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Abstract: Since 1979, Remote Sensing Systems has been providing a global community of researchers and decision makers 5 
with inter-calibrated microwave measurements and geophysical retrievals derived from passive and active spaceborne 6 
sensors. These datasets, from 35 microwave sensors covering a time period of 40 years, have been consolidated at the Mi- 7 
crowave Climate Data Center repository. The geophysical retrievals include: sea-surface temperature, near-surface ocean 8 
wind speed and direction, columnar atmospheric water vapor, columnar cloud liquid water, sea-surface rain rate, sea- 9 
surface salinity, and atmospheric temperature profiles. Consistent calibration procedures and retrieval methods have been 10 
applied during the data processing to ensure these datasets are suitable for climate research. All of the geophysical retrievals 11 
relate to the air-sea boundary layer and are classified as essential climate variables by the Global Climate Observing System. 12 
In this paper, we give an overview of the microwave sensors, the inter-calibration methods, the retrieval algorithms, and 13 
the air-sea essential climate variable datasets housed at the Microwave Climate Data Center. 14 
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Background and Summary 17 
In the electromagnetic spectrum, microwave (MW) frequencies range from approximately 0.3 to 300 GHz (wavelengths 18 
between one millimeter and one meter). This MW radiation, whether emitted passively by various sources including the 19 
Sun and Earth or actively by radar that sends out pulses of radiation, interacts in unique ways with the Earth’s surface and 20 
atmosphere1. Instruments designed to measure radiation at MW frequencies onboard Earth-orbiting satellites are used to 21 
retrieve geophysical quantities that are crucial for understanding the world’s weather and climate. In this regard, Remote 22 
Sensing Systems (RSS) has focused on a specific area of research and data production: passive and active MW observations 23 
of the world’s oceans. Using frequently updated retrieval algorithms, RSS translates the MW radiation observed by satellites 24 
into climate-quality data. These datasets are publicly available and hosted by the RSS Microwave Climate Data Center 25 
(MCDC) repository at https://www.remss.com.  26 
 27 
MCDC Datasets include: sea-surface temperature, near-surface ocean wind speed and direction, columnar atmospheric 28 
water vapor, columnar cloud liquid water, sea-surface rain rate, sea-surface salinity, and atmospheric temperature profiles. 29 
All of these climate datasets are considered air-sea (AS) variables and are classified as essential climate variables (ECVs) by 30 
the Global Climate Observing System (GCOS)2. Most of these global geophysical datasets, hereafter referred to as AS-ECVs, 31 
extend from 1987 to the present day.  32 
While there are many ways to observe AS-ECVs over the ocean, using spaceborne MW sensors to do so provides distinct 33 
advantages over other forms of measurement. First, the atmosphere is relatively transparent at many MW frequencies. This 34 
allows spaceborne MW sensors to observe the surface of the Earth even in areas of heavy cloud cover or high columnar 35 
water vapor. Around 22 and 60 GHz, the atmosphere becomes opaque to MW radiation; nonetheless, these MW frequencies 36 
can be used for measuring geophysical qualities of the intervening atmosphere. Secondly, MW sensors do not require solar 37 
illumination to observe the Earth’s surface and atmosphere, and therefore they can take measurements at any time of the 38 
day making them well-suited for observing diurnal cycles in AS-ECVs. Infrared (IR) imagers can similarly take snapshots 39 
of clouds throughout the day; however, they can only image the tops of clouds. Third, polar orbiting MW sensors are able 40 
to view wide swaths of the Earth over the course of a single day and can provide global coverage every few days. This is in 41 
contrast to airborne, ship, or other ground-based measurements which can only provide information at a single point or 42 
within a relatively small area3.  43 
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Despite the advantages of MW remote sensing, there are two primary limitations to using spaceborne MW instruments to 44 
measure AS-ECVs over the world’s oceans. First, the presence of heavy rain interferes with MW radiation at higher fre- 45 
quencies (> ~12 GHz) because rain drops attenuate and scatter MW signals while also creating splash effects that are difficult 46 
to disentangle from the AS-ECV signals of interest4,5. Second, MW sensors have a relatively coarse spatial resolution as 47 
compared to higher frequency bands of radiation, such as visible and IR. To increase the spatial resolution, the MW fre- 48 
quency must be increased or a larger antenna needs to be used1,3. Unfortunately, some AS-ECVs, such as salinity, are only 49 
sensitive at the lower frequencies (1.4 GHz). Given these limitations, RSS uses MW satellite sensors to retrieve AS-ECVs in 50 
ocean areas that are generally free of heavy rain and assumes that the AS-ECVs are relatively constant at kilometer scales. 51 
However, there are several exceptions to this, which are discussed in greater detail in this paper. 52 
RSS has 40+ years of experience in generating and refining the MCDC AS-ECV products from MW sensors. As a result, RSS 53 
has developed a reputation for providing precisely calibrated AS-ECVs that can be used for the most demanding climate- 54 
trend analyses. This trust is based on the high-degree of consistency in all aspects of data production, starting with sensor 55 
inter-calibration, continuing through to the advanced radiative transfer models and geophysical model functions in the RSS 56 
retrieval algorithms, and ending with rigorous validation analyses. The goal of this paper is to provide the community with 57 
a detailed description of the generation and current status of AS-ECV datasets hosted by the RSS MCDC repository. 58 

 59 

Methods 60 

MW Sensor Inventory 61 
The MCDC AS-ECV sensor inventory currently includes 62 
35 MW sensors covering a time period of 40 years. Meas- 63 
urements from these sensors have been inter-calibrated 64 
and processed using consistent data processing tech- 65 
niques for: (1) resampling, (2) geolocation, and (3) AS- 66 
ECV retrievals. Figure 1 shows the mission timelines for 67 
the sensors, and Tables 1–3 provide the instrument char- 68 
acteristics. The following additional sensors will be 69 
added in the near future: CIMR, COWVR, MWI/WSF- 70 
M, AMSR-3, MWI/Metop-SG, SCA, and MWS/Metop- 71 
SG. 72 
There are three basic types of sensors: 73 
1. The conical scanning MW imager (Table 1) 74 
2. The cross-track scanning MW sounder (Table 2) 75 
3. The scatterometer (both conical scanning and fixed 76 
cross-track) (Table 3) 77 
The MW imagers and sounders are radiometers that ob- 78 
serve the upwelling brightness temperature (TB) that is 79 
passively emitted from the Earth. The scatterometers are 80 
active radars that transmit power to the Earth and then 81 
measure the received power, reporting the normalized 82 
radar cross-section (σo). Both radiometer and scatterom- 83 
eter MW sensors fly in polar orbits with varying degrees 84 
of inclination. The trajectory of a slightly inclined near- 85 
polar orbit is nearly north–south, with the satellite pass- 86 
ing near the Earth poles each orbit. At the equator, the 87 
near-polar orbiters are sun-synchronous and cross the 88 
equator at the same local mean solar time with ascend- 89 
ing and descending orbit segments having local 90 

