þ d2iIði ¼ kÞ þ d3jIðj ¼ kÞ 40 32.45 0.7962

d4jIðj ¼ kÞ 48 35.05 0.9183

d1iIði ¼ jÞ þ d3jIðj ¼ kÞ 48 19.73 0.9990

d1iIði ¼ jÞ þ d3jIðj ¼ kÞ 44 22.61 0.9969

d1iIði ¼ jÞ þ d3iIði ¼ kÞ þ d4jIðj ¼ kÞ 40 42.79 0.3523

d1iIði ¼ jÞ þ d3iIði ¼ kÞ þ d4jIðj ¼ kÞ 40 27.76 0.9283



Table 4 Observed versus expected frequencies of drought class transitions from month t � 2 to month t � 1 to month t: for
Grândola, SPI 12 months time scale

Drought class month t � 2 Drought class month t

1 2 3 4

Drought class month t � 1

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

Observed frequencies
1 357 9 0 0 33 28 0 0 0 4 0 0 0 1 0 0
2 29 27 0 0 9 158 8 1 0 22 15 0 0 2 6 2
3 4 2 3 0 0 18 11 1 0 3 25 3 0 0 5 10
4 0 0 1 0 0 5 4 3 0 0 3 8 0 0 3 51

Expected frequencies
1 355.7 10.2 0.1 0.0 32.6 26.5 0.6 0.0 1.6 3.0 0.8 0.0 0.1 0.5 0.3 0.1
2 32.6 26.5 0.6 0.0 7.0 160.1 8.7 0.3 0.4 19.5 12.4 0.8 0.0 3.0 4.1 3.0
3 1.6 3.0 0.8 0.0 0.4 19.6 12.8 0.8 0.0 3.2 24.5 3.2 0.0 0.3 5.7 8.7
4 0.1 0.4 0.3 0.0 0.0 2.9 3.9 2.8 0.0 0.3 5.2 8.0 0.0 0.1 2.8 50.7

Drought classes: 1, non-drought; 2, near normal drought; 3, moderate drought; 4, severe/extreme drought.

SPI-based drought category prediction using loglinear models 121
When the parameters of each sub-model (Table 3) are
estimated, the expected frequencies for each cell can be
computed. The observed versus expected frequencies for
the Grândola site are presented in Table 4 as an example.
Results for all sites show a similar agreement between ob-
served and expected frequencies. A strong diagonal ten-
dency is apparent, which indicates a trend for persistency
of droughts in the same drought class and constitutes an
additional difficulty in drought prediction. Results from a
former study using loglinear models for two-dimensional
contingency tables also indicate that, given an initial state,
the more probable class 1 month ahead is the present one
(Paulo et al., 2005). This trend is expected because
‘‘droughts are self-perpetuating’’, i.e., ‘‘if an area is al-
ready experiencing drought conditions, it is more likely to
continue in a drought’’ (NSSTC, 2003).

Odds and respective confidence intervals

An odds is a ratio of expected frequencies, ranging 0 to +1,
and represents the number of times that it is more, less, or
equally probable the occurrence of a certain event instead
of another. The selected odds for three-dimensional models
are defined as

Xkljij ¼
Eijk

Eijl
; k 6¼ l ð4Þ

meaning that, 1 month from now, it is Xkl|ij times more,
less, or equally probable that a specific site is in class k
instead of class l, given that at present it is in class j,
and 1 month before it was in class i, with i, j, k and l 2
{1,2,3,4} and k 5 l.

The logarithm of odds of a complete QA model is given by

log Eijk � log Eijl ¼ kC
k � kC

l þ auiwk � auiwl þ gvjwk

� gvjwl þ suivjwk � suivjwl þ d2iIði ¼ kÞ
� d2iIði ¼ lÞ þ d3jIðj ¼ kÞ � d3jIðj ¼ lÞ
þ d4iIði ¼ j ¼ kÞ � d4iIði ¼ j ¼ lÞ ð5Þ
The estimates of the corresponding odds are calculated by
exponentiation of the result obtained when replacing the
model parameters in Eq. (4) by their estimates obtained from
the fit of the loglinear model given in Table 3 for every sites.

For large sample Xkl|ij have asymptotic normal distribu-
tion and the log transform logXkl|ij, which is equal to
logEijk � logEijl, converges more rapidly to a normal distri-
bution. Since, for the Poisson sampling an estimator of

the asymptotic standard error
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðlogXkljijÞ

p
can be

obtained, thus the asymptotic confidence intervals for the
associated with a probability 1 � a

ð6Þ

can be derived, where z1�a/2 is the 1 � a/2 quantile of
a standard normal variable (Agresti, 1990). The asymptotic
confidence intervals for the odds are then obtained
by exponentiation of the corresponding asymptotic
confidence intervals for the logarithm of the odds. The
confidence intervals of the odds reflect the sampling
variability of the observed drought transitions internal to
each time series. Odds confidence intervals, besides
reflecting this variability, indicate also if a given odds is
not significantly different from 1. When the confidence
intervals for a given odds include the value 1 it means that
the drought transition from class i to class j to class k and
the drought transition from class i to class j to class l, are
not significantly different. If the value 1 is not included in
the confidence interval of a given odds, it means that the
first transition is significantly more (or less) probable than
the second, according to the respective values are larger
(or smaller) than 1. However, if the confidence interval
of a given odds is too large the reliability of the prediction
is small.