Figure 1 MCDC Microwave Sensor Collection. Microwave sensors with their 

mission timelines that are used in constructing the MCDC AS-ECV data rec-

ords. 
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equatorial crossing times that are approximately 12 hours apart. The local equator crossing time slowly drifted for some of 91 
the early sensors, for which orbit maintenance was not done. These near-polar orbiters roughly orbit the Earth 14 times a 92 
day, every 90 minutes. On the other hand, a highly inclined orbit ground trajectory does not reach the North and South 93 
poles, but rather, covers a smaller latitude band (e.g., 40°S to 40°N for TMI and 60°S to 60°N for GMI) than near-polar 94 
orbiters. Sensors in inclined orbits view the Earth at different times of the day, precessing through the entire diurnal cycle 95 
and providing greater coverage at lower latitudes. Depending on the swath width of the sensor, it takes two to four days 96 
for the sensor to provide full longitudinal coverage. 97 

The MW imager and sounder retrieval algorithms re- 98 
quire the top-of-the-atmosphere TBs calculated from 99 
the observed antenna temperature (TA) for each MW 100 
polarization and frequency (Equation 1; Table 4). The 101 
TA is converted to top-of-the-atmosphere TB by re- 102 
moving cold space spillover onto the sensor field of 103 
view and polarization contamination from orthogo- 104 
nal polarizations, i.e., cross-polarization (Equations 105 
1–4; Table 4). Equation (2) accounts for the additional 106 
radiative input from an emissive reflector in the case 107 
of SSMI/S, TMI, and SMAP sensors. Before applying 108 
the retrieval algorithm, extraneous sources of radia- 109 
tion contributing to observed TA (and, subsequently, 110 
observed top-of-the-atmosphere TB) must be identi- 111 
fied. In most AS-ECV retrievals, these sources include 112 
land or sea ice within the antenna field of view as well 113 
as radio frequency interference (RFI). For the salinity 114 

retrievals, additional extraneous radiation sources 115 
include cosmic MW background, sun, moon, and 116 
galaxy, either viewed directly through the antenna 117 
or through the reflection from the ocean surface. In 118 

addition, at the 1.4 GHz frequency required for the salinity algorithm, the ionosphere rotates the polarization vector of the 119 
radiation traveling through it due to the Faraday effect6. Polarization rotation also needs to be considered for fully polari- 120 
metric imagers like WindSat, although its higher frequencies are less affected by the rotation. To remove the ionosphere 121 
effects from the observed top-of-the-atmosphere TB, an ancillary dataset of total electron content (TEC) is used to correct 122 
the TB as it passes through the ionosphere. Figure 2 shows how these spurious contamination sources contribute to the 123 
overall TA and top-of-the-atmosphere TB observation. 124 
 125 
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MW Sensor Inter-Calibration 126 
According to the National Research Council, a climate data record (CDR) is defined as “a time series of measurements of 127 
sufficient length, consistency, and continuity to determine climate variability and climate change”7. In order for the data 128 

Figure 2 Inputs to Observed Microwave Brightness Temperature (TB). The arrows 

show the various components that contribute to the observed TA and top-of-the-at-

mosphere TB. 
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products to reach the consistency required to build a climate-quality dataset, covering two to four decades, the basic meas- 129 
urements (TB or σo) need to be precisely inter-calibrated. Given the 35 MW sensors in the MCDC inventory, inter-calibration 130 
has been a major component of the work done at RSS. 131 
RSS performed the first MW imager inter-calibration in 1990 when the second SSM/I went into operation. Since then, there 132 
have been many generations of calibration procedures8,9,10,11,12. Currently, 14 MW imagers, excluding one of the SSMIS’, have 133 
been inter-calibrated to GMI which provides the most accurate measurements with a TB absolute accuracy of 0.25 K and a 134 
TA absolute accuracy of 0.1 K valid from cold ocean temperatures to the hot rainforest12. Moreover, GMI is in an inclined 135 
orbit and provides coincident collocations with other sensors, essentially eliminating errors related to diurnal variations. 136 
The MW sounder TBs are a self-consistent dataset and are not inter-calibrated with the imagers because the 50–60 GHz 137 
observations taken by the sounders are fundamentally different than the TB measurements taken by the imagers. MW 138 
sounders are inter-calibrated by comparing co-orbiting satellite measurements of top of the atmosphere TBs from MSU and 139 
AMSU. Moreover, the difference between MSU and AMSU measurements are averaged and then subtracted from the 140 
AMSU data so that co-orbiting MSU and AMSU TBs match one another13. In addition, the MW sounder inter-calibration 141 
solves for differences in the earth incidence angle (EIA), diurnal drift, and weighting functions between MSU and AMSU14,15. 142 
Buoy wind speeds (< 15 m/s) and dropsondes (≥ 15 m/s) are the ultimate calibration standard for scatterometer wind speed 143 
retrievals. WindSat wind speeds have been validated against buoys and dropsondes in rain-free conditions, and now Wind- 144 
Sat serves as a consistent reference for scatterometer wind retrievals. Adjustments are made to the σo measurements to 145 
obtain agreement between the imager and scatterometer wind speed retrievals. For scatterometer wind direction retrievals, 146 
the National Center for Environmental Prediction (NCEP) Global Data Assimilation System (GDAS) was used as the cali- 147 
bration standard. Direct comparisons between contemporaneous scatterometers are also used in the inter-calibration pro- 148 
cedure16. 149 

MW Imager AS-ECV Retrieval Algorithm 150 
The seven AS-ECVs that are retrieved by the MW imager algorithm are: 151 

1. Sea-surface temperature 152 
2. Ocean wind speed at 10 m above surface 153 
3. Ocean wind direction at 10 m above surface 154 
4. Columnar atmospheric water vapor above the ocean 155 
5. Columnar cloud liquid water above the ocean 156 
6. Sea-surface rain rate 157 
7. Sea-surface salinity 158 

The retrieval algorithm for the MW imagers is based on a radiative transfer model (RTM) for the earth and attenuating 159 
atmosphere, which is common to all of the imagers. The RTM is also called the forward model because it provides top-of- 160 
the-atmosphere TBs for a given earth scene when AS-ECVs are used as inputs (Equations 5–10; Table 4). The essential ele- 161 
ments of the RTM are surface temperature (TS) and emissivity (E), as well as atmospheric profiles of pressure (P), tempera- 162 
ture (T), water vapor (ρV), and cloud liquid water (ρL). The emissivity is a function of surface temperature, sea-surface 163 
salinity (S), wind speed (W), and wind direction relative to the azimuthal look (φ). The rain rate is a function of the RTM- 164 
derived cloud liquid water and the rain column height, which in turn is linearly related to RTM-derived sea-surface tem- 165 
perature; generally speaking, rain occurs when the cloud liquid water value exceeds a threshold of 0.18 kg/m2. In the sea- 166 
surface salinity retrieval, there is only one frequency available (1.4 GHz); therefore, the RTM requires several ancillary 167 
datasets to retrieve emissivity and top-of-the-atmosphere TB, including sea-surface temperature, wind speed and direction, 168 
atmospheric profiles, and rain rate17. The RTM is described in greater detail in the literature18,19,20,21 and provided for cases 169 
in which the atmospheric scattering by liquid water droplets is neglected22,23,24. 170 

 𝑇# = 𝑇#Q + 𝜏(0, 𝐻)[𝐸𝑇W + (1 − 𝐸)(𝑇#X + 𝜏(0,𝐻)𝑇M)] + 𝜏(0, 𝐻)𝑇#,Z[\]  (5) 

 𝑇#,Z[\] = 𝛺(1 − 𝐸)[𝑇#X + 𝜏(0,𝐻)𝑇M − 𝑇M] (6) 
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 𝛼(ℎ) = 𝛼X(𝑇(ℎ), 𝑃(ℎ)) + 𝛼p(𝑇(ℎ), 𝑃(ℎ), 𝜌p(ℎ)) + 𝛼r(𝜀r,𝜌r(ℎ)) (9) 

 𝐸 =	𝐸f(𝜃, 𝑆, 𝑇W) + Δ𝐸v(𝜃,𝑊, 𝑇W) + Δ𝐸x(𝜃,𝑊, 𝜑) (10) 

The retrieval algorithm is an approximate inversion of the forward model. It provides estimates of the AS-ECVs for a given 171 
set of top-of-the-atmosphere TB observations taken over a range of frequencies and polarizations. The retrieval algorithm 172 
uses multiple non-linear regressions in order to find the AS-ECVs18,25. The regression coefficients are derived from a training 173 
set of simulated TBs from the RTM using Monte Carlo combinations of AS-ECVs representative of all-possible global con- 174 
ditions. To deal with a possible non-linear dependence between the TB and AS-ECV, a two-stage linear regression is used 175 
(Equations 11–13, using two AS-ECVs as an example; Table 4). The first stage (m1j) is valid for global conditions and pro- 176 
vides a first-guess for the AS-ECVs. Given this first guess, a second-stage regression (m2j) is selected based on the specific 177 
environment found by the first stage. 178 
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 𝑡} = 𝑇#} − 150 for all but 24 GHz, 𝑡} = − ln(290 − 𝑇#}) for 24 GHz (13)  

An exception to the retrieval algorithm regression approach is used in the wind vector retrieval (wind speed and wind 179 
direction). In this case, the MW imager needs to be fully polarimetric and a classical “chi-squared” Maximum Likelihood 180 
Estimator (MLE) is used that minimizes the differences between the observed TB and RTM-computed TB. The wind direction 181 
algorithms generally, but not always, provide multiple solutions (ambiguities) for wind directions. The final step in the 182 
wind direction retrieval is an ambiguity selection that chooses the wind vector that is consistent with nearby values26. 183 

MW Sounder Atmospheric Temperature Retrieval Algorithm 184 
The retrieval algorithm for the MW sounders finds the temperature for five atmospheric layers27: 185 

1. Temperature of the Lower Troposphere (TLT) 186 
2. Temperature of the Total Troposphere (TTT) 187 
3. Temperature of the Middle Troposphere (TMT) 188 
4. Temperature of the Troposphere and Stratosphere (TTS) 189 
5. Temperature of the Lower Stratosphere (TLS)  190 

The atmospheric temperature products are provided globally over ocean, land, and ice. This is in contrast to the other 191 
MCDC data products which are only provided over the global ocean. The sounding channels used in the retrieval are in 192 
the 50–60 GHz part of the MW spectrum. Since molecular oxygen in the atmosphere strongly absorbs and emits MW radi- 193 
ation in this range, the TB at these frequencies represents the vertically-averaged air temperature over a select layer of the 194 
atmosphere. The extent and vertical location of the layer depends on the EIA and frequency of the observation. Equation 195 
(14) relates the observed TB to the sum of the small surface contribution (first term) and the vertically-averaged atmospheric 196 
contribution (second term) (Table 4)13. The surface contribution to the TB depends on the zenith optical depth (z) for an 197 
atmospheric layer, which is the integration of the atmospheric absorption coefficient (κ) (Equation 15; Table 4). Weighting 198 
functions in the second term are used to separate the TB contributions from various layers in the atmosphere; they are a 199 
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function of the height above sea level and depend on the observation frequency and the EIA (Equation 16; Table 4). For 200 
three of the channels (TMT, TTS, and TLS) we report the TB for a limited set of near-nadir views, with each off-nadir TB 201 
referred to nadir using adjustments calculated from the RTM for climatological atmospheric profiles. TTT is constructed 202 
from a weighted combination of TMT and TLS to reduce the stratospheric contribution28. TLT is constructed using a linear 203 
combination of measurements at different views to move the weighting function closer to the surface14,15. 204 

 𝑇# = 𝐸𝑇Wexp(−𝑧(0,∞) sec 𝜃) +k 𝐹(ℎ)𝑇(ℎ)𝑑ℎ
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 𝐹(ℎ) = 𝜅(ℎ) sec 𝜃 exp(−𝑧(ℎ,∞) sec 𝜃) + 𝜅(ℎ) sec 𝜃 exp(−𝑧(0, ℎ) sec 𝜃)(1 − 𝐸)exp(−𝑧(0,∞) sec 𝜃) (16) 