Table 5 Estimates of the odds O34|ij and correspondent confidence intervals for Grândola referring to estimates for month t
when the drought classes are known for months t � 1 and t � 2

34|ijO Drought class at month t-1  

Drought class 

month t-2
1 2 3 4

1 24.9781 6.4302 2.9922 0.2556
8.5634 72.8570 2.2045 18.7557 1.0728 8.3457 0.0499 1.3098

2 24.9781 6.4302 2.9922 0.2556

8.5634 72.8570 2.2045 18.7557 1.0728 8.3457 0.0499 1.3098

3 35.9454 9.2535 4.3060 0.3679

10.6310 121.5379 2.7368 31.2877 1.6491 11.2431 0.0744 1.8202

4 15.4097 3.9670 1.8460 0.1577

3.7908 62.6413 0.9759 16.1259 0.5322 6.4030 0.0340 0.7319

In each cell the upper value are the odds estimate and the lower ones refer to the odds confidence interval.

Table 6 Expected frequencies for two consecutive transitions between drought classes for Castelo de Vide, Pavia, Serpa and
São Brás de Alportel

Drought class month t

1 2 3 4

Drought class month t-1

Drought class 

month t-2
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

Castelo de Vide
1 373.5 4.1 0.0 0.0 24.8 20.0 0.5 0.0 1.3 3.3 0.8 0.0 0.0 0.1 0.2 0.0
2 24.8 20.0 0.5 0.0 2.6 155.7 13.5 0.1 0.1 26.2 19.0 0.5 0.0 1.2 4.0 1.0

3 1.3 3.3 0.8 0.0 0.1 26.0 19.2 0.5 0.0 7.5 46.2 5.2 0.0 0.2 5.6 6.7

4 0.0 0.1 0.1 0.0 0.0 1.1 3.7 0.9 0.0 0.2 5.1 5.9 0.0 0.0 2.7 33.4

Pavia
1 328.3 4.7 0.0 0.0 34.8 30.5 0.1 0.0 0.4 3.1 0.3 0.0 0.0 0.2 0.1 0.0
2 34.8 30.5 0.1 0.0 3.7 199.1 7.4 0.1 0.0 20.2 13.9 0.4 0.0 1.6 4.1 1.5

3 0.4 3.1 0.3 0.0 0.0 20.2 13.9 0.4 0.0 2.1 26.2 2.9 0.0 0.2 7.7 10.7

4 0.0 0.2 0.1 0.0 0.0 1.6 4.1 1.5 0.0 0.2 7.7 10.7 0.0 0.0 2.2 39.3

Serpa
1 373.2 9.2 0.1 0.0 33.0 28.1 0.6 0.0 1.2 1.7 0.6 0.0 0.1 0.4 0.3 0.1
2 32.1 27.3 0.6 0.0 6.0 175.9 6.1 0.2 0.3 15.4 9.2 0.7 0.0 3.6 4.6 3.2

3 1.1 1.6 0.6 0.0 0.3 15.0 9.0 0.7 0.0 3.0 30.9 5.2 0.0 0.2 4.7 6.9

4 0.1 0.4 0.3 0.0 0.0 3.4 4.3 2.8 0.0 0.2 4.4 6.2 0.0 0.1 3.0 37.0

São Brás Alportel
1 358.9 5.5 0.0 0.0 25.3 25.2 0.2 0.0 0.7 3.6 0.6 0.0 0.0 0.6 0.2 0.0
2 25.3 25.4 0.2 0.0 9.4 186.8 4.8 0.4 0.3 16.5 13.9 1.8 0.0 3.0 3.9 1.8

3 0.7 3.5 0.6 0.0 0.3 15.9 13.5 1.8 0.0 2.3 34.8 7.9 0.0 0.4 10.8 8.0

4 0.0 0.6 0.2 0.0 0.0 2.7 3.6 1.6 0.0 0.4 10.4 7.3 0.0 0.1 2.9 27.6
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The results for odds estimates X34|ij = Eij3/Eij4 and
respective confidence intervals for the site Grândola are
presented as example in Table 5. Taking the case for the
drought class in September and October 2005, which was
4 (i = j = 4) and the estimate of odds X34|44 was 0.1577,
with the confidence interval [0.0340;0.7319], because the
Table 7 Comparison between observed and predicted drought cl
when the drought classes are known at months t � 1 and t � 2 fo
2004)

Drought class at 
month 

Drought class at 
month t

Drought class at 
month t+1

DDate
(month t)

t-2 t-1 Obs. Pred. Obs. Pred.