MW Scatterometer Wind Vector Retrieval Algorithm 205 
In low wind conditions, the smooth ocean surface reflects most of the microwave energy away from the scatterometer and 206 
there is very little backscatter returned to the sensor. However, wind-induced ocean surface roughness increases scatter in 207 
every direction off of the capillary waves. The amount of backscatter depends on surface wind speed (W) and wind direc- 208 
tion relative to the azimuthal look (φ)3. The retrieval algorithm for the MW scatterometers measures the ocean wind vector 209 
(wind speed and wind direction) 10 meters above the ocean surface. The retrieval algorithm is based upon a geophysical 210 
model function (GMF) that relates σo to wind speed and direction23,29,30. The GMF is an expanded Fourier series of even 211 
harmonics in the relative wind direction (Equation 17, keeping harmonics up to the second order; Table 4). The coefficients 212 
for the fifth order polynomial of wind speed for each of the harmonic functions in the wind direction are tuned using wind 213 
speed measurements from WindSat and wind directions from NCEP that are both matched up with the scatterometer σo. 214 
Similar to the wind vector retrieval algorithm for fully polarimetric MW imagers, the scatterometer wind vector retrieval 215 
algorithm employs a classical “chi-squared” MLE that minimizes the differences between the observed σo and the GMF σo. 216 
The MLE is then followed by an ambiguity selection algorithm26.  217 
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Data Records 219 
The AS-ECVs hosted by the MCDC are used by the scientific community to study climate change, as well as by commercial 220 
and operational agencies for a variety of purposes, including weather operations, renewable energy, and shipping logistics. 221 
The MCDC AS-ECV datasets are freely available from the RSS website via both HTTP (https://data.remss.com/) and FTP 222 
file transfer protocols. Table 5 provides key specifications of individual AS-ECV datasets, the majority of which are on an 223 
Earth-centered grid at regular 0.25-degree latitude/longitude intervals with a daily or composite (3-day, weekly, 8-day, 224 
monthly) temporal resolution. Although the AS-ECVs are released on a 0.25-degree sampling grid, it is important to note 225 
that their inherent resolution in kilometers depends on the sensor (Tables 1–3). In addition to the individual AS-ECV da- 226 
tasets, intercalibrated top-of-the-atmosphere TBs from MW imagers are freely available upon request. The following sub- 227 
sections describe individual AS-ECV datasets as well as merged AS-ECV CDRs. 228 

Sea-Surface Temperature 229 
Sea-surface temperature (SST) is a measure of the temperature (°C) of the skin layer of the ocean (~20 µm-depths measured 230 
by IR imagers), sub-skin layer of the ocean (~1 mm-depths measured by MW imagers), and foundation ocean (0.5–1.5 m- 231 
depths). SST measurements are used to observe changes in global climate, monitor decadal climate variability including 232 
the El Niño Southern Oscillation (ENSO), and forecast tropical cyclones. SSTs are important boundary (input) conditions 233 
for atmosphere-only models and have been used to train coupled ocean-atmosphere climate models so that their outputs 234 
match observations31. Beyond climate modeling and seasonal forecasting, SST observations are useful for predicting coral 235 
bleaching, tracking pollution, and commercial fishery and tourism industries. The MCDC provides sub-skin SSTs from MW 236 
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imagers with low frequency channels (6–11 GHz) that are sensitive to ocean temperatures at these depths. The MCDC also 237 
produces an optimally interpolated (OI) foundation SST, which merges observations from multiple sensors32,33,34 and re- 238 
moves diurnal warming35,36. There are two flavors of the MCDC OI SST product. One of the OI SSTs only uses MW imagers 239 
as input, while the other employs both MW imagers and IR imagers that measure skin SST. MCDC SSTs range from -3 to 240 
35°C. 241 

Ocean Wind Speed and Wind Vectors over Ocean and Land 242 
The MCDC repository of wind speed (m/s) and wind vectors (wind speed and direction in degrees) represent near-surface 243 
conditions (10 meters above the ocean surface). The wind direction is provided in the wind vector azimuth convention, i.e., 244 
the direction points along mass flow with 0 degrees referring to wind blowing towards the Northern direction (the degrees 245 
increase in the clockwise direction). On short timescales (daily to weekly), winds are used for predicting and monitoring 246 
tropical cyclones. On longer timescales (seasonal to interannual), winds can provide insight into climate variability, includ- 247 
ing monsoon intensity and changes in rain patterns (e.g., due to ENSO), which can greatly affect global populations in 248 
various parts of the world via flooding or droughts37,38. The MCDC provides scalar ocean wind speeds from MW imagers 249 
both in non-rainy conditions and rainy conditions (Tropical Cyclone (TC) winds and All-Weather winds39,40,41) (Figure 3). 250 
In addition, the MCDC distributes ocean wind vectors from fully polarimetric MW imagers, MW scatterometers as well as 251 
the Cross-Calibrated Multi-Platform (CCMP) wind vector analysis product42,43. Note that the MCDC supplies two wind 252 
speed products, one from low frequency MW imager observations (11–37 GHz) and the second from medium frequency 253 
MW imager observations (19–37 GHz). MCDC wind speeds range from 0 to 70 m/s and wind directions range from 0 to 350 254 
degrees. 255 

Columnar Atmospheric Water Vapor over Ocean 256 
Columnar atmospheric water vapor is the amount 257 
of gaseous water present in a column of air extend- 258 
ing from the Earth’s surface to the top of the atmos- 259 
phere. Columnar water vapor is reported in units of 260 
kg/m2 (the vertically-integrated mass of water va- 261 
por), which can then be converted to mm when di- 262 
vided by the density of water. Atmospheric water 263 
vapor is essential for cloud formation and latent 264 
heat transport, both of which contribute to tropical 265 
and extratropical storms. In addition, evidence sug- 266 
gests that increased atmospheric moisture will en- 267 
hance the intensity of atmospheric rivers, which will 268 
lead to substantially longer and wider atmospheric 269 
rivers than the ones observed today44,45. Water vapor 270 
also plays an important role in the climate due to its 271 
potency as a greenhouse gas and water vapor posi- 272 
tive feedback loop. This water vapor feedback plus 273 
the temperature lapse rate feedback, 1.30 W m-2 °C-1 274 
in total, will increase the total climate feedback 275 
warming by 50%46,47. The MCDC provides measure- 276 
ments of water vapor over the ocean calculated from 277 
the 22 GHz band of MW imagers, which is near the 278 
peak of one of the water vapor absorption frequen- 279 
cies; values range from 0 to 120 mm. 280 

Columnar Cloud Liquid Water over Ocean 281 
Columnar cloud liquid water is a measure of the depth of liquid water in mm contained in a cloud for a vertical column of 282 
the atmosphere (any ice and snow present in the cloud are not included in this measurement). Cloud liquid water is also 283 
often reported as the mass of liquid water per mass or volume of air (g/kg or g/m3). Cloud liquid water plays a substantial 284 

Figure 3 MCDC Tropical Cyclone (TC) Winds. Subplots show wind speeds in hur-

ricanes and tropical cyclones for AMSR-E (a), AMSR-2 (b, d), and SMAP (c). 
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role not only in the global water cycle, but also in how atmospheric radiation is absorbed, scattered, and reemitted: clouds 285 
can have competing effects on the climate, some of which cool the earth by reflecting visible light while others warm the 286 
earth by absorbing IR radiation48. The MCDC supplies cloud liquid water measurements above the ocean calculated from 287 
a range of MW imager frequencies (19–37 GHz); values range from 0 to 1.8 mm.  288 

Sea-Surface Rain Rate 289 
Sea-surface rain rate is a measure of the average rain rate at the ocean surface in mm/hr. Rain from atmospheric rivers and 290 
monsoons supplies fresh water to the world’s population centers49,50,51. Over recent decades there has been a narrowing and 291 
strengthening of rain in the Inter-Tropical Convergence Zone (ITCZ), a belt of rainfall that shifts north and south, providing 292 
monsoonal rain52. Accurate measurements of rain improve characterization of droughts, landslides, floods, and severe 293 
storms, which have enormous impacts on society. The MCDC provides sea-surface rain rates calculated from a range of 294 
MW imager frequencies (19–37 GHz); values range from 0 to 25 mm/hr. 295 

Sea-Surface Salinity 296 
Sea-surface salinity (SSS) is a measure of how salty the ocean is in its uppermost layer (~1 cm). It is expressed in terms of 297 
Practical Salinity Units (psu), which are approximately equivalent to parts per thousand. Satellite measurements of SSS are 298 
important for studying the global water cycle (e.g., areas of precipitation and evaporation), oceanic currents and transport, 299 
and river discharge53. The MCDC provides SSS retrievals from the 1.4 GHz frequency characteristic of the SMAP MW im- 300 
ager at two resolutions: 40 km and 70 km; values range from 0 to 45 psu. The 70 km SSS product should be used for most 301 
scientific purposes as the noise associated with the SSS retrievals is greatly reduced when compared to the 40 km product 302 

(Figure 4). 303 

Atmospheric Temperature Profiles over Ocean and Land 304 
Satellite measurements of atmospheric temperature are critical for train- 305 
ing and verifying atmosphere-ocean coupled general circulation models 306 
(GCMs) to predict future changes to the climate54. According to the Inter- 307 
governmental Panel on Climate Change (IPCC), under high greenhouse 308 
gas emissions scenarios the lower troposphere global average tempera- 309 
tures are predicted to increase by 1.5 °C relative to pre-industrial levels 310 
by 2030 to 205255. The MCDC at RSS provides temperature measurements 311 
for five layers of the atmosphere over ocean and land: Temperature 312 
Lower Troposphere (TLT), Temperature Total Troposphere (TTT), Tem- 313 
perature Middle Troposphere (TMT), Temperature Troposphere Strato- 314 
sphere (TTS), and Temperature Lower Stratosphere (TLS)27. Atmospheric 315 
temperatures are calculated from the 50–60 GHz channels of MW sound- 316 
ers; values range from approximately 80 to 310 K depending on the at- 317 
mospheric layer. 318 

AS-ECV CDRs 319 
RSS has combined select AS-ECV data from multiple MW imagers into a 320 
single CDR on a 2.5-degree, global grid for each month from 1987 to pre- 321 
sent: wind speed, columnar atmospheric water vapor, columnar cloud 322 

liquid water, and sea-surface rain rate. During sensor overlap periods, the CDR AS-ECV is determined by averaging the 323 
multi-sensor retrievals together into a single gridded map. The CDR additionally includes sea-surface temperature from 324 
Reynolds Optimal Interpolation (OI) because the MCDC MW sea-surface temperature record does not extend back to 1987. 325 
The CDR was created for trend analysis; for example, Figure 5 shows trend maps of the AS-ECVs from this CDR. A second- 326 
ary available CDR contains tropospheric and stratospheric temperatures derived from MW sounders, MSU and AMSU, 327 
spanning 1979 to present. Figure 6 shows the long-term trends from this CDR: tropospheric temperatures have increased 328 
by 0.213 K per decade and stratospheric temperatures have decreased by -0.210 K per decade. The data for the MW imager 329 
AS-ECV CDR is located at: https://www.remss.com/climate/Air-Sea-Essential-Climate-Variables/. The data for the MW 330 
sounder AS-ECV CDR is located at: https://images.remss.com/msu/msu_time_series.html. 331 

Figure 4 MCDC Sea-Surface Salinity (SSS). SSS from 

SMAP is averaged over eight days centered on June 15, 

2018. 
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 332 
Technical Validation 333 

A majority of work completed at 334 
RSS revolves around the 335 
validation of the MCDC datasets. 336 
The following sub-sections 337 
provide examples of the technical 338 
validation of individual AS-ECV 339 
datasets. 340 

Sea-Surface Temperature 341 
The average bias between MCDC 342 
MW sub-skin SSTs from TMI and 343 
moored buoys is -0.08°C and the 344 
standard deviation of the bias is 345 
0.57°C for all collocations from 346 
1998 to 200156. To mitigate the ef- 347 
fect of diurnal warming on the 348 
bias, SST measurements with cor- 349 
responding wind speeds less than 350 
6 m/s and between 10 am and 6 pm 351 
were excluded from the above sta- 352 
tistics. In addition, all retrievals 353 
within 25 km of a non-zero rain re- 354 
trieval were excluded from the 355 
bias statistics because undetected 356 
rain can cause a warm bias in the 357 
MW SSTs. Similar to the TMI vali- 358 
dation study, the MCDC MW sub- 359 
skin SSTs from AMSR-E (AMSR-2) 360 
collocated with moored and drift- 361 
ing buoys, ships, and Coastal-Ma- 362 
rine Automated Network in situ 363 
SSTs spanning 2002 to 2011 (2012 364 
to 2014) exhibited a bias of -0.05°C 365 
(-0.04°C) and standard deviation 366 
of 0.48°C (0.55°C)57,58. 367 
 368 

Ocean Wind Speed and Wind Vectors 369 
over Ocean and Land 370 
On a global scale, wind speeds be- 371 
tween 0–15 m/s from MCDC MW 372 
imagers and scatterometers agree 373 
with buoy measurements with an 374 
error of about 1–1.5 m/s59,60,61,62. For 375 
higher wind speeds, between 15– 376 
25 m/s, accurate in situ measure- 377 

ments from buoys are difficult to obtain because the wind-measuring devices (anemometers) on buoys are impacted by 378 
buoy tilting, high sea state, and wave-sheltering63,64,65. However, when compared to anemometers mounted high on oil 379 

Figure 5 MCDC AS-ECV CDR Trend Maps. Trend maps of monthly MCDC MW imager AS-ECV CDRs 

for July 1987 to December 2020: sea-surface temperature (SST) (a), wind speed (b), columnar atmos-

pheric water vapor (c), columnar cloud liquid water (d), sea-surface rain rate (e). Monthly values are 

de-seasonalized to account for monthly variation, i.e., the average monthly value over the entire period 

for January, February, etc. is subtracted from the observed monthly value before the trend is calculated. 