Castelo de Vide
Jan-04 2 3 3 2 or 3 3 2 or 3
Feb-04 3 3 3 2 or 3 3 2 or 3
Mar-04 3 3 3 2 or 3 3 2 or 3
Apr-04 3 3 3 2 or 3 3 2 or 3
May-04 3 3 3 2 or 3 3 2 or 3
Jun-04 3 3 3 2 or 3 3 2 or 3
Jul-04 3 3 3 2 or 3 3 2 or 3

Aug-04 3 3 3 2 or 3 3 2 or 3
Sep-04 3 3 3 2 or 3 2 2 or 3
Oct-04 3 3 2 2 or 3 3 2 or 3
Nov-04 3 2 3 2 4 2
Dec-04 2 3 4 2 or 3 4 2 or 3

Pavia
Jan-04 2 2 3 2 3 2
Fev-04 2 3 3 2 or 3 3 2 or 3
Mar-04 3 3 3 2 or 3 3 2 or 3
Abr-04 3 3 3 2 or 3 3 2 or 3
Mai-04 3 3 3 2 or 3 3 2 or 3
Jun-04 3 3 3 2 or 3 3 2 or 3
Jul-04 3 3 3 2 or 3 3 2 or 3

Ago-04 3 3 3 2 or 3 3 2 or 3
Set-04 3 3 3 2 or 3 3 2 or 3
Out-04 3 3 3 2 or 3 4 2 or 3
Nov-04 3 3 4 2 or 3 4 2 or 3
Dez-04 3 4 4 3 or 4 4 3 or 4

Moinhola
Jan-04 1 2 2 2 2 2
Fev-04 2 2 2 2 2 2
Mar-04 2 2 2 2 2 2
Abr-04 2 2 2 2 2 2
Mai-04 2 2 2 2 2 2
Jun-04 2 2 2 2 2 2
Jul-04 2 2 2 2 2 2

Ago-04 2 2 2 2 2 2
Set-04 2 2 2 2 2 2
Out-04 2 2 2 2 3 2
Nov-04 2 2 3 2 4 2
Dez-04 2 3 4 2 or 3 4 2 or 3
value 1 is not included in that interval it means that it
was 1/0.1577 = 6.3407 times more likely that by November
this site would be in severe/extreme drought (k = 4) in-
stead of being in moderate drought (l = 3) given that in
September and October it was in severe/extreme drought
(i = j = 4). Therefore, it could be said that the more
asses 1 and 2 months ahead (t and t + 1) using odds estimates
r a period when a drought was initiating (January–December

rought class at 
month

Drought class at 
month t

Drought class at 
month t+1

t-2 t-1 Obs. Pred. Obs. Pred.

Barragem de Magos
1 1 1 1 2 1
1 1 2 1 2 1
1 2 2 2 2 2
2 2 2 2 2 2
2 2 2 2 2 2
2 2 2 2 2 2
2 2 2 2 2 2
2 2 2 2 2 2
2 2 2 2 2 2
2 2 2 2 3 2
2 2 3 2 4 2
2 3 4 2 or 3 4 2 or 3

Vila Viçosa
1 2 2 2 2 2
2 2 2 2 2 2
2 2 2 2 2 2
2 2 2 2 2 2
2 2 2 2 2 2
2 2 2 2 2 2
2 2 2 2 2 2
2 2 2 2 2 2
2 2 2 2 2 2
2 2 2 2 3 2
2 2 3 2 4 2
2 3 4 2 or 3 4 2 or 3

Reguengos
2 2 2 2 2 2
2 2 2 2 2 2
2 2 2 2 2 2
2 2 2 2 2 2
2 2 2 2 2 2
2 2 2 2 2 2
2 2 2 2 2 2
2 2 2 2 2 2
2 2 2 2 2 2
2 2 2 2 3 2
2 2 3 2 4 2
2 3 4 2 or 3 4 3

(continued on next page)



Table 7 (continued)

Drought class at 
month 

Drought class 
at month t

Drought class at 
month t+1

Drought class at 
month

Drought class at 
month t

Drought class at 
month t+1

Date
(month t)

t-2 t-1 Obs. Pred. Obs. Pred. t-2 t-1 Obs. Pred. Obs. Pred.