Figure 6 MCDC Temperature CDR Trends. Monthly global average tropospheric (TLT) and stratospheric 

(TLS) timeseries and trends from January 1979 to January 2022. 
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platforms in the North Sea (and therefore not subject to the same ocean effects as buoys) imager and scatterometer wind 380 
measurements between 15–25 m/s perform well66. Specifically, WindSat exhibited a -0.5 m/s bias and 2.5 m/s standard de- 381 
viation of the bias at wind speeds of 22 m/s. While the scalar wind speed signal responds with a linear emissivity that does 382 
not saturate at extreme winds ~70 m/s22,67,68, the backscatter signal of wind vector measurements saturates at wind speeds 383 
above 35–40 m/s making it difficult to tell the exact wind magnitude69,70,71. For MW imagers and scatterometers it is chal- 384 
lenging to validate wind speeds above 25–30 m/s because there is a scarcity of data to use as ground truth. That being said, 385 
wind information from dropsondes and Stepped-Frequency Microwave Radiometers (SFMRs) on board hurricane-pene- 386 
trating aircrafts have shown that SMAP can accurately measure wind speeds of up to 70 m/s in tropical cyclones67,72. Note 387 
that since the TC winds algorithms are trained in TC conditions, they become less accurate in areas where sea-surface 388 
temperatures are < 20 °C and wind speed is < 10 m/s. In these conditions, the All-Weather winds product should be used. 389 
CCMP should not be used to measure high winds (> 25 m/s) associated with tropical cyclones because the background 390 
model winds used in CCMP consistently underestimate winds relative to satellite observations at higher wind speeds, and 391 
in some cases tropical cyclones are too spatially-small for the background models to pick up. 392 

Columnar Atmospheric Water Vapor over Ocean 393 
The MCDC water vapor retrievals agree with water vapor measurements from GPS ground stations located on small islands 394 
across the globe with mean differences of less than 1 mm between the two73. The MCDC water vapor retrievals display a 395 
global trend of approximately 1.5% increase per decade74. This tracks well with the water vapor increase relative to the 396 
increase in global temperature as predicted by the Clausius-Clapeyron equation (~7% increase in water vapor per degree 397 
of warming)75,76,77. Unfortunately, water vapor is not retrieved in areas of moderate to high rain rate (> 5–10 mm/hr). This 398 
can result in a systematic “non-rainy” negative bias in globally-averaged water vapor. Indeed, the MCDC average water 399 
vapor retrievals have a small “non-rainy” bias (-0.35–0.15 mm relative to GPS stations)74. In the presence of light rain (0–5 400 
mm/hr), RSS is able to retrieve water vapor; however, in this case there is a large positive bias in AMSR-E water vapor 401 
measurements (up to 2 mm at rain rates of ≥ 2 mm/hr)73. Another issue relates to wind speed: almost every MCDC sensor 402 
shows a roughly linear decrease in its water vapor bias relative to GPS stations as wind speed increases73. This is potentially 403 
due to small errors in the ocean surface model used in the RTM.  404 

Columnar Cloud Liquid Water over Ocean 405 
It is difficult to check the accuracy of MCDC columnar cloud liquid water retrievals against in situ sources because meas- 406 
urements of cloud liquid water over the oceans are sparse and cloud coverage can vary significantly over the large area that 407 
the satellite observes. Provided these difficulties, cloud liquid water is validated with probability distribution functions 408 
(PDFs) of cloud liquid water for different ranges of sea-surface temperature, wind speed, and atmospheric water vapor. 409 
The PDFs have a distinctive shape where the peak of the PDFs is near a cloud liquid water value of 0.025 mm with a half- 410 
peak at 0.000 mm. The steeply-sloped left sides correspond to clear-sky conditions when there is little to no cloud liquid 411 
water. If the left side half-peak of the stratified PDFs are aligned, it indicates minimal errors in the cloud liquid water 412 
measurement, and therefore, minimal contamination or crosstalk from SST, wind speed, or water vapor. Conversely, if the 413 
clear-sky portions of the PDFs are not aligned then signals from one of the other geophysical variables in a given scene may 414 
be causing an erroneous cloud water signal when there is none. This analysis suggests that the systemic cloud liquid water 415 
root-mean-square error is: +/- 0.005 mm19. Another source of error could be related to the cloud liquid water vs rain thresh- 416 
old value. In the MCDC algorithm, a cloud is assumed to be raining if the cloud liquid water value is greater than 0.180 mm 417 
(i.e., the rain threshold, Lrain, is equal to 0.180). It is possible that cloud liquid water may end up being over- (under-) esti- 418 
mated if clouds are precipitating below (above) the threshold of 0.180 mm. However, this threshold was shown to be rea- 419 
sonable78. 420 

Sea-Surface Rain Rate 421 
The MCDC sea-surface rain rate average bias is 4 mm/yr, or approximately 5x10-4 mm/hr, for all measurements of rain rate 422 
from TMI compared to the Pacific Marine Environmental Laboratory (PMEL) tropical buoys located between 25°S and 21°N 423 
across the years 1997–201111. For the retrieval of rain rate, we use the columnar cloud liquid water as a proxy for rain; for 424 
values of cloud liquid water below 0.18 mm, the rain is assumed to be zero78. Unaccounted for variations this threshold may 425 
produce spurious trends in the rain calculation. 426 
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Sea-Surface Salinity 427 
In non-raining scenes and SSTs > 5 °C, the MCDC 70 km SMAP SSS data product has a -0.01 psu bias and a 0.14–0.15 psu 428 
standard deviation of the bias when compared to drifting ARGO buoys1 (a global array of over 3000 floats) and the Hybrid 429 
Coordinate Ocean Model (HYCOM)79,80,81. In high rain, the ARGO data are not a reliable validation source. This is because 430 
the stratification of the upper ocean layer caused by rain results in a sampling mismatch error between the satellite sensor 431 
observation, which is within a few centimeters of the surface, and the in-situ observation, which is taken at a depth of 1–5 432 
m82. In addition, the MCDC salinity retrievals degrade in cold water, as the 1.4 GHz L-band surface emission loses sensitiv- 433 
ity at low SSTs. Other reasons for possible degradation include proximity of the retrieval to land or sea ice and the presence 434 
of sun glint or high wind speeds. The effect of the sea ice edge on SSS retrievals has been largely mitigated by a sea ice flag 435 
developed by RSS83.  436 

Atmospheric Temperature Profiles over Ocean and Land 437 
The MCDC TLT dataset shows greater trends in warming (0.21–0.25 K/decade) as compared to radiosonde datasets (0.18– 438 
0.20 K/decade)15. The University of Alabama-Huntsville (UAH) TLT trends are also smaller than the MCDC TLT trends 439 
(0.124 vs 0.174 K/decade for near-global regions and 0.121 vs 0.147 K/decade for tropical regions)15. In addition, MCDC TLT 440 
is validated with total column water vapor, which is highly correlated with atmospheric temperature over the tropical 441 
oceans. In contrast to the radiosonde and UAH TLT biases, the MCDC TLT trend ratio (8%/K) implies slightly less warming 442 
than the expected water vapor trend ratio (6.2%/K)15. Overall, the MCDC TLT exhibited global errors of ±0.044 K and trop- 443 
ical errors of ±0.034 K in a Monte Carlo analysis that systematically incorporated 400 combinations of errors in TLT84. 444 

Code Availability 445 
The Radiative Transfer Model code that is used to generate the regressions for the microwave imager retrievals of MCDC 446 
AS-ECVs is available upon request from: https://www.remss.com/rtm/. Coefficients for the microwave imager retrieval 447 
regressions and scatterometer GMF are available upon request. Weighting functions for the microwave sounder retrievals 448 
of atmospheric temperatures are available at: https://data.remss.com/msu/weighting_functions/. In addition, the code for 449 
the diurnal warming model used to compute foundation sea-surface temperature is available on the RSS website: 450 
https://www.remss.com/research/.   451 
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Tables 466 
Table 1. Inputs: MW conical scanning imagers used to generate AS-ECV data. SSM/I=Special Sensor Microwave Imager. SSMIS=SSMI 467 
Sounder. DMSP=Defense Meteorological Satellite Program. TMI=Tropical Rainfall Measuring Mission (TRMM) Microwave Imager. 468 
GMI=Global Precipitation Measurement (GPM) Microwave Imager. AMSR-E & AMSR-2=Advanced Microwave Scanning Radiometers. 469 
GCOM-W1=Global Change Observation Mission. SMAP=Soil Moisture Active Passive. 470 

Sensor Name Satellites Time Period 
(years) 

Ascending 
Local Equatorial 

Time1 

Frequencies 
(GHz) 

Mean 
Footprint Resolu-

tion (km)2 

Swath 
Width 
(km) 

SSM/I85 

DMSP  
F08 

F10–11  
F13–15 

1987– 
Present 

06:00 (F08), 
17:00–22:00 

Near-Polar Orbit 

19.35 V H 
22.24 V 
37.00 V H 
85.50 V H 

56 
45 

32.5 
14 

1400 

SSMIS85 DMSP  
F16–18 

2003– 
Present 

 

16:30–18:30 
Near-Polar Orbit 

19.35 V H 
22.24 V 
37.00 V H 
91.35 V H 

56 
45 

32.5 
14 

1700 

TMI86 TRMM 1997–2015 
Variable 

Inclined Orbit: 
40°S to 40°N 

10.70 V H 
19.35 V 
21.30 V H 
37.00 V H 
85.50 V H 

57.5 
28 

23.5 
14 
7 

758.5 

GMI87 GPM 
2014– 

Present 
 

Variable 
Inclined Orbit: 
60°S to 60°N 

10.65 V H 
18.70 V H 
23.80 V 
36.64 V H 
89.00 V H 

25.5 
14.5 
13 
12 
5.5 

930 

AMSR-E88 Aqua 2002–2011 
13:30 

Near-Polar Orbit 

6.925 V H 
10.65 V H 
18.70 V H 
23.80 V H 
36.50 V H 
89.00 V H 

59 
40 

21.5 
25 
11 
5 

1445 

AMSR-288  GCOM-W1 
2012– 

Present 
 

13:30 
Near-Polar Orbit 

6.925 V H 
7.300 V H 
10.65 V H 
18.70 V H 
23.80 V H 
36.50 V H 
89.00 V H 

48.5 
48.5 
33 
18 
15 
9.5 
4 

1450 

WindSat89 Coriolis 2003–2020 18:10 
Near-Polar Orbit 

6.800 V H 
10.70 V H3 
18.70 V H3 
23.80 V H 
37.00 V H3 

55 
31.5 
21.5 
25 

10.5 

950 

SMAP6 SMAP 2015– 
Present 

18:00 
Near-Polar Orbit 1.410 V H U 43 1000 

1 Information was obtained from: https://www.remss.com/support/crossing-times/. 2 Information was obtained from: 471 
https://www.remss.com/missions/. 3Fully polarimetric channels. 472 
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Table 2. Inputs: MW cross-track scanning sounders used to generate AS-ECV data. MSU=Microwave Sounding Unit. AMSU=Advanced 473 
Microwave Sounding Unit. FOV=Sensor Field of View. 474 

Sensor Name Satellites 
Time 

Period 
(years) 

Ascending 
Local Equatorial 

Time1 

Frequencies 
(GHz) 

Mean 
Footprint 

Resolution 
(km) 

Swath 
Width (km) 

MSU13 Tiros-N,  
NOAA-06–12, 14 

1978–
2005 

13:30–20:30 
Near-Polar Orbit 

4 channels: 
50.30–57.95 
Vx2, Hx2 

110 
~ 640 

(central 5 
FOVs) 

AMSU-A13 
NOAA-15, 18–19, 

MetOp-A, -B, 
Aqua 

1998– 
Present 

13:30–22:00 
Near-Polar Orbit 

11 channels: 
52.80–57.29 
Vx2, Hx9 

48 
~ 660 

(central 12 
FOVs) 

1 Information was obtained from: https://www.remss.com/support/crossing-times/. 475 
 476 
 477 
Table 3. Inputs: MW scatterometers used to generate AS-ECV data. SeaWinds is a conical scanning “pencil beam” scatterometer, while 478 
ASCAT is a cross-track chirping “fan beam” scatterometer. ASCAT=Advanced Scatterometer.  479 

Sensor 
Name Satellites 

Time 
Period 
(years) 

Ascending 
Local Equatorial 

Time1 

Frequencies 
(GHz) 

Mean 
Footprint 

Resolution 
(km) 

Swath Width 
(km) 

Sea-
Winds90 

Quickbird 
(QuikSCAT) 
ADEOS-2/ 
MIDORI-2 
(SeaWinds) 

1999–2009 
(QuikSCAT) 
2002–2003 
(SeaWinds) 

06:00 (QuikSCAT) 
22:30 (SeaWinds) 
Near-Polar Orbit 

13.40 V H 
44.5 (V)  
39 (H) 1800 

ASCAT91 MetOp -A, -B, -C 2007– 
Present 

21:30 
Near-Polar Orbit 5.255 V 25 & 50 500 x2 

1 Information was obtained from: https://www.remss.com/support/crossing-times/. 480 
 481 
 482 
 483 
 484 
 485 
 486 
 487 
 488 
 489 
 490 
 491 
 492 
 493 
 494 
 495 
 496 
 497 
 498 
 499 
 500 
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Table 4. Variable definitions for Equations (1) through (17). 501 
Variable Name Definition 

TB Top-of-the-atmosphere TB (K) for a given MW frequency and polarization. 
TA Top-of-the-ionosphere TA (K) for a given MW frequency and polarization. 