Grândola Viana do Alentejo
Jan-04 1 2 2 2 2 2 2 2 3 2 3 2
Fev-04 2 2 2 2 2 2 2 3 3 2 or 3 2 2 or 3
Mar-04 2 2 2 2 3 2 3 3 2 2 or 3 3 2 or 3
Abr-04 2 2 3 2 2 2 3 2 3 2 3 2
Mai-04 2 3 2 2 or 3 3 2 or 3 2 3 3 2 or 3 3 2 or 3
Jun-04 3 2 3 2 3 2 3 3 3 2 or 3 3 2 or 3
Jul-04 2 3 3 2 or 3 2 2 or 3 3 3 3 2 or 3 3 2 or 3

Ago-04 3 3 2 2 or 3 2 2 or 3 3 3 3 2 or 3 3 2 or 3
Set-04 3 2 2 2 3 2 3 3 3 2 or 3 2 2 or 3
Out-04 2 2 3 2 4 2 3 3 2 2 or 3 3 2 or 3
Nov-04 2 3 4 2 or 3 4 2 or 3 3 2 3 2 4 2
Dez-04 3 4 4 3 or 4 4 4 2 3 4 2 or 3 4 2 or 3

Serpa Relíquias
Jan-04 1 1 2 1 2 1 2 2 2 2 2 2
Fev-04 1 2 2 2 2 2 2 2 2 2 2 2 or 3
Mar-04 2 2 2 2 2 2 2 2 2 2 2 2 or 3
Abr-04 2 2 2 2 2 2 2 2 2 2 2 2
Mai-04 2 2 2 2 2 2 2 2 2 2 2 2 or 3
Jun-04 2 2 2 2 2 2 2 2 2 2 2 2 or 3
Jul-04 2 2 2 2 2 2 2 2 2 2 2 2 or 3

Ago-04 2 2 2 2 2 2 2 2 2 2 2 2 or 3
Set-04 2 2 2 2 2 2 2 2 2 2 3 2 or 3
Out-04 2 2 2 2 4 2 2 2 3 2 4 2 or 3
Nov-04 2 2 4 2 4 2 2 3 4 2 or 3 4 2
Dez-04 2 4 4 3 or 4 4 4 3 4 4 4 4 4

Castro Verde Martim Longo
Jan-04 1 1 1 1 2 1 1 1 1 1 1 1
Fev-04 1 1 2 1 2 1 1 1 1 1 1 1
Mar-04 1 2 2 2 2 2 1 1 1 1 2 1
Abr-04 2 2 2 2 2 2 1 1 2 1 1 1
Mai-04 2 2 2 2 2 2 1 2 1 2 1 2
Jun-04 2 2 2 2 2 2 2 1 1 1 1 1
Jul-04 2 2 2 2 2 2 1 1 1 1 1 1

Ago-04 2 2 2 2 2 2 1 1 1 1 1 1
Set-04 2 2 2 2 2 2 1 1 1 1 2 1
Out-04 2 2 2 2 3 2 1 1 2 1 3 1
Nov-04 2 2 3 2 4 2 1 2 3 2 3 2
Dez-04 2 3 4 2 or 3 4 3 or 4 2 3 3 2 or 3 3 2 or 3

Barragem da Bravura São Brás de Alportel
Jan-04 1 1 2 1 2 1 2 2 2 2 3 2
Fev-04 1 2 2 2 2 2 2 2 3 2 3 2
Mar-04 2 2 2 2 2 2 2 3 3 2 or 3 4 2 or 3
Abr-04 2 2 2 2 2 2 3 3 4 2 or 3 3 2 or 3
Mai-04 2 2 2 2 2 2 3 4 3 3 or 4 3 3 or 4
Jun-04 2 2 2 2 2 2 4 3 3 2 or 3 3 2 or 3
Jul-04 2 2 2 2 2 2 3 3 3 2 or 3 3 2 or 3

Ago-04 2 2 2 2 2 2 3 3 3 2 or 3 3 2 or 3
Set-04 2 2 2 2 3 2 3 3 3 2 or 3 4 2 or 3
Out-04 2 2 3 2 4 2 3 3 4 2 or 3 4 2 or 3
Nov-04 2 3 4 2 or 3 4 2 or 3 3 4 4 3 or 4 4 3 or 4
Dez-04 3 4 4 3 or 4 4 3 or 4 4 4 4 3 or 4 4 3 or 4
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probable drought class for Grândola in November was again
the class 4 (severe/extreme).

Results and discussion

Table 6 presents for several rainfall stations the values of
the expected number of transitions between drought
classes for two consecutive months. As it can be
observed, the highest values occur for the transitions that
imply the maintenance of the precedent drought
Table 8 Comparison between the observed and predicted dro
estimates when the drought classes are known at months t � 1 and
June 2006)

Drought class 
at month 

Drought class 
at month t

Drought class at 
month t+1

Date
(month t) 

t-2 t-1 Obs. Pred. Obs. Pred.

Castelo de Vide
Jul-05 4 4 4 3 or 4 4 3 or 4

Aug-05 4 4 4 3 or 4 4 3 or 4
Sep-05 4 4 4 3 or 4 4 3 or 4
Oct-05 4 4 4 3 or 4 4 3 or 4
Nov-05 4 4 4 3 or 4 4 3 or 4
Dec-05 4 4 4 3 or 4 4 3 or 4
Jan-06 4 4 4 3 or 4 3 3 or 4
Feb-06 4 4 3 3 or 4 3 3 or 4
Mar-06 4 3 3 2 or 3 2 2 or 3
Apr-06 3 3 2 2 or 3 2 2 or 3
May-06 3 2 2 2 2 2
Jun-06 2 2 2 2 2 2

Pavia
Jul-05 4 4 4 3 or 4 4 4

Aug-05 4 4 4 3 or 4 4 4
Sep-05 4 4 4 3 or 4 4 4
Oct-05 4 4 4 3 or 4 4 4
Nov-05 4 4 4 3 or 4 4 4
Dec-05 4 4 4 3 or 4 4 4
Jan-06 4 4 4 3 or 4 3 4
Feb-06 4 4 3 3 or 4 3 4
Mar-06 4 3 3 2 or 3 2 2 or 3
Apr-06 3 3 2 2 or 3 3 2 or 3
May-06 3 2 3 2 3 2
Jun-06 2 3 3 2 or 3 2 2 or 3

Moinhola
Jul-05 4 4 4 3 or 4 4 3 or 4

Aug-05 4 4 4 3 or 4 4 3 or 4
Sep-05 4 4 4 3 or 4 4 3 or 4
Oct-05 4 4 4 3 or 4 3 3 or 4
Nov-05 4 4 3 3 or 4 3 3 or 4
Dec-05 4 3 3 2 or 3 2 2 or 3
Jan-06 3 3 2 2 or 3 2 2 or 3
Feb-06 3 2 2 2 2 2
Mar-06 2 2 2 2 2 2
Apr-06 2 2 2 2 2 2
May-06 2 2 2 2 1 2
Jun-06 2 2 1 2 1 2
classes (cells in grey), i.e., transitions 1! 1! 1,
2! 2! 2, 3! 3! 3, 4! 4! 4. A strong diagonal ten-
dency is shown in the contingency tables indicating
the referred self-perpetuating characteristic trend of
droughts.

The lowest values (near zero) in Table 6 refer to the
direct transitions from a given drought class to another
two or three categories more or less severe than the first
one, e.g. from the severe/extreme drought (class 4)
to near normal or non-drought (classes 2 and 1,
ught classes 1 and 2 months ahead (t and t + 1) using odds
t � 2 for a period when a drought start dissipating (July 2005–

Drought class at 
month

Drought class at 
month t

Drought class at 
month t+1

t-2 t-1 Obs. Pred. Obs. Pred.

Barragem de Magos
4 4 4 4 4 4
4 4 4 4 4 4
4 4 4 4 4 4
4 4 4 4 4 4
4 4 4 4 4 4
4 4 4 4 3 4
4 4 3 4 2 4
4 3 2 2 or 3 2 2 or 3
3 2 2 2 2 2
2 2 2 2 2 2
2 2 2 2 2 2
2 2 2 2 2 2

Vila Viçosa
4 4 4 3 or 4 4 3 or 4
4 4 4 3 or 4 4 3 or 4
4 4 4 3 or 4 4 3 or 4
4 4 4 3 or 4 4 3 or 4
4 4 4 3 or 4 4 3 or 4
4 4 4 3 or 4 4 3 or 4
4 4 4 3 or 4 3 3 or 4
4 4 3 3 or 4 2 3 or 4
4 3 2 2 or 3 2 2 or 3
3 2 2 2 2 2
2 2 2 2 2 2
2 2 2 2 2 2

Reguengos
4 4 4 3 or 4 4 3 or 4
4 4 4 3 or 4 4 3 or 4
4 4 4 3 or 4 4 3 or 4
4 4 4 3 or 4 4 3 or 4
4 4 4 3 or 4 4 3 or 4
4 4 4 3 or 4 3 3 or 4
4 4 3 3 or 4 3 3 or 4
4 3 3 2 or 3 2 3
3 3 2 3 2 3
3 2 2 2 2 2
2 2 2 2 2 2
2 2 2 2 2 2

(continued on next page)



Table 8 (continued)

Drought class 
at month 

Drought class 
at month t

Drought class at 
month t+1

Drought class at 
month

Drought class at 
month t

Drought class at 
month t+1

Date
(month t)

t-2 t-1 Obs. Pred. Obs. Pred. t-2 t-1 Obs. Pred. Obs. Pred.