χ 
The coefficients of fractional power coming from the orthogonal polarization (cross-polarization 

coupling).  
Erefl Emissivity of the main sensor reflector. 
Trefl Temperature (K) of the main sensor reflector. 
η The fraction of received power coming from cold space (spillover). 

TC Temperature (~2.7 K) of the cosmic microwave background radiation (cold space). 
E Sea-surface emissivity for a given MW frequency and polarization. 
TS Surface temperature (K). 

TBU, TBD Upwelling and downwelling atmospheric TB (K). 
τ The total transmissivity through the atmosphere. 

TB,scat TB (K) adjustment that accounts for scattering as opposed to reflections from sea surface. 
Ω Empirical factor term. 

h, H 
Height (h; km) above Earth’ surface and height (H; km) at which the atmospheric absorption is 

zero. 

θ 
Angle between the satellite viewing direction and the zenith of the Earth’s geoid at boresight 

(EIA; degrees). 
T Air temperature (K). 
α Atmospheric absorption coefficient for a given MW frequency and polarization. 

αD, αV, αL	 The three components of atmospheric absorption: dry air, water vapor, liquid cloud water. 
εL Dielectric constant of pure (cloud) water which depends on the temperature of the medium. 

𝜌p, 	𝜌r Water vapor density and cloud liquid water density (kg/m3). 
P Dry air pressure (kPa). 

E0, ΔEW, ΔEφ  Emissivity of the specular ocean surface, isotropic wind-induced emissivity, four Stokes parame-
ters of the wind direction signal. 

S Sea-surface salinity (psu). 
W Wind speed (m/s). 
φ Wind direction relative to azimuthal look (degrees). 

m1j,	m2j Measurement of AS-ECV for 1st stage regression and 2nd stage regression. 

j,	k, l AS-ECV sea-surface temperature or wind speed index (j), sea-surface temperature 1st stage re-
gression integer value index (k), wind speed 1st stage regression integer value index (l). 

a, b, c Coefficients for AS-ECV non-linear and linear regressions. 
w Linear combination of AS-ECV measurements from 1st stage regression. 
z Zenith optical depth (km). 
F Weighting function for atmospheric layers. 
κ Atmospheric absorption coefficient. 
𝜎� The normalized radar cross-section (radar backscatter). 

d0, d1, d2 Coefficients of radar backscatter 5th order polynomials. 
 502 
 503 
 504 
 505 
 506 
 507 
 508 
 509 
 510 
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Table 5. Outputs: Data available at the MCDC. Most products are L(evel) 3 unless specified as L2 or L4. Spatial “Grid” is the spatial 511 
sampling in lat/lon degrees. OI=Optimally Interpolated; TC=Tropical Cyclone; CCMP=Cross-Calibrated Multi-Platform. 512 

Variable Sensors 
Spatial Temporal Data 

Format Range Grid Range Resolution 

Sea-Surface 
Temperature 

TMI, GMI, AMSR-E, AMSR-
2, WindSat 

40°S to 40°N 
(<2002-06-01) 
Global Ocean 
(>=2002-06-01) 

0.25° 
 

1997–
Present 

Daily1, 
3-Day, Weekly, 

Monthly 

netCDF4, 
bytemap 

OI Sea-Surface 
Temperature 

(MW) 

TMI, GMI, AMSR-E, AMSR-
2, WindSat 

40°S to 40°N 
(<2002-06-01) 
Global Ocean 
(>=2002-06-01) 

0.25° 
1998–

Present 
L4 Daily 

netCDF4, 
bytemap 

OI Sea-Surface 
Temperature 

(MW + IR) 

TMI, GMI, AMSR-E, AMSR-
2, WindSat, MODIS-Terra, 
MODIS-Aqua, VIIRS-NPP, 

VIIRS-N20 

Global Ocean 0.09° 
2002–

Present 
L4 Daily 

netCDF4, 
bytemap 

Ocean Wind 
Speed 

SSM/I, SSMIS, TMI, GMI, 
AMSR-E, AMSR-2, SMAP 

Global Ocean 
0.25° 

 
1987–

Present 

Daily1, 
3-Day, Weekly, 

Monthly 

netCDF4, 
bytemap 

Ocean Wind 
Vector2 

WindSat, QuikScat, Sea-
Winds, ASCAT 

Global Ocean 0.25° 
1999–

Present 

Daily1, 
3-Day, Weekly, 

Monthly 
bytemap 

Ocean TC/ 
All-Weather 
Wind Speed 

AMSR-E (only TC), AMSR-2, 
WindSat, SMAP 

TC: 
Tropical Ocean3 

All-Weather: 
Global Ocean 

0.25° 
2002–

Present 
Daily 

netCDF4, 
bytemap 

CCMP 
Ocean Wind 

Vector2 

MCDC Wind Vector, Quik-
SCAT, ASCAT, Moored 

Buoys, ERA-Interim 

Global Land 
Global Ocean 

0.25° 
1988–

Present 
6-Hourly netCDF4 

Columnar  
Atmospheric 
Water Vapor 

SSM/I, SSMIS, TMI, GMI, 
AMSR-E, AMSR-2, WindSat 

Global Ocean 0.25° 
1987–

Present 
Daily1, 3-Day, 

Weekly, Monthly 
netCDF4, 
bytemap 

Columnar 
Cloud Liquid 

Water 

SSM/I, SSMIS, TMI, GMI, 
AMSR-E, AMSR-2, WindSat 

Global Ocean 0.25° 
1987–

Present 
Daily1, 3-Day, 

Weekly, Monthly 
netCDF4, 
bytemap 

Sea-Surface 
Rain Rate 

SSM/I, SSMIS, TMI, GMI, 
AMSR-E, AMSR-2, WindSat 

Global Ocean 0.25° 
1987–

Present 
Daily1, 3-Day, 

Weekly, Monthly 
netCDF4, 
bytemap 

Sea-Surface 
Salinity 

SMAP (40 km & 70 km) Global Ocean 0.25° 
2015–

Present 
L2 Swath, 

8-Day, Monthly 
netCDF4 

Atmospheric 
Temperature 

Profiles 
MSU, AMSU 

Global Land 
Global Ocean 

2.5° 
1978/1987 

(TTS)–
Present 

Monthly 
netCDF4, 
bytemap 

1Indicates that the daily products include both ascending and descending orbits. 2Direction+Speed. 3SST>20°C; Winds>10 m/s. 513 
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