Grândola Viana do Alentejo
Jul-05 4 4 4 4 4 4 4 4 4 4 4 4

Aug-05 4 4 4 4 4 4 4 4 4 4 4 4
Sep-05 4 4 4 4 4 4 4 4 4 4 4 4
Oct-05 4 4 4 4 4 4 4 4 4 4 4 4
Nov-05 4 4 4 4 4 4 4 4 4 4 4 4
Dec-05 4 4 4 4 4 4 4 4 4 4 4 4
Jan-06 4 4 4 4 3 4 4 4 4 4 4 4
Feb-06 4 4 3 4 2 4 4 4 4 4 3 4
Mar-06 4 3 2 2 or 3 2 2 or 3 4 4 3 4 2 4
Apr-06 3 2 2 2 2 2 4 3 2 2 or 3 2
May-06 2 2 2 2 2 2 3 2 2 2 2
Jun-06 2 2 2 2 2 2 2 2 2 2 2

2
2
2

Serpa Relíquias
Jul-05 4 4 4 3 or 4 4 4 4 4 4 4 4 4

Aug-05 4 4 4 3 or 4 4 4 4 4 4 4 4 4
Sep-05 4 4 4 3 or 4 4 4 4 4 4 4 4 4
Oct-05 4 4 4 3 or 4 3 4 4 4 4 4 4 4
Nov-05 4 4 3 3 or 4 3 4 4 4 4 4 3 4
Dec-05 4 3 3 2 or 3 2 3 4 4 3 4 2 4
Jan-06 3 3 2 3 2 3 4 3 2 2 or 3 2
Feb-06 3 2 2 2 2 2 3 2 2 2 2 2
Mar-06 2 2 2 2 2 2 2 2 2 2 2
Apr-06 2 2 2 2 2 2 2 2 2 2 2
May-06 2 2 2 2 2 2 2 2 2 2 2
Jun-06 2 2 2 2 2 2 2 2 2 2 2

2

2
2
2
2

Castro Verde Martim Longo
Jul-05 4 4 4 4 4 4 4 4 4 4 4 4

Aug-05 4 4 4 4 4 4 4 4 4 4 4 4
Sep-05 4 4 4 4 4 4 4 4 4 4 4 4
Oct-05 4 4 4 4 3 4 4 4 4 4 3 4
Nov-05 4 4 3 4 4 4 4 4 3 4 2 4
Dec-05 4 3 4 2 or 3 3 2 or 3 4 3 2 2 or 3 2 2 or 3
Jan-06 3 4 3 4 2 4 3 2 2 2 2
Feb-06 4 3 2 2 or 3 2 2 or 3 2 2 2 2 2

2
2

Mar-06 3 2 2 2 2 2 2 2 2 2 1 2
Apr-06 2 2 2 2 2 2 2 2 1 2 2 2
May-06 2 2 2 2 2 2 2 1 2 1 1 1
Jun-06 2 2 2 2 2 2 1 2 1 2 1 2

Barragem da Bravura São Brás de Alportel
Jul-05 4 4 4 3 or 4 4 3 or 4 4 4 4 3 or 4 4 3 or 4

Aug-05 4 4 4 3 or 4 4 3 or 4 4 4 4 3 or 4 4 3 or 4
Sep-05 4 4 4 3 or 4 4 3 or 4 4 4 4 3 or 4 4 3 or 4
Oct-05 4 4 4 3 or 4 3 3 or 4 4 4 4 3 or 4 3 3 or 4
Nov-05 4 4 3 3 or 4 3 3 or 4 4 4 3 3 or 4 3 3 or 4
Dec-05 4 3 3 2 or 3 2 2 or 3 4 3 3 2 or 3 2 2 or 3
Jan-06 3 3 2 2 or 3 2 2 or 3 3 3 2 2 or 3 2 2 or 3
Feb-06 3 2 2 2 2 2 3 2 2 2 2 2
Mar-06 2 2 2 2 2 2 2 2 2 2 2
Apr-06 2 2 2 2 2 2 2 2 2 2 2

2
2

May-06 2 2 2 2 1 2 2 2 2 2 1 2
Jun-06 2 2 2 2 1 2 2 2 1 2 2 2
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respectively). These transitions have a very low probabil-
ity because droughts do not initiate or dissipate suddenly.
Tables 7 and 8 present the validation of the loglinear
modeling by comparing the actual SPI drought class
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categories calculated from observed rainfall data with the
predictions 1 and 2 months ahead for the same months
computed through the odds estimates. Predictions with
2-month lead, at month t + 1, base upon the observed
value for month t � 1 and the predicted value for month
t. The selected periods for testing concern the last
observed drought in the region, called the 2005 drought.
Table 7 refers to a 12-month period, January–December
2004, when that drought was initiating and developing
with increased severity, and Table 8, refers to another
12-month period, July 2005–June 2006, which starts when
the drought was extreme and ends when the drought was
slowly dissipating. Twelve-month periods are shown to
include both the dry and wet seasons. The sites cover
the entire Alentejo region and part of Algarve, thus not
referring to any particular climate in the area. For the
drought initiation and development period (Table 7), the
drought severity classes in the first month are 1, 2 or 3
(non-drought, near normal and moderate drought, respec-
tively), and all but one end at class 4 (severe and extre-
mely severe drought). The dissipation test period starts
with all sites in class 4 and ends with them all in class
2 at the month t + 1; in month t all were at the class 2
but one in class 1. Thus, the periods selected give a true
picture of both the drought initiation and development
and drought dissipation.

For each site, are presented the observed drought classes
at months t � 2 and t � 1, and the observed and predicted
drought classes for months t and t + 1, i.e., with 1- and 2-
month lead. When the probability that a site will be in a gi-
ven drought class is not significantly different from the
probability that it would be in a next severity class; then
the prediction refers to both drought classes, e.g. ‘‘2 or
3’’ meaning that probabilities for transitions into the classes
2 or 3 are similar.

Results in Tables 7 and 8 show a coincidence between
the predicted and the actual drought classes for the large
majority of the months. The non-grey cells refer to the
cases when the predicted drought class was vindicated.
Cells in grey refer to cases where this vindication does
not hold but the predicted classes are the neighboring ones
with very few exceptions. As expected, more less good
predictions refer to the 2-month lead time. Disagreements
often refer to conditions when a decrease or increase of
the drought class category breaks with the drought class
established in the preceding 2 months, which correspond
to an increase or decrease in rainfall for the months under
prevision. Results generally do not give a trend of de-
creased or increased severity opposed to the observed
trend but with few exceptions, mainly for predictions with
2-month lead. However, this happens when the SPI values
are near the upper or lower limit of a class, when a rela-
tively small increase in the precipitation deficit or in rain-
fall moves the drought severity to the superior or inferior
class of severity.

Table 7 shows that most difficult predictions of
drought class transitions when drought severity is increas-
ing occur in the autumn months, where the rainfall season
starts after the dry summer and where the monthly pre-
cipitation is expected to be high (cf. Fig. 1). It is during
that period that monthly precipitation deficits produce
strong decreases in SPI values, thus transitions into clas-
ses of high severity. For the period of drought dissipation
(Table 8), predictions show to be more difficult for the
Winter months. This may be explained by the fact that
the model, having learnt from the preceding months that
a high severity class is established produces predictions
for the next months with a lag, but is able to predict
the trend for dissipation from then after. The lag be-
tween observed and predicted drought classes relates
with the diagonal tendency shown in the contingency
table given that recent drought situations tend to
remain.

Observing the predictions in Table 7, it is possible to
note that they could improve the information resulting
from monitoring using precipitation data and related
drought indices. In particular, it could be possible to alert
farmers and water managers at early autumn months, by
the beginning of the agricultural year, about the likely
establishment of that drought. In reality a drought condi-
tion was only declared by March of 2005, thus late rela-
tive to farming decisions, when it was already attaining
the maximal severity. Similarly, results in Table 8 show
that the trend for dissipation could only be confirmed at
the end of winter, but the drought was officially
terminated by January, which has been a risky decision.
These results show that using a monthly prediction of
drought severity classes transitions may be useful to bet-
ter adopt a risk management approach to droughts. How-
ever, other stochastic and weather regime models may
also be used.
Conclusions

The loglinear models for three-dimensional contingency
tables show to be a useful tool to predict drought class
transitions in a short term, i.e., knowing the drought class
values for two precedent months it is possible to make
reliable predictions for drought class in the two following
months. Only for a few cases, the predicted and the ac-
tual drought classes did not match. Often, this happens
when the SPI value is near the upper or lower boundary
of the class and easy change to the nearby class when
the precipitation deficit increases or higher precipitation
occurs. Results show that predictions of drought class
transitions are able to describe the trend of drought
initiation and development as well as the trend for
drought dissipation. The predictions show a lag relative
to the observed drought classes during the Autumn
months when a drought is developing, and for the Winter
months when a drought is dissipating, which occur more
often in case of predictions with 2-month lead. However,
in general, results show that three-dimensions loglinear
modeling of monthly drought class transitions is able to
capture the trends for both drought initiation and estab-
lishment and drought dissipation. The approach results
therefore appropriate to strengthen the usefulness of
drought monitoring and related information to water man-
agers and users, to support their decisions on drought
mitigation measures.

Loglinear modeling to predict more than two consecu-
tive drought class implies a very large number of model
parameters, the respective contingency tables become
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complicate, and the interpretation of the model results
difficult. Hence, it is not foreseen to use loglinear models
to increase the lead time of predictions. However, because
precipitation in Portugal occurs predominantly during the
autumn and winter, and that spring and summer are in
general dry, it is aimed to consider for future work to in-
clude a fourth category in the contingency tables, repre-
senting the period of the year, i.e., the wet and dry
seasons. This adding up might introduce an improvement
in the predictions since the probability of each drought
class transition depends upon the period of the year. It
may also be considered the use of SPI data computed with
Parameter
eliminated

Model residual
deviance

d.f. Model (1) residual
deviance

d.f. (1) Residual deviance
difference

d.f. difference p-Value

s 25.89 35 25.85 34 25.89 � 25.85 = 0.04 35 � 34 = 1 0.8415
a shorter time scale and produce the predictions from re-
sults obtained from both 12-month and shorter time
scales.

In addition to loglinear modeling, it is foreseen to
adopt other stochastic and weather regime prediction
tools aiming at further developing drought risk manage-
ment policies and measures. The usefulness of using Mar-
kov chains modeling is already demonstrated for short
time predictions. Combining results of stochastic modeling
with information derived from atmospheric circulation
Parameter
eliminated

Model residual
deviance

d.f. Model (A1) residual
deviance

d.f. (A1) Residual deviance difference d.f. difference p-Value

b 82.45 36 25.89 35 82.45 � 25.89 = 56.56 36 � 35 = 1 0.0000
a 29.43 36 29.43 � 25.89 = 3.54 36 � 35 = 1 0.0599
g 82.72 36 82.72 � 25.89 = 56.56 36 � 35 = 1 0.0000
models, mainly focusing weather regime transitions, is
therefore the main objective of research related with
drought predictions.
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Appendix 1. Backward elimination method

Once adjusted the QA complete model (Eq. (1)) the follow-
ing steps illustrate the backward elimination method ap-
plied to data of the Grândola site:

Step 1 – Starting by testing the highest interactions, the
s parameter representing the interaction between the three
categories of the contingency tables, is the first to be tested
for elimination:
Considering that the p-value >0.05, the null hypotheses

H0: s = 0 is not rejected, thus suivjwk is not signifi-
cantly 5 0, the simplified model is not rejected and the
parameter is eliminated. Therefore, the QA model simplifies
into:

logEijk ¼ kþ kA
i þ kB

j þ kC
k þ buivj þ auiwk þ gvjwk þ d1iIði¼ jÞ

þ d2iIði¼ kÞ þ d3jIðj¼ kÞ þ d4iIði¼ j¼ kÞ ðA1Þ

Step 2 – Testing the b, a and g parameters, correspond-
ing to the interactions between two categories:

Considering that the p-value of the sub-model with-
out the a parameter is >0.05, H0: a = 0 is not rejected,
thus the auiwk parameter is eliminated; the QA model
becomes:

log Eijk ¼ kþ kA
i þ kB

j þ kC
k þ buivj þ gvjwk þ d1iIði ¼ jÞ

þ d2iIði ¼ kÞ þ d3jIðj ¼ kÞ þ d4iIði ¼ j ¼ kÞ ðA2Þ

Step 3 – After elimination of a, it is necessary to test
again the b and g parameters:
l d.f. (A2) Residual deviance
difference

d.f. difference p-Value

36 96.30 � 29.43 = 66.87 37 � 36 = 1 0.0000
96.33 � 29.43 = 66.90 37 � 36 = 1 0.0000
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Given that none of the p-values are >0.05, H0: b = 0 and
H0: g = 0 are rejected, thus these parameters are kept and
the model (A2) is retained.

Step 4 – Testing the d1i, d2i, d3j and d4i parameters cor-
responding to the diagonal effects between categories in
contingency tables:
Parameter
eliminated

Model residual
deviance

d.f. Model (A2) residual
deviance

d.f. (A2) Residual deviance difference d.f. difference p-Value

d1i 37.21 40 29.43 36 37.21 � 29.43 = 7.78 40 � 36 = 4 0.1000
d2i 32.28 40 32.28 � 29.43 = 2.85 40 � 36 = 4 0.5832
d3j 37.15 40 37.15 � 29.43 = 7.72 40 � 36 = 4 0.1024
d4i 30.34 40 30.34 � 29.43 = 0.91 40 � 36 = 4 0.9231
All the sub-models corresponding to the elimination of
each d parameters have p-value >0.05. However, given that
only one parameter can be eliminated at each time, the
elimination of d4i is selected because it has the highest p-va-
lue. Thus, the model simplifies into:

log Eijk ¼ kþ kA
i þ kB

j þ kC
k þ buivj þ gvjwk þ d1iIði ¼ jÞ

þ d2iIði ¼ kÞ þ d3jIðj ¼ kÞ ðA3Þ

Step 5 – After d4i elimination, it is necessary to test
again the d1i, d2i and d3j parameters:

Given that none of the p-values are >0.05, H0: dji = 0,
j = 1,2,3 are rejected, thus none of these parameters
can be eliminated and the final QA model is given by
Eq. (A3).
Parameter
eliminated

Model residual
deviance

d.f. Model (A3) residual
deviance

d.f. (A3) Residual deviance
difference

d.f. difference p-Value

d1i 57.76 44 30.34 40 57.76 � 30.34 = 27.42 44 � 40 = 4 0.0000
d2i 40.51 44 40.51 � 30.34 = 10.17 44 � 40 = 4 0.0377
d3j 57.68 44 57.68 � 30.34 = 27.34 44 � 40 = 4 0.0000
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